Penthiopyrad (BioDeep_00000001578)

   


代谢物信息卡片


Penthiopyrad

化学式: C16H20F3N3OS (359.1279)
中文名称: 吡噻菌胺
谱图信息: 最多检出来源 Homo sapiens(not specific) 50%

分子结构信息

SMILES: CC(C)CC(C)C1=C(C=CS1)NC(=O)C2=CN(N=C2C(F)(F)F)C
InChI: InChI=1S/C16H20F3N3OS/c1-9(2)7-10(3)13-12(5-6-24-13)20-15(23)11-8-22(4)21-14(11)16(17,18)19/h5-6,8-10H,7H2,1-4H3,(H,20,23)

描述信息

同义名列表

2 个代谢物同义名

Penthiopyrad; Penthiopyrad



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 CAT, DUSP3, GAPDH, SREBF1
Peripheral membrane protein 3 CYP1B1, SDHA, SDHB
Endoplasmic reticulum membrane 2 CYP1B1, SREBF1
Nucleus 3 DUSP3, GAPDH, SREBF1
cytosol 4 CAT, DUSP3, GAPDH, SREBF1
mitochondrial membrane 1 SDHB
nucleoplasm 3 DUSP3, SDHB, SREBF1
Multi-pass membrane protein 4 MT-CYB, SDHC, SDHD, SREBF1
Golgi apparatus membrane 1 SREBF1
Synapse 1 TAC1
Golgi membrane 1 SREBF1
mitochondrial inner membrane 6 MT-CYB, SDHA, SDHB, SDHC, SDHD, SQOR
neuronal cell body 1 TAC1
Cytoplasm, cytosol 1 GAPDH
plasma membrane 2 GAPDH, SDHB
Membrane 5 CAT, CYP1B1, GAPDH, MT-CYB, SDHC
axon 1 TAC1
extracellular exosome 2 CAT, GAPDH
endoplasmic reticulum 1 SREBF1
extracellular space 1 TAC1
perinuclear region of cytoplasm 1 GAPDH
mitochondrion 8 CAT, CYP1B1, MT-CYB, SDHA, SDHB, SDHC, SDHD, SQOR
protein-containing complex 2 CAT, SREBF1
intracellular membrane-bounded organelle 3 CAT, CYP1B1, GAPDH
Microsome membrane 1 CYP1B1
extracellular region 2 CAT, TAC1
mitochondrial matrix 3 CAT, SDHA, SDHB
motile cilium 1 DUSP3
nuclear membrane 1 GAPDH
microtubule cytoskeleton 1 GAPDH
nucleolus 1 SDHA
vesicle 1 GAPDH
Cytoplasm, perinuclear region 1 GAPDH
Mitochondrion inner membrane 5 MT-CYB, SDHA, SDHB, SDHC, SDHD
Matrix side 2 SDHA, SDHB
Cytoplasm, cytoskeleton 1 GAPDH
focal adhesion 1 CAT
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
chromatin 1 SREBF1
cytoskeleton 2 DUSP3, GAPDH
Cytoplasm, cytoskeleton, flagellum axoneme 1 DUSP3
nuclear envelope 1 SREBF1
Lipid droplet 1 GAPDH
Cytoplasmic vesicle membrane 1 SREBF1
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
mitochondrial envelope 1 SDHD
respiratory chain complex II (succinate dehydrogenase) 4 SDHA, SDHB, SDHC, SDHD
immunological synapse 1 DUSP3
ER to Golgi transport vesicle membrane 1 SREBF1
respiratory chain complex III 1 MT-CYB
ribonucleoprotein complex 1 GAPDH
GAIT complex 1 GAPDH
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 SREBF1
catalase complex 1 CAT
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1


