Proton (BioDeep_00001031410)
代谢物信息卡片
化学式: H+ (1.0078)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: [H+]
InChI: InChI=1S/p+1/i/hH
描述信息
Nuclear particle of charge number +1, spin 1/2 and rest mass of 1.007276470(12) u.
同义名列表
1 个代谢物同义名
数据库引用编号
分类词条
相关代谢途径
Reactome(0)
BioCyc(56)
- purine and pyrimidine metabolism
- superpathway of hexitol degradation
- arginine degradation III (arginine decarboxylase/agmatinase pathway)
- superpathway of arginine and ornithine degradation
- arginine degradation I (arginase pathway)
- superpathway of arginine, putrescine, and 4-aminobutyrate degradation
- arginine degradation X (arginine monooxygenase pathway)
- arginine degradation VII
- formaldehyde assimilation II (RuMP Cycle)
- salvage pathways of adenine, hypoxanthine, and their nucleosides
- purine nucleotides de novo biosynthesis I
- superpathway of histidine, purine, and pyrimidine biosynthesis
- purine nucleotides de novo biosynthesis II
- salvage pathways of purine nucleosides I
- peptidoglycan and lipid A precursor biosynthesis
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-DAP-containing)
- pyridine nucleotide cycling
- galactose degradation I
- spermine biosynthesis II
- glutamate degradation IX
- glutamate degradation II
- glycine degradation III
- threonine degradation III (to methylglyoxal)
- superpathway of threonine metabolism
- acrylonitrile degradation
- superpathway of aspartate and asparagine biosynthesis; interconversion of aspartate and asparagine
- superpathway of lysine, threonine and methionine biosynthesis II
- isoleucine biosynthesis I
- superpathway of lysine, threonine and methionine biosynthesis I
- formylTHF biosynthesis II
- formylTHF biosynthesis I
- salvage pathways of guanine, xanthine, and their nucleosides
- methionine biosynthesis II
- methionine biosynthesis I
- asparagine biosynthesis II
- isoleucine biosynthesis I (from threonine)
- heme biosynthesis from uroporphyrinogen-III II
- fatty acid β-oxidation II (core pathway)
- oxidative ethanol degradation III (microsomal)
- ethanol degradation IV (peroxisomal)
- superpathway of glyoxylate cycle
- superpathway of glycolysis and Entner-Doudoroff
- glycolysis II
- arginine biosynthesis I
- tetrahydrofolate biosynthesis I
- methionine and S-adenosylmethionine synthesis
- lactate oxidation
- S-adenosylmethionine biosynthesis
- Biopterin biosynthesis
- isoleucine degradation I
- superpathway of 4-aminobutyrate degradation
- 4-aminobutyrate degradation II
- threonine biosynthesis
- lysine biosynthesis VI
- lysine biosynthesis I
- ornithine biosynthesis
PlantCyc(0)
代谢反应
206 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(206)
- purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of histidine, purine, and pyrimidine biosynthesis:
glt + imidazole acetol-phosphate ⟶ 2-oxoglutarate + L-histidinol-phosphate
- guanosine nucleotides de novo biosynthesis:
ATP + ammonia + xanthosine-5-phosphate ⟶ AMP + GMP + H+ + diphosphate
- purine nucleotides de novo biosynthesis II:
adenylo-succinate ⟶ AMP + fumarate
- salvage pathways of purine nucleosides I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- (R)-acetoin biosynthesis I:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis II:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R,R)-butanediol biosynthesis:
(R,R)-2,3-butanediol + NAD+ ⟶ (R)-acetoin + H+ + NADH
- superpathway of (R,R)-butanediol biosynthesis:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- formaldehyde assimilation I (serine pathway):
L-malyl-CoA ⟶ acetyl-CoA + glyoxylate
- superpathway of glyoxylate cycle:
ATP + a fatty acid + coenzyme A ⟶ AMP + H+ + a 2,3,4-saturated fatty acyl CoA + diphosphate
- glyoxylate cycle:
H2O + acetyl-CoA + glyoxylate ⟶ (S)-malate + H+ + coenzyme A
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- methylgallate degradation:
H+ + oxaloacetate ⟶ CO2 + pyruvate
- protocatechuate degradation I (meta-cleavage pathway):
O2 + protocatechuate ⟶ 2-hydroxy-4-carboxymuconate-6-semialdehyde + H+
- gallate degradation II:
4-carboxy-4-hydroxy-2-oxoadipate ⟶ oxaloacetate + pyruvate
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- anthranilate degradation I (aerobic):
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonia + catechol
- catechol degradation to β-ketoadipate:
O2 + catechol ⟶ H+ + cis,cis-muconate
- tryptophan degradation I (via anthranilate):
N-formylkynurenine + H2O ⟶ H+ + formate + kynurenine
- tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
N-formylkynurenine + H2O ⟶ H+ + formate + kynurenine
- NAD biosynthesis II (from tryptophan):
N-formylkynurenine + H2O ⟶ H+ + formate + kynurenine
- colanic acid building blocks biosynthesis:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- sphingolipid metabolism:
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine + CO2 + coenzyme A
- ascorbate biosynthesis I (L-galactose pathway):
GDP-L-galactose + phosphate ⟶ α-L-galactose-1-phosphate + GDP + H+
- GDP-mannose metabolism:
ATP + D-mannose ⟶ ADP + D-mannose 6-phosphate + H+
- dolichyl-diphosphooligosaccharide biosynthesis:
UDP-α-N-acetyl-D-glucosamine + a dolichyl phosphate ⟶ UMP + an N-acetylglucosaminyl-diphosphodolichol
- GDP-mannose biosynthesis:
α-D-mannose 1-phosphate + GTP + H+ ⟶ GDP-α-D-mannose + diphosphate
- inosine-5'-phosphate biosynthesis I:
5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole ⟶ aminoimidazole carboxamide ribonucleotide + fumarate
- inosine-5'-phosphate biosynthesis II:
5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole ⟶ aminoimidazole carboxamide ribonucleotide + fumarate
- valine degradation I:
(S)-methylmalonate-semialdehyde + H2O + NAD+ + coenzyme A ⟶ H+ + NADH + bicarbonate + propanoyl-CoA
- galactose degradation III:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- pyridine nucleotide cycling:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- arginine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of arginine and polyamine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- pyrimidine ribonucleotides de novo biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- uridine-5'-phosphate biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- choline biosynthesis I:
H2O + phosphoryl-choline ⟶ choline + phosphate
- phosphatidylcholine biosynthesis II:
S-adenosyl-L-methionine + phosphoryl-ethanolamine ⟶ S-adenosyl-L-homocysteine + H+ + N-methylethanolamine phosphate
- phosphatidylcholine biosynthesis III:
S-adenosyl-L-methionine + phosphoryl-ethanolamine ⟶ S-adenosyl-L-homocysteine + H+ + N-methylethanolamine phosphate
- phosphatidylcholine biosynthesis IV:
S-adenosyl-L-methionine + phosphoryl-ethanolamine ⟶ S-adenosyl-L-homocysteine + H+ + N-methylethanolamine phosphate
- peptidoglycan and lipid A precursor biosynthesis:
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- peptidoglycan biosynthesis I (meso-diaminopimelate containing):
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-DAP-containing):
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- β-alanine biosynthesis II:
FADH2 + acrylyl-CoA ⟶ FAD + H+ + propanoyl-CoA
- pyrimidine deoxyribonucleotides de novo biosynthesis I:
H2O + dCTP ⟶ ammonia + dUTP
- formaldehyde assimilation III (dihydroxyacetone cycle):
ATP + dihydroxy-acetone ⟶ ADP + H+ + dihydroxyacetone phosphate
- Bifidobacterium shunt:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- sucrose degradation to ethanol and lactate (anaerobic):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of glycolysis and Entner-Doudoroff:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis II:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycolysis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- gluconeogenesis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- choline biosynthesis III:
