NCBI Taxonomy: 99809

Juniperus rigida (ncbi_taxid: 99809)

found 83 associated metabolites at species taxonomy rank level.

Ancestor: Juniperus

Child Taxonomies: Juniperus rigida var. conferta, Juniperus rigida var. rigida

beta-Elemene

(1S,2S,4R)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


(-)-beta-elemene is the (-)-enantiomer of beta-elemene that has (1S,2S,4R)-configuration. It has a role as an antineoplastic agent. beta-Elemene is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. Beta-elemene is one of the isomers of elemene, a lipid soluble sesquiterpene and the active component isolated from the Chinese medicinal herb Rhizoma zedoariae with potential antineoplastic and chemopreventive activities. Although the exact mechanism of action through which beta-elemene exerts its effect has yet to be fully elucidated, this agent appears to induce apoptosis through different mechanisms of action and induces cell cycle arrest at different stages based on the tumor cell type involved. Beta-elemene may sensitize cancer cells to other chemotherapeutic agents. See also: Cannabis sativa subsp. indica top (part of). Beta-elemene, also known as B-elemen or 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane, is a member of the class of compounds known as elemane sesquiterpenoids. Elemane sesquiterpenoids are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. Beta-elemene is a fresh, herbal, and waxy tasting compound and can be found in a number of food items such as lovage, anise, spearmint, and orange mint, which makes beta-elemene a potential biomarker for the consumption of these food products. Beta-elemene can be found primarily in saliva. beta-Elemene belongs to the class of organic compounds known as elemane sesquiterpenoids. These are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. beta-Elemene can be found in herbs, spices, and root vegetables, which makes beta-elemene a potential biomarker for the consumption of these food products. It is a constituent of sweet flag, juniper oils, and Mentha species. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

Sugiol

9(1H)-Phenanthrenone, 2,3,4,4a,10,10a-hexahydro-6-hydroxy-1,1,4a-trimethyl-7-(1-methylethyl)-, (4aS-trans)-

C20H28O2 (300.2089)


Sugiol is an abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group. It has a role as a plant metabolite, an antiviral agent, an antineoplastic agent, an antioxidant and a radical scavenger. It is an abietane diterpenoid, a carbotricyclic compound, a meroterpenoid, a member of phenols and a cyclic terpene ketone. It is functionally related to a ferruginol. Sugiol is a natural product found in Austrocedrus chilensis, Libocedrus bidwillii, and other organisms with data available. An abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group.

   

Cedorol

Cedrol;[3R-(3alpha,3abeta,6alpha,7beta,8aalpha)]-octahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulen-6-ol

C15H26O (222.1984)


Cedrol, also known as alpha-cedrol or (+)-cedrol, is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Thus, cedrol is considered to be an isoprenoid lipid molecule. Cedrol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cedrol can be found in ginger, which makes cedrol a potential biomarker for the consumption of this food product. Cedrol is a sesquiterpene alcohol found in the essential oil of conifers (cedar oil), especially in the genera Cupressus (cypress) and Juniperus (juniper). It has also been identified in Origanum onites, a plant related to oregano. Its main uses are in the chemistry of aroma compounds. It makes up about 19\\\\% of cedarwood oil Texas and 15.8\\\\% of cedarwood oil Virginia . Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   

Isopimaric acid

1-Phenanthrenecarboxylic acid, 7-ethenyl-1,2,3,4,4a,4b,5,6,7,8,10,10a-dodecahydro-1,4a,7-trimethyl-, (1theta-(1alpha,4abeta,4balpha,7alpha,10aalpha))-

C20H30O2 (302.2246)


Isopimaric acid is a diterpenoid, a carbotricyclic compound and a monocarboxylic acid. It is a conjugate acid of an isopimarate. It derives from a hydride of an isopimara-7,15-diene. Isopimaric acid is a natural product found in Pinus brutia var. eldarica, Halocarpus bidwillii, and other organisms with data available. Isopimaric acid is isolated from Pinus palustris (pitch pine). D049990 - Membrane Transport Modulators D007476 - Ionophores Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.

