Biological Pathway: BioCyc:META_PWY-5317

hyoscyamine and scopolamine biosynthesis related metabolites

find 30 related metabolites which is associated with the biological pathway hyoscyamine and scopolamine biosynthesis

this pathway object is a conserved pathway across multiple organism.

Scopolamine

(1R,2R,4S,5S,7S)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0^{2,4}]nonan-7-yl (2S)-3-hydroxy-2-phenylpropanoate

C17H21NO4 (303.1470506)


Scopolamine, also known as hyoscine, is a tropane alkaloid drug obtained from plants of the family Solanaceae (nightshades), such as henbane or jimson weed (Datura species). It is part of the secondary metabolites of plants. Scopolamine is used criminally as a date rape drug and as an aid to robbery, the most common act being the clandestine drugging of a victims drink. It is preferred because it induces retrograde amnesia, or an inability to recall events prior to its administration. Victims of this crime are often admitted to a hospital in police custody, under the assumption that the patient is experiencing a psychotic episode. A telltale sign is a fever accompanied by a lack of sweat. An alkaloid from Solanaceae, especially Datura metel L. and Scopola carniolica. Scopolamine and its quaternary derivatives act as antimuscarinics like atropine, but may have more central nervous system effects. Among the many uses are as an anesthetic premedication, in urinary incontinence, in motion sickness, as an antispasmodic, and as a mydriatic and cycloplegic. Scopolamine, also known as hyoscine, is a tropane alkaloid drug obtained from plants of the family Solanaceae (nightshades), such as henbane or jimson weed (Datura species). It is part of the secondary metabolites of plants. A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics C78283 - Agent Affecting Organs of Special Senses > C29706 - Mydriatic Agent N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents KEIO_ID S040; [MS2] KO009233 KEIO_ID S040

   

Diethyl dicarbonate

Diethyl ester OF pyrocarbonic acid

C6H10O5 (162.052821)


Diethyl dicarbonate is formerly used as a fermentation inhibitor and preservative for wines, soft drinks and fruit juices. No longer permitted as a food additive. Formerly used as a fermentation inhibitor and preservative for wines, soft drinks and fruit juices. No longer permitted as a food additive.

   

Water

oxidane

H2O (18.0105642)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Oxygen

Molecular oxygen

O2 (31.98983)


Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131) [HMDB]. Oxygen is found in many foods, some of which are soy bean, watermelon, sweet basil, and spinach. Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131). V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Carbon dioxide

Carbonic acid anhydride

CO2 (43.98983)


Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Mercuric cation

Mercuric cation

Hg+2 (201.970632)


   

1-Methylpyrrolinium

1-Methyl-delta(1)-pyrrolinium, 2-(14)C-labeled

C5H10N1+ (84.08132)


This compound belongs to the family of Pyrrolines. These are compounds containing a pyrroline ring, which is a five-member unsaturated aliphatic ring with one nitrogen atom and four carbon atoms.

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

Scopolamine

BENZENEACETIC ACID, .ALPHA.(HYDROXYMETHYL)-,(1.ALPHA.,2.BETA.,4.BETA.,5.ALPHA.,7.BETA.)-9-METHYL-3-OXA-9-AZATRICYCLO(3.3.1.02,4)NON-7-YL ESTER, (.ALPHA.S)-

C17H21NO4 (303.1470506)