H2O + a phosphatidylcholine ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + choline
- phosphatidylcholine biosynthesis I:
ATP + choline ⟶ ADP + H+ + phosphoryl-choline
- cysteine biosynthesis/homocysteine degradation:
H2O + L-cystathionine ⟶ 2-oxobutanoate + H+ + ammonia + cys
- aspartate superpathway:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- superpathway of lysine, threonine and methionine biosynthesis II:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- superpathway of lysine, threonine and methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- methionine biosynthesis II:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- pyrimidine ribonucleotides interconversion:
ATP + H2O + UTP + gln ⟶ ADP + CTP + H+ + glt + phosphate
- salvage pathways of pyrimidine ribonucleotides:
H2O + cytidine ⟶ ammonia + uridine
- UDP-N-acetyl-D-glucosamine biosynthesis II:
D-fructose-6-phosphate + gln ⟶ D-glucosamine 6-phosphate + glt
- salvage pathways of adenine, hypoxanthine, and their nucleosides:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- lactate oxidation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- formylTHF biosynthesis II:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- formylTHF biosynthesis I:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- salvage pathways of pyrimidine deoxyribonucleotides:
ATP + deoxyuridine ⟶ ADP + H+ + dUMP
- histidine biosynthesis:
glt + imidazole acetol-phosphate ⟶ 2-oxoglutarate + L-histidinol-phosphate
- salvage pathways of guanine, xanthine, and their nucleosides:
H2O + guanine ⟶ ammonia + xanthine
- NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde:
ATP + H2O + gln + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate + glt
- NAD biosynthesis I (from aspartate):
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- phenylacetate degradation II (anaerobic):
ATP + coenzyme A + phenylacetate ⟶ AMP + H+ + diphosphate + phenylacetyl-CoA
- anthranilate degradation III (anaerobic):
ATP + anthranilate + coenzyme A ⟶ 2-aminobenzoyl-CoA + AMP + H+ + diphosphate
- benzoyl-CoA degradation I (aerobic):
2,3-dihydro-2,3-dihydroxybenzoyl-CoA + H2O + H+ ⟶ 3,4-dehydroadipyl-CoA semialdehyde + formate
- KDO transfer to lipid IVA I:
(KDO)-lipid IVA + CMP-3-deoxy-D-manno-octulosonate ⟶ α-KDO-(2->4)-α-KDO-(2->6)-lipid IVA + CMP + H+
- superpathway of polyamine biosynthesis II:
N-carbamoylputrescine + H2O + H+ ⟶ CO2 + ammonia + putrescine
- superpathway of polyamine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- spermine biosynthesis II:
H+ + L-ornithine ⟶ CO2 + putrescine
- aminopropylcadaverine biosynthesis:
S-adenosyl-L-methioninamine + cadaverine ⟶ S-methyl-5'-thioadenosine + H+ + aminopropylcadaverine
- spermidine biosynthesis I:
S-adenosyl-L-methionine + H+ ⟶ S-adenosyl-L-methioninamine + CO2
- Entner-Doudoroff pathway III (semi-phosphorylative):
α-D-glucose ⟶ β-D-glucose
- superpathway of hexitol degradation:
NAD+ + mannitol-1-phosphate ⟶ D-fructose-6-phosphate + H+ + NADH
- sorbitol degradation II:
D-sorbitol-6-phosphate + NAD+ ⟶ D-fructose-6-phosphate + H+ + NADH
- arginine degradation X (arginine monooxygenase pathway):
4-guanidinobutyramide + H2O ⟶ 4-guanidinobutyrate + H+ + ammonia
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + glt
- mycothiol biosynthesis:
1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O ⟶ 1-(2-amino-2-deoxy-α-D-glucopyranoside)-1D-myo-inositol + acetate
- ribose degradation:
ATP + D-ribose ⟶ ADP + D-ribose 5-phosphate + H+
- superpathway of ribose and deoxyribose phosphate degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- glycine degradation III:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- superpathway of threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- threonine degradation II:
acetyl-CoA + gly ⟶ 2-amino-3-oxobutanoate + H+ + coenzyme A
- glycine biosynthesis II:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- folate polyglutamylation I:
H+ + ser + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + H2O + gly
- glutathione biosynthesis:
ATP + L-γ-glutamylcysteine + gly ⟶ ADP + H+ + glutathione + phosphate
- 5-aminoimidazole ribonucleotide biosynthesis I:
5-phospho-β-D-ribosyl-amine + ATP + gly ⟶ 5-phospho-ribosyl-glycineamide + ADP + H+ + phosphate
- 5-aminoimidazole ribonucleotide biosynthesis II:
5-phospho-β-D-ribosyl-amine + ATP + gly ⟶ 5-phospho-ribosyl-glycineamide + ADP + H+ + phosphate
- ergosterol biosynthesis:
NADP+ + ergosterol ⟶ 5,7,22,24(28)-ergostatetraenol + H+ + NADPH
- superpathway of acetate utilization and formation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- acetate conversion to acetyl-CoA:
ATP + acetate + coenzyme A ⟶ AMP + H+ + acetyl-CoA + diphosphate
- oxidative ethanol degradation III (microsomal):
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation IV (peroxisomal):
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II (cytosol):
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- threonine degradation IV:
thr ⟶ acetaldehyde + gly
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- TCA cycle:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- mevalonate pathway I:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- UDP-N-acetyl-D-glucosamine biosynthesis I:
D-fructose-6-phosphate + gln ⟶ D-glucosamine 6-phosphate + glt
- ornithine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- parathion degradation:
H2O + parathion ⟶ 4-nitrophenol + H+ + diethylthiophosphate
- allantoin degradation to ureidoglycolate II (ammonia producing):
S-ureidoglycine + H2O ⟶ S-(-)-ureidoglycolate + H+ + ammonia
- L-idonate degradation:
ATP + D-gluconate ⟶ 6-phospho-D-gluconate + ADP + H+
- isoleucine biosynthesis I:
thr ⟶ 2-oxobutanoate + H+ + ammonia
- threonine biosynthesis:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- threonine biosynthesis from homoserine:
H2O + O-phospho-L-homoserine ⟶ phosphate + thr
- homoserine biosynthesis:
L-aspartate-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- trypanothione biosynthesis:
ATP + glutathione + glutathionylspermidine ⟶ ADP + H+ + phosphate + trypanothione
- glutathione redox reactions I:
NADP+ + glutathione ⟶ H+ + NADPH + glutathione disulfide
- formaldehyde oxidation I:
6-phospho-D-gluconate + NAD+ ⟶ CO2 + D-ribulose-5-phosphate + NADH
- pentose phosphate pathway:
6-phospho-D-gluconate + NAD(P)+ ⟶ CO2 + D-ribulose-5-phosphate + NAD(P)H
- pentose phosphate pathway (oxidative branch):
6-phospho-D-gluconate + NAD(P)+ ⟶ CO2 + D-ribulose-5-phosphate + NAD(P)H
- adenosine nucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- flavin biosynthesis I (bacteria and plants):
2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- aminopropanol biosynthesis:
NAD+ + thr ⟶ 2-amino-3-oxobutanoate + H+ + NADH
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonia
- leucine degradation I:
2-oxoglutarate + leu ⟶ 4-methyl-2-oxopentanoate + glt
- coenzyme A biosynthesis:
H+ + R-4'-phosphopantothenoyl-L-cysteine ⟶ 4'-phosphopantetheine + CO2
- superpathway of ornithine degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- putrescine degradation II:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- superpathway of arginine and ornithine degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- superpathway of arginine, putrescine, and 4-aminobutyrate degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- putrescine biosynthesis II:
N-carbamoylputrescine + H2O + H+ ⟶ CO2 + ammonia + putrescine
- putrescine biosynthesis III:
H+ + L-ornithine ⟶ CO2 + putrescine
- lysine biosynthesis VI:
2-oxoglutarate + L,L-diaminopimelate ⟶ H2O + H+ + glt + tetrahydrodipicolinate
- lysine biosynthesis I:
2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ⟶ N-succinyl-2-amino-6-ketopimelate + glt
- D-gluconate degradation:
ATP + D-gluconate ⟶ 6-phospho-D-gluconate + ADP + H+
- arginine degradation III (arginine decarboxylase/agmatinase pathway):
H2O + agmatine ⟶ putrescine + urea
- putrescine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- acrylonitrile degradation:
H2O + acrylamide ⟶ H+ + acrylate + ammonia
- threonine degradation I:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- GDP-L-fucose biosynthesis I (from GDP-D-mannose):
GDP-L-fucose + NADP+ ⟶ GDP-4-dehydro-6-deoxy-D-mannose + H+ + NADPH
- tetrahydrofolate biosynthesis I:
6-hydroxymethyl-7,8-dihydropterin + ATP ⟶ 6-hydroxymethyl-dihydropterin diphosphate + AMP + H+
- D-galactarate degradation I:
ATP + D-glycerate ⟶ 2-phospho-D-glycerate + ADP + H+
- D-glucarate degradation I:
ATP + D-glycerate ⟶ 2-phospho-D-glycerate + ADP + H+
- superpathway of D-glucarate and D-galactarate degradation:
ATP + D-glycerate ⟶ 2-phospho-D-glycerate + ADP + H+
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- Biopterin biosynthesis:
7,8-dihydrobiopterin + NADPH ⟶ H+ + NAD(P)+ + tetrahydrobiopterin
- selenocysteine biosynthesis I (bacteria):
ATP + H2O + hydrogen selenide ⟶ AMP + H+ + phosphate + selenophosphate
- sulfate reduction I (assimilatory):
adenosine 3',5'-bisphosphate + an oxidized thioredoxin + sulfite ⟶ a reduced thioredoxin + phosphoadenosine-5'-phosphosulfate
- heme biosynthesis from uroporphyrinogen-III II:
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- superpathway of aspartate and asparagine biosynthesis; interconversion of aspartate and asparagine:
ATP + ammonia + asp ⟶ AMP + H+ + asn + diphosphate
- asparagine biosynthesis II:
ATP + ammonia + asp ⟶ AMP + H+ + asn + diphosphate
- pyridoxal 5'-phosphate salvage pathway:
H2O + O2 + pyridoxamine 5'-phosphate ⟶ H+ + ammonia + hydrogen peroxide + pyridoxal-P
- phenylalanine degradation II (anaerobic):
glt + phenylpyruvate ⟶ 2-oxoglutarate + phe
- aerobic respiration -- electron donor II:
UQ + succinate ⟶ UQH2 + fumarate
- arginine degradation VI (arginase 2 pathway):
2-oxoglutarate + L-ornithine ⟶ L-glutamate γ-semialdehyde + glt
- arginine degradation I (arginase pathway):
2-oxoglutarate + L-ornithine ⟶ L-glutamate γ-semialdehyde + glt
- arginine degradation VII:
H2O + NAD(P)+ + glt ⟶ 2-oxoglutarate + NAD(P)H + ammonia
- proline biosynthesis II:
H2O + NAD(P)+ + glt ⟶ 2-oxoglutarate + NAD(P)H + ammonia
- GDP-D-rhamnose biosynthesis:
GDP-D-rhamnose + NAD(P)+ ⟶ GDP-4-dehydro-6-deoxy-D-mannose + H+ + NAD(P)H
- sulfate activation for sulfonation:
ATP + adenosine 5'-phosphosulfate ⟶ ADP + H+ + phosphoadenosine-5'-phosphosulfate
- mannitol degradation I:
NAD+ + mannitol-1-phosphate ⟶ D-fructose-6-phosphate + H+ + NADH
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol-3-phosphate + ADP + H+
- acetate formation from acetyl-CoA I:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- isoleucine degradation I:
2-methylacetoacetyl-CoA + coenzyme A ⟶ acetyl-CoA + propanoyl-CoA
- superpathway of 4-aminobutyrate degradation:
2-oxoglutarate + 4-aminobutyrate ⟶ glt + succinate semialdehyde
- 4-aminobutyrate degradation I:
2-oxoglutarate + 4-aminobutyrate ⟶ glt + succinate semialdehyde
- 4-aminobutyrate degradation II:
2-oxoglutarate + 4-aminobutyrate ⟶ glt + succinate semialdehyde
- benzoate degradation I (aerobic):
(1R,6S)-1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate + NAD+ ⟶ CO2 + NADH + catechol
- threonine degradation III (to methylglyoxal):
H2O + O2 + aminoacetone ⟶ H+ + ammonia + hydrogen peroxide + methylglyoxal
- aldoxime degradation:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- isoleucine biosynthesis I (from threonine):
thr ⟶ 2-oxobutanoate + H+ + ammonia
- methionine and S-adenosylmethionine synthesis:
ATP + H2O + met ⟶ S-adenosyl-L-methionine + H+ + diphosphate + phosphate
- S-adenosylmethionine biosynthesis:
ATP + H2O + met ⟶ S-adenosyl-L-methionine + H+ + diphosphate + phosphate
- PRPP biosynthesis II:
α-D-ribose-1-phosphate + ATP ⟶ ADP + H+ + ribose-1,5-bisphosphate
- starch degradation:
H2O + a 1,4-α-D-glucan ⟶ α-maltose + a 1,4-α-D-glucan
- sucrose degradation III:
β-D-fructofuranose + UDP-D-glucose ⟶ UDP + sucrose
- UDP-glucose conversion:
α-D-glucose 1-phosphate + H+ + UTP ⟶ UDP-D-glucose + diphosphate
- glutamine biosynthesis II:
H2O + NAD(P)+ + glt ⟶ 2-oxoglutarate + NAD(P)H + ammonia
- β-alanine biosynthesis I:
H2O + O2 + propane-1,3-diamine ⟶ 3-aminopropanal + H+ + ammonia + hydrogen peroxide
- PRPP biosynthesis I:
ATP + D-ribose 5-phosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + AMP + H+
- protocatechuate degradation II (ortho-cleavage pathway):
O2 + protocatechuate ⟶ 3-carboxy-cis,cis-muconate + H+
- formaldehyde assimilation II (RuMP Cycle):
ATP + D-fructose-6-phosphate ⟶ ADP + H+ + fructose-1,6-bisphosphate
- superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation:
N-acetyl-D-glucosamine-6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- N-acetylglucosamine degradation I:
N-acetyl-D-glucosamine-6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- pyridoxamine anabolism:
pyridoxamine + pyruvate ⟶ ala + pyridoxal
- N-acetylneuraminate and N-acetylmannosamine degradation:
N-acetyl-D-mannosamine + ATP ⟶ N-acetyl-D-mannosamine-6-phosphate + ADP + H+
- fatty acid β-oxidation II (core pathway):
ATP + a fatty acid + coenzyme A ⟶ AMP + H+ + a 2,3,4-saturated fatty acyl CoA + diphosphate
- fatty acid β-oxidation I:
ATP + a fatty acid + coenzyme A ⟶ AMP + H+ + a 2,3,4-saturated fatty acyl CoA + diphosphate
- fatty acid α-oxidation:
a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- fatty acid ω-oxidation:
O2 + a ω-hydroxy fatty acid ⟶ an ω-oxo fatty acid + hydrogen peroxide
- putrescine degradation I:
2-oxoglutarate + putrescine ⟶ 4-aminobutanal + glt
- glutamate degradation IX:
H2O + NAD+ + glt ⟶ 2-oxoglutarate + H+ + NADH + ammonia
- aspartate degradation II:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- pyruvate fermentation to lactate:
(S)-lactate + NAD+ ⟶ H+ + NADH + pyruvate
- pyruvate fermentation to propionate I:
(S)-methylmalonyl-CoA + pyruvate ⟶ oxaloacetate + propanoyl-CoA
- NAD phosphorylation and dephosphorylation:
H2O + NADP+ ⟶ NAD+ + phosphate
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- phenylacetate degradation I (aerobic):
ATP + coenzyme A + phenylacetate ⟶ AMP + H+ + diphosphate + phenylacetyl-CoA
- galactose degradation I:
β-D-galactose ⟶ α-D-galactose
- phosphatidylethanolamine biosynthesis II:
ATP + ethanolamine ⟶ ADP + H+ + phosphoryl-ethanolamine
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Kristina Žuna, Tatyana Tyschuk, Taraneh Beikbaghban, Felix Sternberg, Jürgen Kreiter, Elena E Pohl. The 2-oxoglutarate/malate carrier extends the family of mitochondrial carriers capable of fatty acid and 2,4-dinitrophenol-activated proton transport.
Acta physiologica (Oxford, England).
2024 Jun; 240(6):e14143. doi:
10.1111/apha.14143
. [PMID: 38577966] - Cristina Barallat-Pérez, Michele Pedrotti, Teresa Oliviero, Sara Martins, Vincenzo Fogliano, Catrienus de Jong. Drivers of the In-Mouth Interaction between Lupin Protein Isolate and Selected Aroma Compounds: A Proton Transfer Reaction-Mass Spectrometry and Dynamic Time Intensity Analysis.