   

Ferruginol

3-PHENANTHRENOL, 4B,5,6,7,8,8A,9,10-OCTAHYDRO-4B,8,8-TRIMETHYL-2-(1-METHYLETHYL)-, (4BS-TRANS)-

C20H30O (286.2297)


Ferruginol is an abietane diterpenoid that is abieta-8,11,13-triene substituted by a hydroxy group at positions 12. It has a role as an antineoplastic agent, an antibacterial agent, a protective agent and a plant metabolite. It is an abietane diterpenoid, a member of phenols, a carbotricyclic compound and a meroterpenoid. Ferruginol is a natural product found in Calocedrus macrolepis, Teucrium polium, and other organisms with data available. An abietane diterpenoid that is abieta-8,11,13-triene substituted by a hydroxy group at positions 12.

   

alpha-Humulene

trans,trans,trans-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene

C15H24 (204.1878)


alpha-Humulene, also known as alpha-caryophyllene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Thus, alpha-humulene is considered to be an isoprenoid lipid molecule. alpha-Humulene is found in allspice. alpha-Humulene is a constituent of many essential oils including hops (Humulus lupulus) and cloves (Syzygium aromaticum). (1E,4E,8E)-alpha-humulene is the (1E,4E,8E)-isomer of alpha-humulene. Humulene is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. See also: Caryophyllene (related). α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

gamma-Terpinene

1-methyl-4-propan-2-ylcyclohexa-1,4-diene

C10H16 (136.1252)


Gamma-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. It has a role as an antioxidant, a plant metabolite, a volatile oil component and a human xenobiotic metabolite. It is a monoterpene and a cyclohexadiene. gamma-Terpinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. The terpinenes are three isomeric hydrocarbons that are classified as terpenes. Gamma-terpinene is one these three isomeric hydrocarbons. It is natural and has been isolated from a variety of plant sources (Wikipedia). It is a major component of essential oils made from Citrus Fruits and has strong antioxidant activity. It has a lemon odor and widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Mandarin oil (part of). Gamma-terpinene is one of four isomeric monoterpenes (the other three being alpha terpinene, beta terpinene and delta terpinene). It is a naturally occurring terpinene and has been isolated from a variety of plant sources. It has the highest boiling point of the four known terpinene isomers. It is a major component of essential oils made from citrus fruits and has a strong antioxidant activity. It has a lemon-like or lime-like odor and is widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). The other isomers of gamma-terpinene, such as alpha-terpinene and delta-terpinene, have been isolated from cardamom and marjoram oils while beta terpinene appears to have no natural source. One of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. Constituent of many essential oils e.g. Citrus, Eucalyptus, Mentha, Pinus subspecies Ajowan seed oil (Carum copticum) is a major source γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].

   

Arachidate (20:0)

n-Eicosanoic acid

C20H40O2 (312.3028)


Arachidic acid, also known as icosanoic acid, is a saturated fatty acid with a 20-carbon chain. It is a minor constituent of butter, perilla oil, peanut oil, corn oil, and cocoa butter. It also constitutes 7.08\\\\% of the fats from the fruit of the durian species Durio graveolens. The salts and esters of arachidic acid are known as arachidates. Its name derives from the Latin arachis that means peanut. It can be formed by the hydrogenation of arachidonic acid. The reduction of arachidic acid yields arachidyl alcohol. Arachidic acid is used for the production of detergents, photographic materials and lubricants. Arachidic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Arachidic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

Safrole

4-Allyl-1,2-(methylenedioxy)benzene, 8ci

C10H10O2 (162.0681)