文献列表

  • Mitzy F Porras, Juan Antonio Raygoza Garay, Malachi Brought, Tomas López-Londoño, Alexander Chautá, Makaylee Crone, Edwin G Rajotte, Ngoc Phan, Neelendra K Joshi, Kari Peter, David Biddinger. Fungicide ingestion reduces net energy gain and microbiome diversity of the solitary mason bee. Scientific reports. 2024 02; 14(1):3229. doi: 10.1038/s41598-024-53935-y. [PMID: 38332135]
  • Le Qian, Yikai Zhang, Jia Jiang, Luyi Li, Shufei Miao, Xiaobo Huang, Zhiping Che, Genqiang Chen, Shengming Liu. Assessment of reproductive toxicity in adult zebrafish (Danio rerio) following sublethal exposure to penthiopyrad. Ecotoxicology and environmental safety. 2023 Dec; 268(?):115721. doi: 10.1016/j.ecoenv.2023.115721. [PMID: 38000300]
  • Yurong Qiu, Yaling Meng, Wenxu Lian, Shasha Jian, Yannan Du, Meng Wang, Ye Yang, Xiaoyu Liang, Yu Zhang. Polymorphisms at amino acid positions 85 and 86 in succinate dehydrogenase subunit C of Colletotrichum siamense: Implications for fitness and intrinsic sensitivity to SDHI fungicides. Fungal genetics and biology : FG & B. 2023 Dec; 169(?):103844. doi: 10.1016/j.fgb.2023.103844. [PMID: 37989450]
  • Peilin Guo, Xiaokang An, Xinglu Pan, Jun Xu, Xiaohu Wu, Yongquan Zheng, Fengshou Dong. Rational understanding of chiral fungicide penthiopyrad stereoselectivity: Bioactivity, aquatic toxicity and cytotoxicity. The Science of the total environment. 2023 Sep; ?(?):166969. doi: 10.1016/j.scitotenv.2023.166969. [PMID: 37699492]
  • Rui Liu, Yue Deng, Di Wu, Yuping Liu, Zikang Wang, Simin Yu, Yufan Nie, Wentao Zhu, Zhiqiang Zhou, Jinling Diao. Systemic enantioselectivity study of penthiopyrad: enantioselective bioactivity, acute toxicity, degradation and influence on tomato. Pest management science. 2023 Jun; 79(6):2107-2116. doi: 10.1002/ps.7388. [PMID: 36722434]
  • Hui Liu, Mengqi Liu, Kuiyuan Chen, Mei Shan, Yongye Li. Fertilization can modify the enantioselective persistence of penthiopyrad in relation to the co-influence on soil ecological health. Environmental research. 2023 Feb; 224(?):115514. doi: 10.1016/j.envres.2023.115514. [PMID: 36801231]
  • Teeranai Poti, Tanapol Thitla, Naphatsawan Imaiam, Hatthaya Arunothayanan, Chanintorn Doungsa-Ard, Pornprapa Kongtragoul, Sarunya Nalumpang, Kazuya Akimitsu. Isolates of Colletotrichum truncatum with Resistance to Multiple Fungicides from Soybean in Northern Thailand. Plant disease. 2023 Jan; ?(?):. doi: 10.1094/pdis-08-22-1882-re. [PMID: 36691275]
  • Bo Ren, Hongwu Liang, Li Li, YanHong Li, Hanlin Liang, Tingting Zhao, Haiyue Chen, Yuexing Zhao. Enantioselective toxic effects of the novel chiral antifungal agrochemical penthiopyrad in the early life stage of zebrafish (Danio rerio). Chemico-biological interactions. 2023 Jan; 369(?):110252. doi: 10.1016/j.cbi.2022.110252. [PMID: 36347316]
  • Rui Liu, Yue Deng, Meiling Zheng, Yuping Liu, Zikang Wang, Simin Yu, Yufan Nie, Wentao Zhu, Zhiqiang Zhou, Jinling Diao. Nano selenium repairs the fruit growth and flavor quality of tomato under the stress of penthiopyrad. Plant physiology and biochemistry : PPB. 2022 Aug; 184(?):126-136. doi: 10.1016/j.plaphy.2022.05.026. [PMID: 35640519]
  • Tingting Zhao, Yu Liu, Hongwu Liang, Li Li, Kaiwei Shi, Jia Wang, Yuke Zhu, Cheng Ma. Simultaneous determination of penthiopyrad enantiomers and its metabolite in vegetables, fruits, and cereals using ultra-high performance liquid chromatography-tandem mass spectrometry. Journal of separation science. 2022 Jan; 45(2):441-455. doi: 10.1002/jssc.202100446. [PMID: 34713971]
  • Constantin Yanicostas, Nadia Soussi-Yanicostas. SDHI Fungicide Toxicity and Associated Adverse Outcome Pathways: What Can Zebrafish Tell Us?. International journal of molecular sciences. 2021 Nov; 22(22):. doi: 10.3390/ijms222212362. [PMID: 34830252]
  • Xuewei Mao, Yingfan Wang, Yiping Hou, Mingguo Zhou. Activity of the Succinate Dehydrogenase Inhibitor Fungicide Penthiopyrad Against Sclerotinia sclerotiorum. Plant disease. 2020 Oct; 104(10):2696-2703. doi: 10.1094/pdis-10-19-2253-re. [PMID: 32729795]
  • Pan Tao, Chengyu Wu, Jin Hao, Yanqing Gao, Xiaohua He, Jian Li, Shibin Shang, Zhanqian Song, Jie Song. Antifungal Application of Rosin Derivatives from Renewable Pine Resin in Crop Protection. Journal of agricultural and food chemistry. 2020 Apr; 68(14):4144-4154. doi: 10.1021/acs.jafc.0c00562. [PMID: 32191457]