Journal of agricultural and food chemistry.
2024 Apr; 72(15):8731-8741. doi:
10.1021/acs.jafc.3c08819
. [PMID: 38579129] - Jingjing Shi, Ke Zhang, Ting Li, Lijuan Wu, Yang Yang, Yuan Zhang, Pengfei Tu, Wenjing Liu, Yuelin Song. Differentiation of isomeric chalcone and dihydroflavone using liquid chromatography coupled with hydrogen-deuterium exchange tandem mass spectrometry (HDX-MS/MS): An application for flavonoids-focused characterization of Snow chrysanthemum.
Journal of chromatography. A.
2024 Apr; 1720(?):464773. doi:
10.1016/j.chroma.2024.464773
. [PMID: 38432106] - Yu Sun, Jie Mu, Yongchen Wang, Chengwei Lü, Li-Wei Zou. Rational synthesis of 1,3,4-thiadiazole based ESIPT-fluorescent probe for detection of Cu2+ and H2S in herbs, wine and fruits.
Analytica chimica acta.
2024 Apr; 1297(?):342379. doi:
10.1016/j.aca.2024.342379
. [PMID: 38438245] - Yeqin Li, Yan Zhang, Liwen Tian, Ju Li, Huihua Li, Ximing Wang, Cuiyan Wang. 3D amide proton transfer-weighted imaging may be useful for diagnosing early-stage breast cancer: a prospective monocentric study.
European radiology experimental.
2024 Apr; 8(1):41. doi:
10.1186/s41747-024-00439-z
. [PMID: 38584248] - Leidy Patricia Bedoya-Pérez, Alejandro Aguilar-Vera, Mishael Sánchez-Pérez, José Utrilla, Christian Sohlenkamp. Enhancing Escherichia coli abiotic stress resistance through ornithine lipid formation.
Applied microbiology and biotechnology.
2024 Apr; 108(1):288. doi:
10.1007/s00253-024-13130-5
. [PMID: 38587638] - Nikhil Bharambe, Zhuowen Li, David Seiferth, Asha Manikkoth Balakrishna, Philip C Biggin, Sandip Basak. Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment.
Nature communications.
2024 Apr; 15(1):2967. doi:
10.1038/s41467-024-47370-w
. [PMID: 38580666] - Stefan Paula, Andres Acosta, Naiki Judge, Stephanie Ramirez, Amaan Sandhu, David Deamer. Modelling energy-harvesting processes in primitive cells: Proton transport across bilayers driven by the oxidation of sulfite.
Bio Systems.
2024 Apr; 238(?):105189. doi:
10.1016/j.biosystems.2024.105189
. [PMID: 38479655] - İbrahim Tegin, Bülent Hallaç, Nazmiye Sabancı, Betül Sadik, Mehmet Fidan, Erdal Yabalak. A broad assessment of Eremurus spectabilis M. Bieb: chemical and elemental composition, total phenolic and antimicrobial activity analysis, and quantum chemical calculations of radical scavenging potential.
International journal of environmental health research.
2024 Apr; 34(4):2124-2139. doi:
10.1080/09603123.2023.2214100
. [PMID: 37199334] - Antonella L Grosso, Ksenia Morozova, Giovanna Ferrentino, Franco Biasioli, Matteo Scampicchio. Early detection of acrolein precursors in vegetable oils by using proton transfer reaction - mass spectrometry.
Talanta.
2024 Apr; 270(?):125513. doi:
10.1016/j.talanta.2023.125513
. [PMID: 38128278] - Michał Uflewski, Tobias Rindfleisch, Kübra Korkmaz, Enrico Tietz, Sarah Mielke, Viviana Correa Galvis, Beatrix Dünschede, Marcin Luzarowski, Aleksandra Skirycz, Markus Schwarzländer, Deserah D Strand, Alexander P Hertle, Danja Schünemann, Dirk Walther, Anja Thalhammer, Martin Wolff, Ute Armbruster. The thylakoid proton antiporter KEA3 regulates photosynthesis in response to the chloroplast energy status.
Nature communications.
2024 Mar; 15(1):2792. doi:
10.1038/s41467-024-47151-5
. [PMID: 38555362] - Iwona Budziak-Wieczorek, Dominika Kaczmarczyk, Klaudia Rząd, Mariusz Gagoś, Andrzej Stepulak, Beata Myśliwa-Kurdziel, Dariusz Karcz, Karolina Starzak, Gotard Burdziński, Monika Srebro-Hooper, Arkadiusz Matwijczuk. Cooperativity of ESPT and Aggregation-Induced Emission Effects-An Experimental and Theoretical Analysis of a 1,3,4-Thiadiazole Derivative.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063352
. [PMID: 38542326] - Jamie Mitchel Waterman, Tristan Michael Cofer, Lei Wang, Gaetan Glauser, Matthias Erb. High-resolution kinetics of herbivore-induced plant volatile transfer reveal clocked response patterns in neighboring plants.
eLife.
2024 Feb; 12(?):. doi:
10.7554/elife.89855
. [PMID: 38385996] - Yukun Chen, Gábor Méhes, Bingfu Liu, Liyun Gao, Mingyin Cui, Chenliang Lin, Yoko Hirono-Hara, Kiyotaka Y Hara, Noriyo Mitome, Takeo Miyake. Proton Logic Gate Based on a Gramicidin-ATP Synthase Integrated Biotransducer.
ACS applied materials & interfaces.
2024 Feb; 16(6):7480-7488. doi:
10.1021/acsami.3c15251
. [PMID: 38295806] - Ambili Ramanthrikkovil Variyam, Mikhail Stolov, Jiajun Feng, Nadav Amdursky. Solid-State Molecular Protonics Devices of Solid-Supported Biological Membranes Reveal the Mechanism of Long-Range Lateral Proton Transport.
ACS nano.
2024 Feb; 18(6):5101-5112. doi:
10.1021/acsnano.3c11990
. [PMID: 38314693] - Jintao Liu, Dianjue Li, Jing Wang, Qian Wang, Xiao Guo, Qi Fu, Philip Kear, Guangtao Zhu, Xiaohui Yang. Genome-wide characterization of the CPA gene family in potato and a preliminary functional analysis of its role in NaCl tolerance.
BMC genomics.
2024 Feb; 25(1):144. doi:
10.1186/s12864-024-10000-2
. [PMID: 38317113] - Cai-Peng Yue, Liao Han, Si-Si Sun, Jun-Fan Chen, Ying-Na Feng, Jin-Yong Huang, Ting Zhou, Ying-Peng Hua. Genome-wide identification of the cation/proton antiporter (CPA) gene family and functional characterization of the key member BnaA05.NHX2 in allotetraploid rapeseed.
Gene.
2024 Feb; 894(?):148025. doi:
10.1016/j.gene.2023.148025
. [PMID: 38007163] - Liang Cao, Jianping Zhao, Mei Wang, Ikhlas A Khan, Xing-Cong Li. Rapid preparation and proton NMR fingerprinting of polysaccharides from Radix Astragali.
Carbohydrate research.
2024 Feb; 536(?):109053. doi:
10.1016/j.carres.2024.109053
. [PMID: 38310807] - Vasyl G Pivovarenko, Andrey S Klymchenko. Fluorescent Probes Based on Charge and Proton Transfer for Probing Biomolecular Environment.
Chemical record (New York, N.Y.).
2024 Feb; 24(2):e202300321. doi:
10.1002/tcr.202300321
. [PMID: 38158338] - Amit Kumar Chaturvedi, Orly Dym, Yishai Levin, Robert Fluhr. PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1A redox states alleviate photoinhibition during changes in light intensity.
Plant physiology.
2024 Jan; 194(2):1059-1074. doi:
10.1093/plphys/kiad518
. [PMID: 37787609] - Tonghui Wang, Jinbo Fei, Zhenzhen Dong, Fanchen Yu, Junbai Li. Nanoarchitectonics with a Membrane-Embedded Electron Shuttle Mimics the Bioenergy Anabolism of Mitochondria.
Angewandte Chemie (International ed. in English).