Safrole, also known as shikimol, is a colorless or slightly yellow oily liquid. It is typically extracted from the root-bark or the fruit of sassafras plants in the form of sassafras oil, or synthesized from other related methylenedioxy compounds. It is the principal component of brown camphor oil, and is found in small amounts in a wide variety of plants, where it functions as a natural pesticide. Safrole is found in anise and nutmeg. Banned by FDA for use in food. Safrole is formerly used as a food flavour It is a precursor in the synthesis of the insecticide synergist piperonyl butoxide and the recreational drug MDMA ("Ecstacy"). Safrole is a natural plant constituent, found in oil of sassafras and certain other essential oils. It is a member of the methylenedioxybenzene group of compounds, many of which (e.g. piperonyl butoxide) are extensively used as insecticide synergists. Safrole is a major source of human exposure to safrole is through consumption of spices, such as nutmeg, cinnamon and black pepper, in which safrole is a constituent. Safrole is also present in root beer, and has been used as an additive in chewing gum, toothpaste, soaps and certain pharmaceutical preparations. Safrole is a weak hepatocarcinogen and it is a matter of considerable interest whether the ally1 moiety or the methylenedioxy group, or both, are involved in the mechanism of its carcinogenesis. Safrole is extensively metabolized, giving rise to a large number of metabolites. Metabolism involves essentially two major routes, oxidation of the ally1 side chain, and oxidation of the methylenedioxy group with subsequent cleavage to form the catechol. Safrole undergoes oxidation of the allylic group to yield the 2, 3-epoxide (safrole epoxide). The dihydrodiol is one of the metabolites of safrole, and presumably arises from the hydration of the 2, 3-epoxide. The principal route of metabolism of safrole is through cleavage of the methylenedioxy group, the major metabolites being allylcatechol and its isomer, propenylcatechol. Eugenol and its isomer I-methoxy- 2-hydroxy-4-allylbenzene have been detected as minor metabolites in rat, mouse and human (PMID:6719936). The Ocotea cymbarum oil made of the Ocotea pretiosa, a plant growing in Brazil, and sassafras oil made of Sassafras albidum, a tree growing in eastern North America, are the main natural sources for safrole. It has a characteristic "candy-shop" aroma Occurs in nutmeg. Banned by FDA for use in food. Formerly used as a food flavour

   

Amentoflavone

4H-1-Benzopyran-4-one, 8-(5-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)-2-hydroxyphenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.09)


Amentoflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. It has a role as a cathepsin B inhibitor, an antiviral agent, an angiogenesis inhibitor, a P450 inhibitor and a plant metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Amentoflavone is a natural product found in Podocarpus elongatus, Austrocedrus chilensis, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Amentoflavone is found in fruits. Amentoflavone is obtained from Viburnum prunifolium (black haw Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].

   

Pimaric acid

Dextropimaric acid

C20H30O2 (302.2246)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.561 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.568 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.560

   

kaempferol 3-rhamnoside-7-glucoside

(3R-trans)-3,4-bis(1,3-benzodioxol-5-ylmethyl)dihydrofuran-2(3H)-one

C20H18O6 (354.1103)


Hinokinin (Compound 1) is a compound isolated from the stems of Hypoestes aristate. Hinokinin exhibits moderate activity of HIV-1 protease enzyme[1]. Hinokinin (Compound 1) is a compound isolated from the stems of Hypoestes aristate. Hinokinin exhibits moderate activity of HIV-1 protease enzyme[1].

   

Longifolene

3,3,7-trimethyl-8-methylidenetricyclo[5.4.0.0²,⁹]undecane

C15H24 (204.1878)


Longifolene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Longifolene is a sweet, fir needle, and medical tasting compound found in corn, mandarin orange (clementine, tangerine), rosemary, and star anise, which makes longifolene a potential biomarker for the consumption of these food products. Longifolene is the common (or trivial) chemical name of a naturally occurring, oily Liquid hydrocarbon found primarily in the high-boiling fraction of certain pine resins. The name is derived from that of a pine species from which the compound was isolated, Pinus longifolia (obsolete name for Pinus roxburghii Sarg.) Chemically, longifolene is a tricyclic sesquiterpene. This molecule is chiral, and the enantiomer commonly found in pines and other higher plants exhibits a positive optical rotation of +42.73¬∞. The other enantiomer (optical rotation ‚àí42.73¬∞) is found in small amounts in certain fungi and liverworts . Longifolene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Longifolene is a sweet, fir needle, and medical tasting compound found in corn, mandarin orange (clementine, tangerine), rosemary, and star anise, which makes longifolene a potential biomarker for the consumption of these food products. Longifolene is the common (or trivial) chemical name of a naturally occurring, oily liquid hydrocarbon found primarily in the high-boiling fraction of certain pine resins. The name is derived from that of a pine species from which the compound was isolated, Pinus longifolia (obsolete name for Pinus roxburghii Sarg.) Chemically, longifolene is a tricyclic sesquiterpene. This molecule is chiral, and the enantiomer commonly found in pines and other higher plants exhibits a positive optical rotation of +42.73°. The other enantiomer (optical rotation −42.73°) is found in small amounts in certain fungi and liverworts . (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1]. (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1]. (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1].

