Reaction Process: BioCyc:TRYPANO_PWY-882

ascorbate biosynthesis I (L-galactose pathway) related metabolites

find 17 related metabolites which is associated with chemical reaction(pathway) ascorbate biosynthesis I (L-galactose pathway)

GDP-L-galactose + phosphate ⟶ α-L-galactose-1-phosphate + GDP + H+

Guanosine diphosphate

[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O11P2 (443.02433)


Guanosine diphosphate, also known as gdp or 5-diphosphate, guanosine, is a member of the class of compounds known as purine ribonucleoside diphosphates. Purine ribonucleoside diphosphates are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine diphosphate can be found in a number of food items such as strawberry, onion-family vegetables, walnut, and scarlet bean, which makes guanosine diphosphate a potential biomarker for the consumption of these food products. Guanosine diphosphate can be found primarily in blood and cerebrospinal fluid (CSF). Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in several metabolic pathways, some of which include betahistine h1-antihistamine action, fexofenadine h1-antihistamine action, clocinizine h1-antihistamine action, and bepotastine h1-antihistamine action. Guanosine diphosphate is also involved in several metabolic disorders, some of which include adenine phosphoribosyltransferase deficiency (APRT), canavan disease, gout or kelley-seegmiller syndrome, and pyruvate dehydrogenase complex deficiency. Moreover, guanosine diphosphate is found to be associated with epilepsy, subarachnoid hemorrhage, neuroinfection, and stroke. Guanosine diphosphate, abbreviated GDP, is a nucleoside diphosphate. It is an ester of pyrophosphoric acid with the nucleoside guanosine. GDP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase guanine . Guanosine diphosphate, also known as 5-GDP or 5-diphosphate, guanosine, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in intracellular signalling through adenosine receptor A2B and adenosine. Outside of the human body, Guanosine diphosphate has been detected, but not quantified in several different foods, such as devilfish, java plums, green beans, almonds, and orange mints. Guanosine diphosphate is a purine ribonucleoside 5-diphosphate resulting from the formal condensation of the hydroxy group at the 5 position of guanosine with pyrophosphoric acid. COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Guanosine triphosphate

({[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C10H16N5O14P3 (522.9906626)


Guanosine-5-triphosphate (GTP) is a purine nucleoside triphosphate. It is one of the building blocks needed for the synthesis of RNA during the transcription process. Its structure is similar to that of the guanosine nucleoside, the only difference being that nucleotides like GTP have phosphates on their ribose sugar. GTP has the guanine nucleobase attached to the 1 carbon of the ribose and it has the triphosphate moiety attached to riboses 5 carbon. GTP is essential to signal transduction, in particular with G-proteins, in second-messenger mechanisms where it is converted to guanosine diphosphate (GDP) through the action of GTPases. Guanosine triphosphate, also known as 5-GTP or H4GTP, belongs to the class of organic compounds known as purine ribonucleoside triphosphates. These are purine ribonucleotides with a triphosphate group linked to the ribose moiety. Thus, a GTP-bound tubulin serves as a cap at the tip of microtubule to protect from depolymerization; and, once the GTP is hydrolyzed, the microtubule begins to depolymerize and shrink rapidly. Guanosine triphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine triphosphate is involved in intracellular signalling through adenosine receptor A2B and adenosine. Guanosine-5-triphosphate (GTP) is a purine nucleoside triphosphate. Outside of the human body, guanosine triphosphate has been detected, but not quantified in several different foods, such as mandarin orange (clementine, tangerine), coconuts, new zealand spinachs, sweet marjorams, and pepper (capsicum). Cyclic guanosine triphosphate (cGTP) helps cyclic adenosine monophosphate (cAMP) activate cyclic nucleotide-gated ion channels in the olfactory system. It also has the role of a source of energy or an activator of substrates in metabolic reactions, like that of ATP, but more specific. It is used as a source of energy for protein synthesis and gluconeogenesis. For instance, a GTP molecule is generated by one of the enzymes in the citric acid cycle. GTP is also used as an energy source for the translocation of the ribosome towards the 3 end of the mRNA. During microtubule polymerization, each heterodimer formed by an alpha and a beta tubulin molecule carries two GTP molecules, and the GTP is hydrolyzed to GDP when the tubulin dimers are added to the plus end of the growing microtubule. The importing of these proteins plays an important role in several pathways regulated within the mitochondria organelle, such as converting oxaloacetate to phosphoenolpyruvate (PEP) in gluconeogenesis. GTP is involved in energy transfer within the cell. Guanosine triphosphate (GTP) is a guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP functions as a carrier of phosphates and pyrophosphates involved in channeling chemical energy into specific biosynthetic pathways. GTP activates the signal transducing G proteins which are involved in various cellular processes including proliferation, differentiation, and activation of several intracellular kinase cascades. Proliferation and apoptosis are regulated in part by the hydrolysis of GTP by small GTPases Ras and Rho. Another type of small GTPase, Rab, plays a role in the docking and fusion of vesicles and may also be involved in vesicle formation. In addition to its role in signal transduction, GTP also serves as an energy-rich precursor of mononucleotide units in the enzymatic biosynthesis of DNA and RNA. [HMDB]. Guanosine triphosphate is found in many foods, some of which are oat, star fruit, lingonberry, and linden. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Guanosine diphosphate mannose