2024 Jan; ?(?):e202319116. doi:
10.1002/anie.202319116
. [PMID: 38225920] - Caroline N Rivera, Carly E Smith, Lillian V Draper, Madison E Kee, Norah E Cook, Macey R McGovern, Rachel M Watne, Andrew J Wommack, Roger A Vaughan. The BCKDH kinase inhibitor BT2 promotes BCAA disposal and mitochondrial proton leak in both insulin-sensitive and insulin-resistant C2C12 myotubes.
Journal of cellular biochemistry.
2024 Jan; ?(?):. doi:
10.1002/jcb.30520
. [PMID: 38226684] - Cong Sheng, Yu Ding, Yaping Qi, Man Hu, Jianguang Zhang, Xiangli Cui, Yingying Zhang, Wanli Huo. A denoising method based on deep learning for proton radiograph using energy resolved dose function.
Physics in medicine and biology.
2024 Jan; 69(2):. doi:
10.1088/1361-6560/ad15c4
. [PMID: 38096569] - Yajie Zhang, Changjiao Shang, Chaofan Sun, Lingling Wang. Simultaneously regulating absorption capacities and antioxidant activities of four stilbene derivatives utilizing substitution effect: A theoretical and experimental study against UVB radiation.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2024 Jan; 304(?):123325. doi:
10.1016/j.saa.2023.123325
. [PMID: 37678043] - Mingxing Han, Qinglong Li, Ting Yang, Jun Li. Amide proton transfer imaging in rats after heatstroke.
Neuroreport.
2024 Jan; 35(1):37-41. doi:
10.1097/wnr.0000000000001974
. [PMID: 37983618] - Sultan Z Mahmud, Thomas S Denney, Adil Bashir. High-resolution proton metabolic mapping of the human brain at 7 T using free induction decay rosette spectroscopic imaging.
NMR in biomedicine.
2024 Jan; 37(1):e5042. doi:
10.1002/nbm.5042
. [PMID: 37767769] - Sávio Fonseca, Neidy S S Dos Santos, Alberto Torres, Marcelo Siqueira, Antônio da Cunha, Vinícius Manzoni, Patricio F Provasi, Rodrigo Gester, Sylvio Canuto. Role of the Solvent and Intramolecular Hydrogen Bonds in the Antioxidative Mechanism of Prenylisoflavone from Leaves of Vatairea guianensis.
The journal of physical chemistry. A.
2023 Dec; 127(51):10807-10816. doi:
10.1021/acs.jpca.3c05725
. [PMID: 38108191] - Yizhi Fu, Plamen P Christov, Philip J Kingsley, Robyn M Richie-Jannetta, Lawrence J Marnett, Michael P Stone. Base-Displaced Intercalated Structure of the 3-(2-Deoxy-β-D-erythropentofuranosyl)-pyrimido[1,2-f]purine-6,10(3H,5H)-dione (6-oxo-M1dG) Lesion in DNA.
Chemical research in toxicology.
2023 12; 36(12):1947-1960. doi:
10.1021/acs.chemrestox.3c00226
. [PMID: 37989274] - Shouguang Huang, Like Shen, M Rob G Roelfsema, Dirk Becker, Rainer Hedrich. Light-gated channelrhodopsin sparks proton-induced calcium release in guard cells.
Science (New York, N.Y.).
2023 12; 382(6676):1314-1318. doi:
10.1126/science.adj9696
. [PMID: 38096275] - Jeffrey D Tamucci, Nathan N Alder, Eric R May. Peptide Power: Mechanistic Insights into the Effect of Mitochondria-Targeted Tetrapeptides on Membrane Electrostatics from Molecular Simulations.
Molecular pharmaceutics.
2023 Dec; 20(12):6114-6129. doi:
10.1021/acs.molpharmaceut.3c00480
. [PMID: 37904323] - Ya-Ling Shi, Lu-Yu Shan, Jing-Jing Yang, Miao-Miao Jiang, Hui-Juan Yu, Yue-Fei Wang, Xin Chai. [Variations of glucose content in Massa Medicata Fermentata during processing based on quantitative proton nuclear magnetic resonance].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Dec; 48(23):6396-6402. doi:
10.19540/j.cnki.cjcmm.20230919.301
. [PMID: 38211996] - Dingyi Lin, Jiaqiang Zhou, Yang Cao, Ziyan Wang, Yi-Cheng Hsu, Fenping Zheng, Hong Li, Shuiya Sun, Hong Ren, Liping Deng, Feng Chen, Min Wang. Echo time optimization for in-vivo measurement of unsaturated lipid resonances using J-difference-edited MRS.
Magnetic resonance in medicine.
2023 12; 90(6):2217-2232. doi:
10.1002/mrm.29807
. [PMID: 37496253] - Qi Jia, Junliang Song, Chengwen Zheng, Jiahui Fu, Bin Qin, Yongqiang Zhang, Zhongjuan Liu, Kunzhi Jia, Kangjing Liang, Wenxiong Lin, Kai Fan. Genome-Wide Analysis of Cation/Proton Antiporter Family in Soybean (Glycine max) and Functional Analysis of GmCHX20a on Salt Response.
International journal of molecular sciences.
2023 Nov; 24(23):. doi:
10.3390/ijms242316560
. [PMID: 38068884] - Chang Zhao, Parker D Webster, Alexis De Angeli, Francesco Tombola. Mechanically-primed voltage-gated proton channels from angiosperm plants.
Nature communications.
2023 11; 14(1):7515. doi:
10.1038/s41467-023-43280-5
. [PMID: 37980353] - Yu Wan, Qi Li, Lixia Zhu, Yongfeng Wan, Lu Yan, Meilin Guo, Hang Yin, Ying Shi. Reconsideration of the ESIPT off mechanism for fluorescent probe MNC in aqueous solution.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2023 Nov; 301(?):122945. doi:
10.1016/j.saa.2023.122945
. [PMID: 37301029] - Jianing Zhao, Ciqin Li, Sihan Wei, Chengwei Lü, Li-Wei Zou. A multifunctional fluorescent probe based on Schiff base with AIE and ESIPT characteristics for effective detections of Pb2+, Ag+ and Fe3.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2023 Nov; 300(?):122904. doi:
10.1016/j.saa.2023.122904
. [PMID: 37229941] - Toshitaka Nakamura, Eikan Mishima, Naoya Yamada, André Santos Dias Mourão, Dietrich Trümbach, Sebastian Doll, Jonas Wanninger, Elena Lytton, Peter Sennhenn, Thamara Nishida Xavier da Silva, José Pedro Friedmann Angeli, Michael Sattler, Bettina Proneth, Marcus Conrad. Integrated chemical and genetic screens unveil FSP1 mechanisms of ferroptosis regulation.
Nature structural & molecular biology.
2023 Nov; 30(11):1806-1815. doi:
10.1038/s41594-023-01136-y
. [PMID: 37957306] - Jie Chen, Jiang Yue, Jingjing Fu, Shengyun He, Qianjing Liu, Minglan Yang, Wang Zhang, Hua Xu, Qing Lu, Jing Ma. A prediction model of liver fat fraction and presence of non-alcoholic fatty liver disease (NAFLD) among patients with overweight or obesity.
Endocrine journal.
2023 Oct; 70(10):977-985. doi:
10.1507/endocrj.ej23-0227
. [PMID: 37599066] - Rik Oude Egberink, Alexander H van Asbeck, Milou Boswinkel, Grigor Muradjan, Jürgen Dieker, Roland Brock. Deciphering Structural Determinants Distinguishing Active from Inactive Cell-Penetrating Peptides for Cytosolic mRNA Delivery.
Bioconjugate chemistry.
2023 10; 34(10):1822-1834. doi:
10.1021/acs.bioconjchem.3c00346
. [PMID: 37733627] - Luca Mazzei, Arundhati Paul, Michele Cianci, Marta Devodier, Davide Mandelli, Paolo Carloni, Stefano Ciurli. Kinetic and structural details of urease inactivation by thiuram disulphides.
Journal of inorganic biochemistry.
2023 Oct; 250(?):112398. doi:
10.1016/j.jinorgbio.2023.112398
. [PMID: 37879152] - Tatyana I Rokitskaya, Ljudmila S Khailova, Galina A Korshunova, Yuri N Antonenko. Efficiency of mitochondrial uncoupling by modified butyltriphenylphosphonium cations and fatty acids correlates with lipophilicity of cations: Protonophoric vs leakage mechanisms.