   

(+)-1(10),4-Cadinadiene

1,2,3,5,6,8a-hexahydro-4,7-Dimethyl-1-(1-methylethyl)-(1S,8ar)-naphthalene

C15H24 (204.1878)


Constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag. (+)-1(10),4-Cadinadiene is found in many foods, some of which are common pea, asparagus, sweet potato, and dill. (+)-1(10),4-Cadinadiene is found in allspice. (+)-1(10),4-Cadinadiene is a constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag

   

Thujopsene

(-)-thujopsene

C15H24 (204.1878)


A thujopsene that has (S,S,S)-configuration.

   

Anthricin

Furo[3,4:6,7]naphtho[2,3-d]-1,3-dioxol-6(5aH)-one, 5,8,8a,9-tetrahydro-5-(3,4,5-trimethoxyphenyl)-, (5R,5aR,8aR)-

C22H22O7 (398.1365)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D007155 - Immunologic Factors > D018796 - Immunoconjugates D007155 - Immunologic Factors > D007136 - Immunoglobulins D007155 - Immunologic Factors > D000906 - Antibodies D009676 - Noxae > D000922 - Immunotoxins Deoxypodophyllotoxin (DPT), a derivative of podophyllotoxin, is a lignan with potent antimitotic, anti-inflammatory and antiviral properties isolated from Anthriscus sylvestris. Deoxypodophyllotoxin, targets the microtubule, has a major impact in oncology not only as anti-mitotics but also as potent inhibitors of angiogenesis[1]. Deoxypodophyllotoxin induces cell autophagy and apoptosis[2]. Deoxypodophyllotoxin evokes increase of intracellular Ca2+ concentrations in DRG neurons[3]. Deoxypodophyllotoxin (DPT), a derivative of podophyllotoxin, is a lignan with potent antimitotic, anti-inflammatory and antiviral properties isolated from Anthriscus sylvestris. Deoxypodophyllotoxin, targets the microtubule, has a major impact in oncology not only as anti-mitotics but also as potent inhibitors of angiogenesis[1]. Deoxypodophyllotoxin induces cell autophagy and apoptosis[2]. Deoxypodophyllotoxin evokes increase of intracellular Ca2+ concentrations in DRG neurons[3].

   

savinin

(-)-Hibalactone; (-)-Savinin; NSC 150442;Savinine;Hibalactone

C20H16O6 (352.0947)


A lignan that is dihydrofuran-2(3H)-one (gamma-butyrolactone) substituted by a 1,3-benzodioxol-5-ylmethylidene group at position 3 and a 1,3-benzodioxol-5-ylmethyl group at position 4 (the 3E,4R-isomer). It exhibits antiviral activity against SARS-CoV-2.

   

(Z)-2,6,10-Bisabolatriene

(1Z)-bisabola-1(10),4,7(11)-triene (4Z)-4-(1,5-dimethylhex-4-en-1-ylidene)-1-methylcyclohexene

C15H24 (204.1878)


   

(+)-beta-Caryophyllene

(+)-beta-Caryophyllene

C15H24 (204.1878)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has R configuration while the remaining stereocentre has S configuration. It is the enantiomer of (-)-beta-caryophyllene, which occurs much more widely than the (+)-form.

   

Cedrol

(3R-(3.ALPHA.,3A.BETA.,6.ALPHA.,7.BETA.,8A.ALPHA.))-OCTAHYDRO-3,6,8,8-TETRAMETHYL-1H-3A,7-METHANOAZULEN-6-OL

C15H26O (222.1984)


Cedrol is a cedrane sesquiterpenoid and a tertiary alcohol. Cedrol is a natural product found in Xylopia aromatica, Widdringtonia whytei, and other organisms with data available. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   

Biorobin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O15 (594.1585)


Isolated from Medicago subspecies, Trigonella subspecies and other plant subspecies Kaempferol 3-robinobioside is found in herbs and spices and pulses. Biorobin is found in herbs and spices. Biorobin is isolated from Medicago species, Trigonella species and other plant species.