  • Magdalena Podbielska, Małgorzata Kus-Liśkiewicz, Bartosz Jagusztyn, Bartosz Piechowicz, Stanisław Sadło, Magdalena Słowik-Borowiec, Magdalena Twarużek, Ewa Szpyrka. Influence of Bacillus subtilis and Trichoderma harzianum on Penthiopyrad Degradation under Laboratory and Field Studies. Molecules (Basel, Switzerland). 2020 Mar; 25(6):. doi: 10.3390/molecules25061421. [PMID: 32245000]
  • Achour Amiri, Adrian I Zuniga, Leandro G Cordova, Natalia A Peres. The Importance of Selecting Appropriate Rotation and Tank-Mix Partners for Novel SDHIs to Enhance Botrytis Fruit Rot Control in Strawberry. Plant disease. 2019 Apr; 103(4):729-736. doi: 10.1094/pdis-07-18-1276-re. [PMID: 30777800]
  • Le Qian, Suzhen Qi, Fangjie Cao, Jie Zhang, Changping Li, Min Song, Chengju Wang. Effects of penthiopyrad on the development and behaviour of zebrafish in early-life stages. Chemosphere. 2019 Jan; 214(?):184-194. doi: 10.1016/j.chemosphere.2018.09.117. [PMID: 30265925]
  • Hyun H Noh, Jae Y Lee, Hyo K Park, Jung W Lee, Seung H Jo, Jun B Lim, Hyun G Shin, Hyeyoung Kwon, Kee S Kyung. Dissipation, persistence, and risk assessment of fluxapyroxad and penthiopyrad residues in perilla leaf (Perilla frutescens var. japonica Hara). PloS one. 2019; 14(4):e0212209. doi: 10.1371/journal.pone.0212209. [PMID: 30964876]
  • Ana Belén López Santísima-Trinidad, María Del Mar Montiel-Rozas, Miguel Ángel Diéz-Rojo, Jose Antonio Pascual, Margarita Ros. Impact of foliar fungicides on target and non-target soil microbial communities in cucumber crops. Ecotoxicology and environmental safety. 2018 Dec; 166(?):78-85. doi: 10.1016/j.ecoenv.2018.09.074. [PMID: 30248564]
  • James T Popko, Hyunkyu Sang, Jaemin Lee, Toshihiko Yamada, Yoichiro Hoshino, Geunhwa Jung. Resistance of Sclerotinia homoeocarpa Field Isolates to Succinate Dehydrogenase Inhibitor Fungicides. Plant disease. 2018 12; 102(12):2625-2631. doi: 10.1094/pdis-12-17-2025-re. [PMID: 30307834]
  • A Amiri, A I Zuniga, N A Peres. Potential Impact of Populations Drift on Botrytis Occurrence and Resistance to Multi- and Single-Site Fungicides in Florida Southern Highbush Blueberry Fields. Plant disease. 2018 11; 102(11):2142-2148. doi: 10.1094/pdis-11-17-1810-re. [PMID: 30169135]
  • Hilda Dooley, Michael W Shaw, Jeanne Mehenni-Ciz, John Spink, Steven Kildea. Detection of Zymoseptoria tritici SDHI-insensitive field isolates carrying the SdhC-H152R and SdhD-R47W substitutions. Pest management science. 2016 Dec; 72(12):2203-2207. doi: 10.1002/ps.4269. [PMID: 26941011]
  • Robert C Johnson, Emily G Cantonwine. Post-infection activities of fungicides against Cercospora arachidicola of peanut (Arachis hypogaea). Pest management science. 2014 Aug; 70(8):1202-6. doi: 10.1002/ps.3671. [PMID: 24167118]
  • I Mallik, S Arabiat, J S Pasche, M D Bolton, J S Patel, N C Gudmestad. Molecular characterization and detection of mutations associated with resistance to succinate dehydrogenase-inhibiting fungicides in Alternaria solani. Phytopathology. 2014 Jan; 104(1):40-9. doi: 10.1094/phyto-02-13-0041-r. [PMID: 23901829]
  • Tyre J Proffer, Erin Lizotte, Nikki L Rothwell, George W Sundin. Evaluation of dodine, fluopyram and penthiopyrad for the management of leaf spot and powdery mildew of tart cherry, and fungicide sensitivity screening of Michigan populations of Blumeriella jaapii. Pest management science. 2013 Jun; 69(6):747-54. doi: 10.1002/ps.3434. [PMID: 23175430]
  • Pierre Leroux, Michel Gredt, Florent Remuson, Annie Micoud, Anne-Sophie Walker. Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae. Pest management science. 2013 Jan; 69(1):15-26. doi: 10.1002/ps.3408. [PMID: 23073993]
  • Hervé F Avenot, Anna Thomas, Ronald D Gitaitis, David B Langston, Katherine L Stevenson. Molecular characterization of boscalid- and penthiopyrad-resistant isolates of Didymella bryoniae and assessment of their sensitivity to fluopyram. Pest management science. 2012 Apr; 68(4):645-51. doi: 10.1002/ps.2311. [PMID: 22076736]
  • Albert K Culbreath, Tim B Brenneman, Robert C Kemerait, Glenn G Hammes. Effect of the new pyrazole carboxamide fungicide penthiopyrad on late leaf spot and stem rot of peanut. Pest management science. 2009 Jan; 65(1):66-73. doi: 10.1002/ps.1646. [PMID: 18785218]