Biochimica et biophysica acta. Biomembranes.
2023 10; 1865(7):184183. doi:
10.1016/j.bbamem.2023.184183
. [PMID: 37286154] - Todd P Silverstein. Lee's transient protonic capacitor cannot explain the surface proton current observed in bacteriorhodopsin purple membranes.
Biophysical chemistry.
2023 10; 301(?):107096. doi:
10.1016/j.bpc.2023.107096
. [PMID: 37604049] - Xuerong Yang, Peiyuan Liu, Yulu Wei, Jingru Song, Xiaojie Yan, Xiaohua Jiang, Jianxing Li, Xiangqin Li, Dianpeng Li, Fenglai Lu. The Triterpenoids from Munronia pinnata and Their Anti-Proliferative Effects.
Molecules (Basel, Switzerland).
2023 Sep; 28(19):. doi:
10.3390/molecules28196839
. [PMID: 37836681] - Héctor F Escobar-Morreale, María Ángeles Martínez-García, María Insenser, Nicolau Cañellas, Xavier Correig, Manuel Luque-Ramírez. Serum metabolomics profiling by proton nuclear magnetic resonance spectrometry of the response to single oral macronutrient challenges in women with polycystic ovary syndrome (PCOS) compared with male and female controls.
Biology of sex differences.
2023 09; 14(1):62. doi:
10.1186/s13293-023-00547-2
. [PMID: 37736753] - Zhaomei Lu, Sheng He, Muhammad Kashif, Zufan Zhang, Shuming Mo, Guijiao Su, Linfang Du, Chengjian Jiang. Effect of ammonium stress on phosphorus solubilization of a novel marine mangrove microorganism Bacillus aryabhattai NM1-A2 as revealed by integrated omics analysis.
BMC genomics.
2023 Sep; 24(1):550. doi:
10.1186/s12864-023-09559-z
. [PMID: 37723472] - Jürgen Kreiter, Sanja Škulj, Zlatko Brkljača, Sarah Bardakji, Mario Vazdar, Elena E Pohl. FA Sliding as the Mechanism for the ANT1-Mediated Fatty Acid Anion Transport in Lipid Bilayers.
International journal of molecular sciences.
2023 Sep; 24(18):. doi:
10.3390/ijms241813701
. [PMID: 37762012] - Keisuke Ueda, Yui Sakagawa, Tomoki Saito, Taiki Fujimoto, Misaki Nakamura, Fumie Sakuma, Shun Kaneko, Taisei Tokumoto, Koki Nishimura, Junpei Takeda, Yuta Arai, Katsuhiko Yamamoto, Yukihiro Ikeda, Kenjirou Higashi, Kunikazu Moribe. Molecular-Level Structural Analysis of siRNA-Loaded Lipid Nanoparticles by 1H NMR Relaxometry: Impact of Lipid Composition on Their Structural Properties.
Molecular pharmaceutics.
2023 09; 20(9):4729-4742. doi:
10.1021/acs.molpharmaceut.3c00477
. [PMID: 37606988] - Caihong Wang, Chuanjie Bian, Jianyu Li, Lei Han, Dianming Guo, Tianchao Wang, Zhijuan Sun, Changqing Ma, Xiaoli Liu, Yike Tian, Xiaodong Zheng. Melatonin promotes Al3+ compartmentalization via H+ transport and ion gradients in Malus hupehensis.
Plant physiology.
2023 08; 193(1):821-839. doi:
10.1093/plphys/kiad339
. [PMID: 37311207] - Laura C Paweletz, Simon L Holtbrügge, Malina Löb, Dario De Vecchis, Lars V Schäfer, Thomas Günther Pomorski, Bo Højen Justesen. Anionic Phospholipids Stimulate the Proton Pumping Activity of the Plant Plasma Membrane P-Type H+-ATPase.
International journal of molecular sciences.
2023 Aug; 24(17):. doi:
10.3390/ijms241713106
. [PMID: 37685912] - Nikita E Frolov, Anastasia V Shishkina, Mikhail V Vener. Specific Proton-Donor Properties of Glycine Betaine. Metric Parameters and Enthalpy of Noncovalent Interactions in its Dimer, Water Complexes and Crystalline Hydrate.
International journal of molecular sciences.
2023 Aug; 24(16):. doi:
10.3390/ijms241612971
. [PMID: 37629150] - Zhao Yang, Xue Zhang, Shiwei Ye, Jingtao Zheng, Xiaowei Huang, Fang Yu, Zhenguo Chen, Shiqing Cai, Peng Zhang. Molecular mechanism underlying regulation of Arabidopsis CLCa transporter by nucleotides and phospholipids.
Nature communications.
2023 08; 14(1):4879. doi:
10.1038/s41467-023-40624-z
. [PMID: 37573431] - Hui Shu, Jie Zhang, Dawei Cheng, Xiaorui Zhao, Yue Ma, Chi Zhang, Yong Zhang, Zhihao Jia, Zhiwei Liu. The Role of Proton-Coupled Amino Acid Transporter 2 (SLC36A2) in Cold-Induced Thermogenesis of Mice.
Nutrients.
2023 Aug; 15(16):. doi:
10.3390/nu15163552
. [PMID: 37630739] - Joseph H Holbrook, Emily R Sekera, Arbil Lopez, Brian D Fries, Fernando Tobias, Kubra Akkaya, Maria M Mihaylova, Amanda B Hummon. Enhancement of Lipid Signals in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with Ammonium Fluoride as a Matrix Additive.
Analytical chemistry.
2023 07; 95(28):10603-10609. doi:
10.1021/acs.analchem.3c00753
. [PMID: 37418337] - Florian Becker, Simon Fuchs, Lukas Refisch, Friedel Drepper, Wolfgang Bildl, Uwe Schulte, Shuo Liang, Jonas Immanuel Heinicke, Sierra C Hansen, Clemens Kreutz, Bettina Warscheid, Bernd Fakler, Evgeny V Mymrikov, Carola Hunte. Conformational regulation and target-myristoyl switch of calcineurin B homologous protein 3.
eLife.
2023 07; 12(?):. doi:
10.7554/elife.83868
. [PMID: 37435805] - Yanhui Che, Dayong Fan, Zhiyuan Teng, Tongtong Yao, Zihan Wang, Hongbo Zhang, Guangyu Sun, Huihui Zhang, Wah Soon Chow. Potassium alleviates over-reduction of the photosynthetic electron transport chain and helps to maintain photosynthetic function under salt-stress.
Physiologia plantarum.
2023 Jul; 175(4):e13981. doi:
10.1111/ppl.13981
. [PMID: 37616008] - Xiao-Qin Lu, Shu Qin, Jindong Li. Radical Scavenging Capability and Mechanism of Three Isoflavonoids Extracted from Radix Astragali: A Theoretical Study.
Molecules (Basel, Switzerland).
2023 Jun; 28(13):. doi:
10.3390/molecules28135039
. [PMID: 37446701] - Kiera Ronda, Katelyn Downey, Amy Jenne, Monica Bastawrous, William W Wolff, Katrina Steiner, Daniel H Lysak, Peter M Costa, Myrna J Simpson, Karl J Jobst, Andre J Simpson. Exploring Proton-Only NMR Experiments and Filters for Daphnia In Vivo: Potential and Limitations.
Molecules (Basel, Switzerland).
2023 Jun; 28(12):. doi:
10.3390/molecules28124863
. [PMID: 37375418] - Wahyu Eko Prasetyo, Bram Triadmojo, Triana Kusumaningsih, Soerya Dewi Marliyana, Fajar Rakhman Wibowo, Maulidan Firdaus. Mechanistic insight into the free radical scavenging and xanthine oxidase (XO) inhibitor potent of monoacetylphloroglucinols (MAPGs).
Free radical research.
2023 Jun; ?(?):1-33. doi:
10.1080/10715762.2023.2225731
. [PMID: 37315300] - Laust Bavnhøj, Jan Heiner Driller, Lorena Zuzic, Amanda Dyrholm Stange, Birgit Schiøtt, Bjørn Panyella Pedersen. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter.
Nature plants.