   

(E)-Calamene

1,6-dimethyl-4-(propan-2-yl)-1,2,3,4-tetrahydronaphthalene

C15H22 (202.1721)


Calamene is a metabolite of plant Turnera diffusa. Turnera diffusa (Damiana, Mexican holly, Old Womans Broom) is a small shrub of the family Tuneraceae. T. diffusa is native to both Central and South America and now commercially cultivated in Bolivia and Mexico. The leaf includes volatile oils (1,8-cineole, p-cymene, alpha- and beta-pinene, thymol, alpha-copaene, and calamene); luteolin; tannins, flavonoids (arbutin, acacetin, apigenin and pinocembrin), beta-sitosterol, damianin, and the cyanogenic glycoside tetraphyllin B. (www.globinmed.com) (e)-calamene is also known as calamenene or 1,6-dimethyl-4-isopropyltetralin. (e)-calamene can be found in a number of food items such as guava, lovage, summer savory, and rosemary, which makes (e)-calamene a potential biomarker for the consumption of these food products (e)-calamene can be found primarily in urine.

   

delta-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]

   

Prexanthoperol

6-hydroxy-1,1,4a-trimethyl-7-(propan-2-yl)-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-9,10-dione

C20H26O3 (314.1882)


Xanthoperol is found in fruits. Xanthoperol is a constituent of Juniperus communis (juniper) Constituent of Juniperus communis (juniper). Xanthoperol is found in fruits.

   

Sugiol

6-hydroxy-1,1,4a-trimethyl-7-(propan-2-yl)-1,2,3,4,4a,9,10,10a-octahydrophenanthren-9-one

C20H28O2 (300.2089)


Sugiol is found in fruits. Sugiol is a constituent of Juniperus communis (juniper). Constituent of Juniperus communis (juniper). Sugiol is found in fruits.

   

(-)-Deoxypodophyllotoxin

10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

C22H22O7 (398.1365)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D007155 - Immunologic Factors > D018796 - Immunoconjugates D007155 - Immunologic Factors > D007136 - Immunoglobulins D007155 - Immunologic Factors > D000906 - Antibodies D009676 - Noxae > D000922 - Immunotoxins

   

alpha-Caryophyllene

2,6,6,9-tetramethylcycloundeca-1,4,8-triene

C15H24 (204.1878)


α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

Isocupressic acid

5-(5-hydroxy-3-methylpent-3-en-1-yl)-1,4a-dimethyl-6-methylidene-hexahydro-2H-naphthalene-1-carboxylic acid

C20H32O3 (320.2351)


   

Thujopsene

2,4a,8,8-tetramethyl-1H,4H,4aH,5H,6H,7H,8H,8bH-cyclopropa[e]naphthalene

C15H24 (204.1878)


Thujopsene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Thujopsene can be found in lovage, which makes thujopsene a potential biomarker for the consumption of this food product. Thujopsene is found in the essential oil of a variety of conifers, in particular Juniperus cedrus and Thujopsis dolabrata in which it comprises around 2.2\\% of the weight of the heartwood .

   

Cedrol

2,6,6,8-tetramethyltricyclo[5.3.1.0¹,⁵]undecan-8-ol

C15H26O (222.1984)


Cedrol is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Cedrol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cedrol is a sweet, cedarwood, and dry tasting compound found in ginger, pepper (spice), and peppermint, which makes cedrol a potential biomarker for the consumption of these food products. Cedrol is a sesquiterpene alcohol found in the essential oil of conifers (cedar oil), especially in the genera Cupressus (cypress) and Juniperus (juniper). It has also been identified in Origanum onites, a plant related to oregano. Its main uses are in the chemistry of aroma compounds. It makes up about 19\\\\% of cedarwood oil Texas and 15.8\\\\% of cedarwood oil Virginia . Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   

Isocupressic acid

15-Hydroxy-8(17),13E-labdadien-15-oic acid

C20H32O3 (320.2351)


   

sandaracopimaric acid

(-)-Sandaracopimaric acid

C20H30O2 (302.2246)


A pimarane diterpenoid that is (1S,4aS,4bS,7R,10aS)-1,4a,7-trimethyl-1,2,3,4,4a,4b,5,6,7,9,10,10a-dodecahydrophenanthrene carrying a carboxy group at position 1 and a vinyl group at position 7. It is a natural product found in several plant species.