[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phosphinic acid

C16H25N5O16P2 (605.0771510000001)


Guanosine diphosphate mannose, also known as gdp-D-mannose or guanosine pyrophosphoric acid mannose, is a member of the class of compounds known as purine nucleotide sugars. Purine nucleotide sugars are purine nucleotides bound to a saccharide derivative through the terminal phosphate group. Guanosine diphosphate mannose is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine diphosphate mannose can be found in a number of food items such as sorrel, common persimmon, citrus, and butternut, which makes guanosine diphosphate mannose a potential biomarker for the consumption of these food products. Guanosine diphosphate mannose exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate mannose is involved in a couple of metabolic pathways, which include fructose and mannose degradation and fructose intolerance, hereditary. Guanosine diphosphate mannose is also involved in fructosuria, which is a metabolic disorder. Guanosine diphosphate mannose or GDP-mannose is a nucleotide sugar that is a substrate for glycosyltransferase reactions in metabolism. This compound is a substrate for enzymes called mannosyltransferases . GDP-mannose is a nucleoside diphosphate sugar that is important in the production of fucosylated oligosaccharides. In particular, GDP-mannose is converted to GDP-fucose, which is the fucose donor in the construction of all mammalian fucosylated glycans. GDP-mannose is transformed to GDP-fucose via three enzymatic reactions carried out by two proteins, GDP-mannose 4,6-dehydratase (GMD) and a second enzyme, GDP-keto-6-deoxymannose 3,5-epimerase, 4-reductase. GDP-mannose 4,6-dehydratase (EC 4.2.1.47) catalyzes the chemical reaction: GDP-mannose <--> GDP-4-dehydro-6-deoxy-D-mannose + H2O. The epimerase converts the GDP-4-dehydro-6-deoxy-D-mannose to GDP-fucose (PMID: 12651883). GDP-mannose is also synthesized from mannose 1-phosphate via the enzyme ATP-mannose-1-phosphate-guanyltransferase and GTP. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Phosphate

Sodium pyrophosphate decahydrate biochemica

H3O4P (97.9768968)