2023 06; 9(6):938-950. doi:
10.1038/s41477-023-01421-0
. [PMID: 37188854] - Mariam Mohamadi, David Goricanec, Gerhard Wagner, Franz Hagn. NMR sample optimization and backbone assignment of a stabilized neurotensin receptor.
Journal of structural biology.
2023 06; 215(2):107970. doi:
10.1016/j.jsb.2023.107970
. [PMID: 37142193] - Alice Di Girolamo, Michele Pedrotti, Alex Koot, Francel Verstappen, Adèle van Houwelingen, Celina Vossen, Harro Bouwmeester, Dick de Ridder, Jules Beekwilder. The use of proton transfer reaction mass spectrometry for high throughput screening of terpene synthases.
Journal of mass spectrometry : JMS.
2023 Jun; 58(6):e4951. doi:
10.1002/jms.4951
. [PMID: 37259491] - Akın Abbasoğlu, Musturay Karçaaltıncaba, Ali Devrim Karaosmanoğlu, Mustafa Nasuh Özmen, Deniz Akata, İlkay S İdilman. Associations Between Hepatic and Pancreatic Steatosis with Lumbar Spinal Bone Marrow Fat: A Single-Center Magnetic Resonance Imaging Study.
The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology.
2023 06; 34(6):618-625. doi:
10.5152/tjg.2023.22225
. [PMID: 37303245] - Hiroshi Yamamoto, Anthony Cheuk, Julia Shearman, Peter J Nixon, Thomas Meier, Toshiharu Shikanai. Impact of engineering the ATP synthase rotor ring on photosynthesis in tobacco chloroplasts.
Plant physiology.
2023 05; 192(2):1221-1233. doi:
10.1093/plphys/kiad043
. [PMID: 36703219] - Ricky J Milne, Katherine E Dibley, Jayakumar Bose, Anthony R Ashton, Peter R Ryan, Stephen D Tyerman, Evans S Lagudah. Expression of the wheat multipathogen resistance hexose transporter Lr67res is associated with anion fluxes.
Plant physiology.
2023 05; 192(2):1254-1267. doi:
10.1093/plphys/kiad104
. [PMID: 36806945] - Alexander A Shcherbakov, Merissa Brousseau, Katherine A Henzler-Wildman, Mei Hong. Microsecond Motion of the Bacterial Transporter EmrE in Lipid Bilayers.
Journal of the American Chemical Society.
2023 Apr; ?(?):. doi:
10.1021/jacs.3c00340
. [PMID: 37097985] - Takako Ogawa, Kana Kobayashi, Yukimi Y Taniguchi, Toshiharu Shikanai, Naoya Nakamura, Akiho Yokota, Yuri N Munekage. Two cyclic electron flows around photosystem I differentially participate in C4 photosynthesis.
Plant physiology.
2023 04; 191(4):2288-2300. doi:
10.1093/plphys/kiad032
. [PMID: 36703198] - Danila Boytsov, Stefania Brescia, Gustavo Chaves, Sabina Koefler, Christof Hannesschlaeger, Christine Siligan, Nikolaus Goessweiner-Mohr, Boris Musset, Peter Pohl. Trapped Pore Waters in the Open Proton Channel HV 1.
Small (Weinheim an der Bergstrasse, Germany).
2023 04; 19(16):e2205968. doi:
10.1002/smll.202205968
. [PMID: 36683221] - Roman S Kirsanov, Ljudmila S Khailova, Tatyana I Rokitskaya, Iliuza R Iaubasarova, Pavel A Nazarov, Alisa A Panteleeva, Konstantin G Lyamzaev, Lyudmila B Popova, Galina A Korshunova, Elena A Kotova, Yuri N Antonenko. Ester-stabilized phosphorus ylides as protonophores on bilayer lipid membranes, mitochondria and chloroplasts.
Bioelectrochemistry (Amsterdam, Netherlands).
2023 Apr; 150(?):108369. doi:
10.1016/j.bioelechem.2023.108369
. [PMID: 36638678] - Xiafei Li, Weimin Ma, Wangfeng Zhang, Yali Zhang. Novel Insights into the Contribution of Cyclic Electron Flow to Cotton Bracts in Response to High Light.
International journal of molecular sciences.
2023 Mar; 24(6):. doi:
10.3390/ijms24065589
. [PMID: 36982664] - Yvonne Gunning, Kate S Davies, E Kate Kemsley. Authentication of saffron using 60 MHz 1H NMR spectroscopy.
Food chemistry.
2023 Mar; 404(Pt B):134649. doi:
10.1016/j.foodchem.2022.134649
. [PMID: 36288673] - Xiaohong Yue, Xiangsheng Ke, Yafei Shi, Yangsheng Li, Chenhao Zhang, Yetao Wang, Xin Hou. Chloroplast inner envelope protein FtsH11 is involved in the adjustment of assembly of chloroplast ATP synthase under heat stress.
Plant, cell & environment.
2023 03; 46(3):850-864. doi:
10.1111/pce.14525
. [PMID: 36573466] - Senfeng Zhang, Chunting Fu, Yongbo Luo, Qingrong Xie, Tong Xu, Ziyi Sun, Zhaoming Su, Xiaoming Zhou. Cryo-EM structure of a eukaryotic zinc transporter at a low pH suggests its Zn2+-releasing mechanism.
Journal of structural biology.
2023 03; 215(1):107926. doi:
10.1016/j.jsb.2022.107926
. [PMID: 36464198] - Jordan M Johnson, Alek D Peterlin, Enrique Balderas, Elahu G Sustarsic, J Alan Maschek, Marisa J Lang, Alejandro Jara-Ramos, Vanja Panic, Jeffrey T Morgan, Claudio J Villanueva, Alejandro Sanchez, Jared Rutter, Irfan J Lodhi, James E Cox, Kelsey H Fisher-Wellman, Dipayan Chaudhuri, Zachary Gerhart-Hines, Katsuhiko Funai. Mitochondrial phosphatidylethanolamine modulates UCP1 to promote brown adipose thermogenesis.
Science advances.
2023 02; 9(8):eade7864. doi:
10.1126/sciadv.ade7864
. [PMID: 36827367] - Katarzyna Kabała, Małgorzata Janicka. Structural and Functional Diversity of Two ATP-Driven Plant Proton Pumps.
International journal of molecular sciences.
2023 Feb; 24(5):. doi:
10.3390/ijms24054512
. [PMID: 36901943] - Dan Parkin, Mitsunori Takano. Coulombic Organization in Membrane-Embedded Rotary Motor of ATP Synthase.
The journal of physical chemistry. B.
2023 02; 127(7):1552-1562. doi:
10.1021/acs.jpcb.2c07875
. [PMID: 36734508] - Benedikt Söldner, Kristof Grohe, Peter Neidig, Jelena Auch, Sebastian Blach, Alexander Klein, Suresh K Vasa, Lars V Schäfer, Rasmus Linser. Integrated Assessment of the Structure and Dynamics of Solid Proteins.
The journal of physical chemistry letters.
2023 Feb; 14(7):1725-1731. doi:
10.1021/acs.jpclett.2c03398
. [PMID: 36757335] - Gustaf E Degen, Philip J Jackson, Matthew S Proctor, Nicholas Zoulias, Stuart A Casson, Matthew P Johnson. High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control.
Plant physiology.
2023 Feb; ?(?):. doi:
10.1093/plphys/kiad084
. [PMID: 36774530] - Ewald Weichselbaum, Timur Galimzyanov, Oleg V Batishchev, Sergey A Akimov, Peter Pohl. Proton Migration on Top of Charged Membranes.
Biomolecules.
2023 02; 13(2):. doi:
10.3390/biom13020352
. [PMID: 36830721] - Jifu Duan, Anja Hemschemeier, David J Burr, Sven T Stripp, Eckhard Hofmann, Thomas Happe. Cyanide Binding to [FeFe]-Hydrogenase Stabilizes the Alternative Configuration of the Proton Transfer Pathway.
Angewandte Chemie (International ed. in English).
2023 Feb; 62(7):e202216903. doi:
10.1002/anie.202216903
. [PMID: 36464641] - Baoxing Xie, Qianqian Chen, Xing Lu, Kang Chen, Yuesheng Yang, Jiang Tian, Cuiyue Liang. Proton exudation mediated by GmVP2 has widespread effects on plant growth, remobilization of soil phosphorus, and the structure of the rhizosphere microbial community.