   
   

(+)-Longifolene

(+)-Longifolene

C15H24 (204.1878)


(+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1]. (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1]. (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1].

   

Amentoflavone

4H-1-Benzopyran-4-one, 8-(5-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)-2-hydroxyphenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.09)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 4341; CONFIDENCE confident structure Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].

   

Hinokinin

(3R,4R)-3,4-bis(benzo(d)(1,3)dioxol-5-ylmethyl)dihydrofuran-2(3H)-one

C20H18O6 (354.1103)


Hinokinin is a lignan that is dihydrofuran-2(3H)-one (gamma-butyrolactone) substituted by a 3,4-methylenedioxybenzyl group at positions 3 and 4 (the 3R,4R-diastereoisomer). It has a role as a trypanocidal drug. It is a lignan, a gamma-lactone and a member of benzodioxoles. Hinokinin is a natural product found in Piper nigrum, Chamaecyparis obtusa, and other organisms with data available. A lignan that is dihydrofuran-2(3H)-one (gamma-butyrolactone) substituted by a 3,4-methylenedioxybenzyl group at positions 3 and 4 (the 3R,4R-diastereoisomer). Hinokinin (Compound 1) is a compound isolated from the stems of Hypoestes aristate. Hinokinin exhibits moderate activity of HIV-1 protease enzyme[1]. Hinokinin (Compound 1) is a compound isolated from the stems of Hypoestes aristate. Hinokinin exhibits moderate activity of HIV-1 protease enzyme[1].

   

AS 2-3

FURO(3,4:6,7)NAPHTHO(2,3-D)-1,3-DIOXOL-6(5AH)-ONE, 5,8,8A,9-TETRAHYDRO-5-(3,4,5-TRIMETHOXYPHENYL)-, (5R-(5.ALPHA.,5A.BETA.,8A.ALPHA.))- PODOPHYLLOTOXIN, DEOXY-

C22H22O7 (398.1365)


Deoxypodophyllotoxin is a member of the class of furonaphthodioxoles that is (5R,5aR,8aR)-5,8,8a,9-tetrahydro-2H-furo[3,4:6,7]naphtho[2,3-d][1,3]dioxol-6(5aH)-one substituted at position 5 by a 3,4,5-trimethoxyphenyl group. It has a role as a plant metabolite, an antineoplastic agent and an apoptosis inducer. It is a lignan, a furonaphthodioxole, a gamma-lactone and a member of methoxybenzenes. Deoxypodophyllotoxin is a natural product found in Austrocedrus chilensis, Libocedrus bidwillii, and other organisms with data available. A member of the class of furonaphthodioxoles that is (5R,5aR,8aR)-5,8,8a,9-tetrahydro-2H-furo[3,4:6,7]naphtho[2,3-d][1,3]dioxol-6(5aH)-one substituted at position 5 by a 3,4,5-trimethoxyphenyl group. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D007155 - Immunologic Factors > D018796 - Immunoconjugates D007155 - Immunologic Factors > D007136 - Immunoglobulins D007155 - Immunologic Factors > D000906 - Antibodies D009676 - Noxae > D000922 - Immunotoxins Deoxypodophyllotoxin (DPT), a derivative of podophyllotoxin, is a lignan with potent antimitotic, anti-inflammatory and antiviral properties isolated from Anthriscus sylvestris. Deoxypodophyllotoxin, targets the microtubule, has a major impact in oncology not only as anti-mitotics but also as potent inhibitors of angiogenesis[1]. Deoxypodophyllotoxin induces cell autophagy and apoptosis[2]. Deoxypodophyllotoxin evokes increase of intracellular Ca2+ concentrations in DRG neurons[3]. Deoxypodophyllotoxin (DPT), a derivative of podophyllotoxin, is a lignan with potent antimitotic, anti-inflammatory and antiviral properties isolated from Anthriscus sylvestris. Deoxypodophyllotoxin, targets the microtubule, has a major impact in oncology not only as anti-mitotics but also as potent inhibitors of angiogenesis[1]. Deoxypodophyllotoxin induces cell autophagy and apoptosis[2]. Deoxypodophyllotoxin evokes increase of intracellular Ca2+ concentrations in DRG neurons[3].