Phosphate is a salt of phosphoric acid and is an essential component of life. Organic phosphates are important in biochemistry, biogeochemistry, and ecology. In biological systems, phosphorus is found as a free phosphate ion in solution and is called inorganic phosphate, to distinguish it from phosphates bound in various phosphate esters. Inorganic phosphate is generally denoted Pi and at physiological (neutral) pH primarily consists of a mixture of HPO2-4 and H2PO-4 ions. Phosphates are most commonly found in the form of adenosine phosphates (AMP, ADP, and ATP) and in DNA and RNA, and can be released by the hydrolysis of ATP or ADP. Similar reactions exist for the other nucleoside diphosphates and triphosphates. Phosphoanhydride bonds in ADP and ATP, or other nucleoside diphosphates and triphosphates, contain high amounts of energy which give them their vital role in all living organisms. Phosphate must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+-dependent Pi transporters carry out this task. Remarkably, the two families transport different Pi species: whereas type II Na+/Pi cotransporters (SCL34) prefer divalent HPO4(2), type III Na+/Pi cotransporters (SLC20) transport monovalent H2PO4. The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body Pi homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the Pi content of luminal fluids. Phosphate levels in the blood play an important role in hormone signalling and in bone homeostasis. In classical endocrine regulation, low serum phosphate induces the renal production of the secosteroid hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). This active metabolite of vitamin D acts to restore circulating mineral (i.e. phosphate and calcium) levels by increasing absorption in the intestine, reabsorption in the kidney, and mobilization of calcium and phosphate from bone. Thus, chronic renal failure is associated with hyperparathyroidism, which in turn contributes to osteomalacia (softening of the bones). Another complication of chronic renal failure is hyperphosphatemia (low levels of phosphate in the blood). Hyperphosphatemia (excess levels of phosphate in the blood) is a prevalent condition in kidney dialysis patients and is associated with increased risk of mortality. Hypophosphatemia (hungry bone syndrome) has been associated with postoperative electrolyte aberrations and after parathyroidectomy (PMID: 17581921, 11169009, 11039261, 9159312, 17625581). Fibroblast growth factor 23 (FGF-23) has recently been recognized as a key mediator of phosphate homeostasis and its most notable effect is the promotion of phosphate excretion. FGF-23 was discovered to be involved in diseases such as autosomal dominant hypophosphatemic rickets, X-linked hypophosphatemia, and tumour-induced osteomalacia in which phosphate wasting was coupled to inappropriately low levels of 1,25(OH)2D3. FGF-23 is regulated by dietary phosphate in humans. In particular, it was found that phosphate restriction decreased FGF-23, and phosphate loading increased FGF-23. In agriculture, phosphate refers to one of the three primary plant nutrients, and it is a component of fertilizers. In ecological terms, because of its important role in biological systems, phosphate is a highly sought after resource. Consequently, it is often a limiting reagent in environments, and its availability may govern the rate of growth of organisms. Addition of high levels of phosphate to environments and to micro-environments in which it is typically rare can have significant ecological consequences. In the context of pollution, phosphates are a principal component of total dissolved solids, a major indicator of water quality. Dihydrogen phosphate is an inorganic sal... Found in fruit juices. It is used in foods as an acidulant for drinks and candies, pH control agent, buffering agent, flavour enhancer, flavouring agent, sequestrant, stabiliser and thickener, and synergist D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

Nadide

beta-Nicotinamide adenine dinucleotide hydrate

[C21H28N7O14P2]+ (664.1169428000001)


[Spectral] NAD+ (exact mass = 663.10912) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Cytidine (exact mass = 243.08552) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] NAD+ (exact mass = 663.10912) and NADP+ (exact mass = 743.07545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

β-D-Fructose 6-phosphate

[(2R,3R,4S)-2,3,4,6-tetrahydroxy-5-oxohexyl] dihydrogen phosphate

C6H13O9P (260.0297178)


Fructose 6-phosphate (F6P) belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. F6P is a derivative of fructose, which has been phosphorylated at the 6-hydroxy group. Fructose 6-phosphate is a fundamental metabolite and exists in all living species, ranging from bacteria to plants to humans. The great majority of glucose is converted to fructose 6-phosphate as part of the glycolytic metabolic pathway (glycolysis). Specifically, F6P is produce is produced by the isomerisation of glucose 6-phosphate via the enzyme phosphoglucose isomerase. F6P is in turn further phosphorylated to fructose-1,6-bisphosphate by the enzyme phosphofructokinase-1. Glycolysis is the metabolic pathway that converts glucose into pyruvic acid. The free energy released in this process is used to form ATP and reduced nicotinamide adenine dinucleotide (NADH). In addition to its key involvement in glycolysis, fructose 6-phosphate can also be biosynthesized from glucosamine 6-phosphate via the enzyme glucosamine-6-phosphate isomerase 1. In addition, fructose 6-phosphate and L-glutamine can be converted into glucosamine 6-phosphate and L-glutamic acid through the action of the enzyme glutamine--fructose-6-phosphate aminotransferase. An important intermediate in the Carbohydrates pathway. The interconversion of glucose-6-phosphate and fructose-6-phosphate, the second step of the Embden-Meyerhof glycolytic pathway, is catalyzed by the enzyme phosphoglucose isomerase (PGI). In gluconeogenesis, fructose-6-phosphate is the immediate precursor of glucose-6-phosphate (wikipedia) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID F001

   

1,4-Dihydronicotinamide adenine dinucleotide

Dihydronicotinamide-adenine dinucleotide

C21H29N7O14P2 (665.1247674)


Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen) respectively. NADH is the reduced form of NAD+, and NAD+ is the oxidized form of NADH. NAD (or nicotinamide adenine dinucleotide) is used extensively in glycolysis and the citric acid cycle of cellular respiration. The reducing potential stored in NADH can be either converted into ATP through the electron transport chain or used for anabolic metabolism. ATP "energy" is necessary for an organism to live. Green plants obtain ATP through photosynthesis, while other organisms obtain it via cellular respiration. NAD is a coenzyme composed of ribosylnicotinamide 5-diphosphate coupled to adenosine 5-phosphate by a pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). NADP is formed through the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage. NADH is the reduced form of NAD+, and NAD+ is the oxidized form of NADH, A coenzyme composed of ribosylnicotinamide 5-diphosphate coupled to adenosine 5-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). It forms NADP with the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage.(Dorland, 27th ed) [HMDB]. NADH is found in many foods, some of which are dill, ohelo berry, fox grape, and black-eyed pea. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Water

oxidane

H2O (18.0105642)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Mannose 6-phosphate