A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Scopolamine hydrobromide appears as colorless crystals or white powder or solid. Has no odor. pH (of 5\\% solution): 4-5.5. Slightly efflorescent in dry air. Bitter, acrid taste. (NTP, 1992) Scopolamine is a tropane alkaloid that is the (S)-tropic acid ester of 6beta,7beta-epoxy-1alphaH,5alphaH-tropan-3alpha-ol. It has a role as a muscarinic antagonist, an antiemetic, an adjuvant, a mydriatic agent, an antispasmodic drug, an anaesthesia adjuvant, an antidepressant and a metabolite. It is a propanoate ester, an epoxide, a tertiary amino compound and a tropane alkaloid. It is functionally related to a (S)-tropic acid. It is a conjugate base of a scopolamine(1+). Scopolamine is a tropane alkaloid isolated from members of the Solanaceae family of plants, similar to [atropine] and [hyoscyamine], all of which structurally mimic the natural neurotransmitter [acetylcholine]. Scopolamine was first synthesized in 1959, but to date, synthesis remains less efficient than extracting scopolamine from plants. As an acetylcholine analogue, scopolamine can antagonize muscarinic acetylcholine receptors (mAChRs) in the central nervous system and throughout the body, inducing several therapeutic and adverse effects related to alteration of parasympathetic nervous system and cholinergic signalling. Due to its dose-dependent adverse effects, scopolamine was the first drug to be offered commercially as a transdermal delivery system, Scopoderm TTS®, in 1981. As a result of its anticholinergic effects, scopolamine is being investigated for diverse therapeutic applications; currently, it is approved for the prevention of nausea and vomiting associated with motion sickness and surgical procedures. Scopolamine was first approved by the FDA on December 31, 1979, and is currently available as both oral tablets and a transdermal delivery system. Scopolamine is an Anticholinergic. The mechanism of action of scopolamine is as a Cholinergic Antagonist. Hyoscine is a natural product found in Duboisia leichhardtii, Duboisia myoporoides, and other organisms with data available. Scopolamine is a tropane alkaloid derived from plants of the nightshade family (Solanaceae), specifically Hyoscyamus niger and Atropa belladonna, with anticholinergic, antiemetic and antivertigo properties. Structurally similar to acetylcholine, scopolamine antagonizes acetylcholine activity mediated by muscarinic receptors located on structures innervated by postganglionic cholinergic nerves as well as on smooth muscles that respond to acetylcholine but lack cholinergic innervation. The agent is used to cause mydriasis, cycloplegia, to control the secretion of saliva and gastric acid, to slow gut motility, and prevent vomiting. An alkaloid from SOLANACEAE, especially DATURA and SCOPOLIA. Scopolamine and its quaternary derivatives act as antimuscarinics like ATROPINE, but may have more central nervous system effects. Its many uses include an anesthetic premedication, the treatment of URINARY INCONTINENCE and MOTION SICKNESS, an antispasmodic, and a mydriatic and cycloplegic. A tropane alkaloid that is the (S)-tropic acid ester of 6beta,7beta-epoxy-1alphaH,5alphaH-tropan-3alpha-ol. C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent C78283 - Agent Affecting Organs of Special Senses > C29706 - Mydriatic Agent CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5225; ORIGINAL_PRECURSOR_SCAN_NO 5222 CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5230; ORIGINAL_PRECURSOR_SCAN_NO 5228 CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5252; ORIGINAL_PRECURSOR_SCAN_NO 5251 CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5243; ORIGINAL_PRECURSOR_SCAN_NO 5241 CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5254; ORIGINAL_PRECURSOR_SCAN_NO 5252 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2318 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.290 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.274 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.276

   

H2O

oxidane

H2O (18.0105642)


An oxygen hydride consisting of an oxygen atom that is covalently bonded to two hydrogen atoms. Water. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7732-18-5 (retrieved 2024-10-17) (CAS RN: 7732-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cupric cation

Cupric cation

Cu+2 (62.929599)


   

Coenzyme II

Coenzyme II

C21H25N7O17P3-3 (740.051977)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

Pseudotropinium

Pseudotropinium

C8H16NO+ (142.1231826)


Conjugate acid of pseudotropine.

   

coenzyme A(4-)

coenzyme A(4-)

C21H32N7O16P3S-4 (763.0839062)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Tropiniumone

Tropiniumone

C8H14NO+ (140.1075334)


Conjugate acid of tropinone; major species at pH 7.3.

   

(S)-atropinium

(S)-atropinium

C17H24NO3+ (290.1756094)


An organic cation that is the conjugate acid of (S)-atropine arising from protonation of the tertiary amino group; major species at pH 7.3.

   
   
   

1-(1-Methylpyrrolidin-1-ium-2-yl)propan-2-one

1-(1-Methylpyrrolidin-1-ium-2-yl)propan-2-one

C8H16NO+ (142.1231826)


   

8-Thiabicyclo[3,2,1]octane-3-one

8-Thiabicyclo[3,2,1]octane-3-one

C7H10OS (142.04523300000002)


   

[(1R,3S,5R,6S)-6-hydroxy-8-methyl-8-azoniabicyclo[3.2.1]octan-3-yl] (2S)-3-hydroxy-2-phenylpropanoate

[(1R,3S,5R,6S)-6-hydroxy-8-methyl-8-azoniabicyclo[3.2.1]octan-3-yl] (2S)-3-hydroxy-2-phenylpropanoate

C17H24NO4+ (306.1705244)


   

[(1S,5R)-8-methyl-8-azoniabicyclo[3.2.1]octan-3-yl] (2R)-2-hydroxy-3-phenylpropanoate

[(1S,5R)-8-methyl-8-azoniabicyclo[3.2.1]octan-3-yl] (2R)-2-hydroxy-3-phenylpropanoate

C17H24NO3+ (290.1756094)


   

Carbon Dioxide

carbon dioxide

CO2 (43.98983)


A one-carbon compound with formula CO2 in which the carbon is attached to each oxygen atom by a double bond. A colourless, odourless gas under normal conditions, it is produced during respiration by all animals, fungi and microorganisms that depend directly or indirectly on living or decaying plants for food. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Oxygen

Dioxygen

O2 (31.98983)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Hydrogen cation

Hydrogen cation

H+ (1.0078246)


   

1-Methylpyrrolinium

1-Methyl-delta(1)-Pyrrolinium

C5H10N+ (84.08132)


An organic cation that is 1-pyrroline bearing an N-methyl substituent.

   

diethyl pyrocarbonate

diethyl pyrocarbonate

C6H10O5 (162.052821)