   

3-hydroxy-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

NCGC00180383-02!3-hydroxy-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C20H22O7 (374.1365)


   

totarol

4bS-trans-8,8-Trimethyl-4b,5,6,7,8,8a,9,10-octahydro-1-isopropyl-phenanthren-2-ol

C20H30O (286.2297)


A natural product found in Biota orientalis.

   

Arachidic acid

icosanoic acid

C20H40O2 (312.3028)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

Nortrachelogenin

Nortrachelogenin

C20H22O7 (374.1365)


   

Isopimaric acid

(5ξ,9ξ,13α)-Pimara-7,15-dien-18-oic acid

C20H30O2 (302.2246)


Isolated from Pinus palustris (pitch pine) Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.

   

safrole

safrole

C10H10O2 (162.0681)


A member of the class of benzodioxoles that is 1,3-benzodioxole which is substituted by an allyl group at position 5. It is found in several plants, including black pepper, cinnamon and nutmeg, and is present in several essential oils, notably that of sassafras. It has insecticidal properties and has been used as a topical antiseptic. Although not thought to pose a significant carcinogenic risk to humans, findings of weak carcinogenicity in rats have resulted in the banning of its (previously widespread) use in perfumes and soaps, and as a food additive.

   

(-)-longifolene

(1R,3aS,4R,8aR)-4,8,8-trimethyl-9-methylidenedecahydro-1,4-methanoazulene

C15H24 (204.1878)


   

D-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

Hypargenin C

6-hydroxy-1,1,4a-trimethyl-7-(propan-2-yl)-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-9,10-dione

C20H26O3 (314.1882)


   

Beta-Elemene

1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

C20:0

n-Eicosanoic acid

C20H40O2 (312.3028)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

(+)-DELTA-CADINENE

3-amino-2,5-dichlorobenzoic acid

C15H24 (204.1878)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (the 1S,8aR-enantiomer).

   

(-)-thujopsene

(-)-thujopsene

C15H24 (204.1878)


   

WLN: QV19

InChI=1\C20H40O2\c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22\h2-19H2,1H3,(H,21,22

C20H40O2 (312.3028)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

Humulene

trans,trans,trans-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene

C15H24 (204.1878)


α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

Safrol

InChI=1\C10H10O2\c1-2-3-8-4-5-9-10(6-8)12-7-11-9\h2,4-6H,1,3,7H

C10H10O2 (162.0681)


   

Moslene

InChI=1\C10H16\c1-8(2)10-6-4-9(3)5-7-10\h4,7-8H,5-6H2,1-3H

C10H16 (136.1252)


γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].

   

CHEBI:15385

(1S,8AR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

(±)-β-Elemene

(1S,2S,4R)-1-ethenyl-1-methyl-2,4-di(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

I6783_SIGMA

(1R,4aR,4bS,7S,10aR)-7-ethenyl-1,4a,7-trimethyl-3,4,4b,5,6,8,10,10a-octahydro-2H-phenanthrene-1-carboxylic acid

C20H30O2 (302.2246)


D049990 - Membrane Transport Modulators D007476 - Ionophores Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.

   

Continentalic acid

alpha-Pimaric acid

C20H30O2 (302.2246)


Continentalic acid from Aralia continentalis has minimum inhibitory concentrations (MICs) of approximately 8-16 μg/mL against S. aureus, including the Methicillin (HY-121544) susceptible Staphylococcus aureus (MSSA) and Methicillin-resistant Staphylococcus aureus (MRSA) standard strains[1].

   

3-hydroxy-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

(3S,4R)-3-hydroxy-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C20H22O7 (374.1365)


   

Sesquichamene

(-)-thujopsene

C15H24 (204.1878)


   

5,7-Dihydroxy-2-(4-hydroxyphenyl)-3-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxymethyl]oxan-2-yl]oxychromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxymethyl]oxan-2-yl]oxychromen-4-one

C27H30O15 (594.1585)


   

delta-Cadinene

delta-Cadinene

C15H24 (204.1878)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).

   

Icosanoic acid

Icosanoic acid

C20H40O2 (312.3028)


A C20 striaght-chain saturated fatty acid which forms a minor constituent of peanut (L. arachis) and corn oils. Used as an organic thin film in the production of liquid crystals for a wide variety of technical applications.