{[(2R,3S,4S,5S,6R)-3,4,5,6-tetrahydroxyoxan-2-yl]methoxy}phosphonic acid

C6H13O9P (260.0297178)


Mannose 6-phosphate, also known as alpha-D-mannose-6-p or man-6-p, belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. Mannose 6-phosphate exists in all eukaryotes, ranging from yeast to humans. Within humans, mannose 6-phosphate participates in a number of enzymatic reactions. In particular, mannose 6-phosphate can be converted into fructose 6-phosphate through its interaction with the enzyme mannose-6-phosphate isomerase. In addition, mannose 6-phosphate can be biosynthesized from D-mannose through the action of the enzyme hexokinase-1. Mannose 6-phosphate is a potent competitive inhibitor of pinocytosis of human platelet beta-glucuronidase and it is a necessary component of the recognition marker on the enzyme for pinocytosis by human fibroblasts as well (PMID 908752). In humans, mannose 6-phosphate is involved in fructose intolerance, hereditary. Mannose-6-phosphate is a potent competitive inhibitor of pinocytosis of human platelet beta-glucuronidase and it is a necessary component of the recognition marker on the enzyme for pinocytosis by human fibroblasts as well (PMID 908752). [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M008

   

D-Mannose 1-phosphate

{[(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phosphonic acid

C6H13O9P (260.0297178)


D-Mannose 1-phosphate (CAS: 27251-84-9) is a normal metabolite intermediate in fructose and mannose metabolism. It is a substrate of phosphomannomutase 1 (PMM, EC 5.4.2.8), an enzyme necessary for the synthesis of GDP-mannose (a substrate for dolichol-linked oligosaccharide synthesis). PMM converts mannose 6-phosphate into mannose-1-phosphate. A deficiency of phosphomannomutase in carbohydrate-deficient glycoprotein syndrome (CDGS) type I is associated with a decreased synthesis of mannose 1-phosphate. CDGS is a group of autosomal recessively transmitted disorders in which abnormally glycosylated proteins are formed (PMID: 9451026, 8549746, 12729595). α-d-mannose 1-phosphate is a member of the class of compounds known as monosaccharide phosphates. Monosaccharide phosphates are monosaccharides comprising a phosphated group linked to the carbohydrate unit. α-d-mannose 1-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). α-d-mannose 1-phosphate can be found in a number of food items such as lettuce, beech nut, red beetroot, and japanese pumpkin, which makes α-d-mannose 1-phosphate a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M080

   

L-Galactose

(2R,3S,4R,5S,6S)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


L-Galactose (CAS: 15572-79-9) belongs to the class of organic compounds known as hexoses. These are monosaccharides in which the sugar unit is a six-carbon containing moiety. L-Galactose is found in flaxseed. L-Galactose occurs in the polymer agar-agar. Galactose is an optical isomer of glucose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins.

   

L-galactono-1,4-lactone

(3S,4S,5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxyoxolan-2-one

C6H10O6 (178.04773600000001)


L-galactono-1,4-lactone, also known as L-galactonate-γ-lactone, is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. L-galactono-1,4-lactone is soluble (in water) and a very weakly acidic compound (based on its pKa). L-galactono-1,4-lactone can be found in a number of food items such as abalone, pear, black-eyed pea, and borage, which makes L-galactono-1,4-lactone a potential biomarker for the consumption of these food products. L-galactono-1,4-lactone may be a unique S.cerevisiae (yeast) metabolite.

   

L-Galactose 1-phosphate

beta-L-galactose 1-phosphate

C6H13O9P (260.0297178)


A galactose phosphate compound with undefined anomeric stereochemistry having L-configuration and the phosphate group at the 1-position. A L-galactose 1-phosphate compound having beta-configuration about the anomeric centre.

   
   

[Hydroxy(oxido)phosphoryl] phosphate

[Hydroxy(oxido)phosphoryl] phosphate

HO7P2-3 (174.9197556)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Proton

Proton

H+ (1.0078246)


Nuclear particle of charge number +1, spin 1/2 and rest mass of 1.007276470(12) u.