Journal of experimental botany.
2023 02; 74(3):1140-1156. doi:
10.1093/jxb/erac476
. [PMID: 36455868] - Colin Y Kim, Andrew J Mitchell, David W Kastner, Claire E Albright, Michael A Gutierrez, Christopher M Glinkerman, Heather J Kulik, Jing-Ke Weng. Emergence of a proton exchange-based isomerization and lactonization mechanism in the plant coumarin synthase COSY.
Nature communications.
2023 02; 14(1):597. doi:
10.1038/s41467-023-36299-1
. [PMID: 36737607] - Xiaowan Huang, Yanli Wang, Wei Wang, Xiao Zhang, Lei Jiang, Jian Liu, Shuangyan Liu, Keqing Li, Chengping Xie, Qiang Wang. Quantitative 1H NMR with global spectral deconvolution approach for the determination of gamma-aminobutyric acid in Chinese yam (Dioscorea polystachya Turczaninow).
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2023 Feb; 39(2):221-227. doi:
10.1007/s44211-022-00221-4
. [PMID: 36427159] - Krzysztof Bryl. Fluorescence Resonance Energy Transfer (FRET) as a Spectroscopic Ruler for the Investigation of Protein Induced Lipid Membrane Curvature: Bacteriorhodopsin and Bacteriorhodopsin Analogs in Model Lipid Membranes.
Applied spectroscopy.
2023 Feb; 77(2):187-199. doi:
10.1177/00037028221135645
. [PMID: 36229916] - Jiaming Li, Rongxiang Zhu, Mingyue Zhang, Beibei Cao, Xiaolong Li, Bobo Song, Zhongchi Liu, Jun Wu. Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear.
The Plant journal : for cell and molecular biology.
2023 Jan; ?(?):. doi:
10.1111/tpj.16126
. [PMID: 36710644] - Bao Zhang, Wen-Jie Liu, Ting-Shi He, Bao-Cai Xu, Qiu-Tao Xie. Insight into interfacial adsorption behavior of high-density lipoprotein hydrolysates regulated by carboxymethyl dextrin and in vitro digestibility of curcumin loaded high internal phase emulsions.
Food chemistry.
2023 Jan; 400(?):134006. doi:
10.1016/j.foodchem.2022.134006
. [PMID: 36058041] - Qiao-Yu Zhang, Xing Li, Jing Luo, Xue Li, Jinshuai Song, Donghui Wei. Cofactor-Free Dioxygenases-Catalyzed Reaction Pathway via Proton-Coupled Electron Transfer.
The journal of physical chemistry. B.
2023 01; 127(1):95-103. doi:
10.1021/acs.jpcb.2c03161
. [PMID: 36525303] - Chung-Ta Han, Khanh Dinh Quoc Nguyen, Maxwell W Berkow, Sunyia Hussain, Ahmad Kiani, Maia Kinnebrew, Matthew N Idso, Naomi Baxter, Evelyn Chang, Emily Aye, Elsa Winslow, Mohammad Rahman, Susanna Seppälä, Michelle A O'Malley, Bradley F Chmelka, Blake Mertz, Songi Han. Lipid membrane mimetics and oligomerization tune functional properties of proteorhodopsin.
Biophysical journal.
2023 01; 122(1):168-179. doi:
10.1016/j.bpj.2022.11.012
. [PMID: 36352784] - Themis Lazaridis. Molecular origins of asymmetric proton conduction in the influenza M2 channel.
Biophysical journal.
2023 01; 122(1):90-98. doi:
10.1016/j.bpj.2022.11.029
. [PMID: 36403086] - Julie Hodin, Christof Lind, Anne Marmagne, Christelle Espagne, Michele Wolfe Bianchi, Alexis De Angeli, Fadi Abou-Choucha, Mickaël Bourge, Fabien Chardon, Sebastien Thomine, Sophie Filleur. Proton exchange by the vacuolar nitrate transporter CLCa is required for plant growth and nitrogen use efficiency.
The Plant cell.
2023 01; 35(1):318-335. doi:
10.1093/plcell/koac325
. [PMID: 36409008] - Theresia Ziegs, Andrew Martin Wright, Anke Henning. Test-retest reproducibility of human brain multi-slice 1 H FID-MRSI data at 9.4T after optimization of lipid regularization, macromolecular model, and spline baseline stiffness.
Magnetic resonance in medicine.
2023 Jan; 89(1):11-28. doi:
10.1002/mrm.29423
. [PMID: 36128885] - Niklas Klusch, Maximilian Dreimann, Jennifer Senkler, Nils Rugen, Werner Kühlbrandt, Hans-Peter Braun. Cryo-EM structure of the respiratory I + III2 supercomplex from Arabidopsis thaliana at 2 Å resolution.
Nature plants.
2023 01; 9(1):142-156. doi:
10.1038/s41477-022-01308-6
. [PMID: 36585502] - Sara Omer, Claire Macero, Dayishaa Daga, Kelly Zheng, Jeeyon Jeong. An Adapted Protocol for Quantitative Rhizosphere Acidification Assay.
Methods in molecular biology (Clifton, N.J.).
2023; 2665(?):37-46. doi:
10.1007/978-1-0716-3183-6_4
. [PMID: 37166591] - Alexander L Sukstanskii, Dmitriy A Yablonskiy. Microscopic theory of spin-spin and spin-lattice relaxation of bound protons in cellular and myelin membranes-A lateral diffusion model (LDM).
Magnetic resonance in medicine.
2023 Jan; 89(1):370-383. doi:
10.1002/mrm.29430
. [PMID: 36094730] - Sucheta Kudrimoti, Jacob Machin, Adedamola S Arojojoye, Samuel G Awuah, Rodney Eisenberg, Clara Fenger, George Maylin, Andreas F Lehner, Thomas Tobin. Synthesis and characterization of d5 -barbarin for use in barbarin-related research.
Drug testing and analysis.
2023 Jan; 15(1):42-46. doi:
10.1002/dta.3357
. [PMID: 35975356] - Ya Hou, Yating Zhang, Shengnan Jiang, Na Xie, Yi Zhang, Xianli Meng, Xiaobo Wang. Salidroside intensifies mitochondrial function of CoCl2-damaged HT22 cells by stimulating PI3K-AKT-MAPK signaling pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Jan; 109(?):154568. doi:
10.1016/j.phymed.2022.154568
. [PMID: 36610162] - Małgorzata Janicka, Małgorzata Reda, Natalia Napieraj, Adrianna Michalak, Dagmara Jakubowska, Katarzyna Kabała. Involvement of Diamine Oxidase in Modification of Plasma Membrane Proton Pump Activity in Cucumis sativus L. Seedlings under Cadmium Stress.
International journal of molecular sciences.
2022 Dec; 24(1):. doi:
10.3390/ijms24010262
. [PMID: 36613704] - Iwona Budziak-Wieczorek, Lidia Ślusarczyk, Beata Myśliwa-Kurdziel, Martyna Kurdziel, Monika Srebro-Hooper, Izabela Korona-Glowniak, Mariusz Gagoś, Grzegorz Gładyszewski, Andrzej Stepulak, Dariusz Kluczyk, Arkadiusz Matwijczuk. Spectroscopic characterization and assessment of microbiological potential of 1,3,4-thiadiazole derivative showing ESIPT dual fluorescence enhanced by aggregation effects.
Scientific reports.
2022 12; 12(1):22140. doi:
10.1038/s41598-022-26690-1
. [PMID: 36550169] - Tatyana I Rokitskaya, Alexander M Arutyunyan, Ljudmila S Khailova, Alisa D Kataeva, Alexander M Firsov, Elena A Kotova, Yuri N Antonenko. Usnic Acid-Mediated Exchange of Protons for Divalent Metal Cations across Lipid Membranes: Relevance to Mitochondrial Uncoupling.
International journal of molecular sciences.
2022 Dec; 23(24):. doi:
10.3390/ijms232416203
. [PMID: 36555847] - Abhinav, Piotr Jurkiewicz, Martin Hof, Christoph Allolio, Jan Sýkora. Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions.
Biomolecules.
2022 12; 12(12):. doi:
10.3390/biom12121894
. [PMID: 36551322]