   

(1s,4ar,5s,8ar)-5-[(3r)-5-hydroxy-3-methylpentyl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid

(1s,4ar,5s,8ar)-5-[(3r)-5-hydroxy-3-methylpentyl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid

C20H34O3 (322.2508)


   

(1s,4ar,5s,8ar)-5-[(3s)-3-hydroxy-3-methylpent-4-en-1-yl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carbaldehyde

(1s,4ar,5s,8ar)-5-[(3s)-3-hydroxy-3-methylpent-4-en-1-yl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carbaldehyde

C20H32O2 (304.2402)


   

(3r,4s)-3,4-dihydroxy-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

(3r,4s)-3,4-dihydroxy-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C20H22O8 (390.1315)


   

(+)-caryophyllene

(+)-caryophyllene

C15H24 (204.1878)


   

5-(5-hydroxy-3-methylpentyl)-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid

5-(5-hydroxy-3-methylpentyl)-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid

C20H34O3 (322.2508)


   

(1s,4ar,5s,8ar)-1,4a-dimethyl-6-methylidene-5-[(2e)-3-methylpenta-2,4-dien-1-yl]-hexahydro-2h-naphthalene-1-carboxylic acid

(1s,4ar,5s,8ar)-1,4a-dimethyl-6-methylidene-5-[(2e)-3-methylpenta-2,4-dien-1-yl]-hexahydro-2h-naphthalene-1-carboxylic acid

C20H30O2 (302.2246)


   

(1s,2s,4ar,4bs,7r,10ar)-7-ethenyl-2-hydroxy-1,4a,7-trimethyl-3,4,4b,5,6,9,10,10a-octahydro-2h-phenanthrene-1-carboxylic acid

(1s,2s,4ar,4bs,7r,10ar)-7-ethenyl-2-hydroxy-1,4a,7-trimethyl-3,4,4b,5,6,9,10,10a-octahydro-2h-phenanthrene-1-carboxylic acid

C20H30O3 (318.2195)


   

2-hydroxy-5-(3-hydroxy-3-methylbutyl)-6-isopropylcyclohepta-2,4,6-trien-1-one

2-hydroxy-5-(3-hydroxy-3-methylbutyl)-6-isopropylcyclohepta-2,4,6-trien-1-one

C15H22O3 (250.1569)


   

(1s,3ar,3br,7r,9as,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1s,3ar,3br,7r,9as,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.3861)


   

(z)-γ-bisabolene

(z)-γ-bisabolene

C15H24 (204.1878)


   

(1s,4ar,5s,8ar)-5-[(3s)-3-hydroxy-3-methylpent-4-en-1-yl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid

(1s,4ar,5s,8ar)-5-[(3s)-3-hydroxy-3-methylpent-4-en-1-yl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid

C20H32O3 (320.2351)


   

(1r,4s)-4-isopropyl-1,6-dimethyl-1,2,3,4-tetrahydronaphthalene

(1r,4s)-4-isopropyl-1,6-dimethyl-1,2,3,4-tetrahydronaphthalene

C15H22 (202.1721)


   

5-(3-hydroxy-3-methylpent-4-en-1-yl)-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carbaldehyde

5-(3-hydroxy-3-methylpent-4-en-1-yl)-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carbaldehyde

C20H32O2 (304.2402)


   

(1s,4as,4bs,6ar,8s,10ar,10br,12ar)-1,4b,6a,8,10a,12a-hexamethyl-8-(4-methylpent-3-en-1-yl)-dodecahydrochrysen-2-one

(1s,4as,4bs,6ar,8s,10ar,10br,12ar)-1,4b,6a,8,10a,12a-hexamethyl-8-(4-methylpent-3-en-1-yl)-dodecahydrochrysen-2-one

C30H50O (426.3861)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

1,4a-dimethyl-6-methylidene-5-(3-methylpenta-2,4-dien-1-yl)-hexahydro-2h-naphthalene-1-carboxylic acid

1,4a-dimethyl-6-methylidene-5-(3-methylpenta-2,4-dien-1-yl)-hexahydro-2h-naphthalene-1-carboxylic acid

C20H30O2 (302.2246)


   

5-(3-hydroxy-3-methylpent-4-en-1-yl)-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid

5-(3-hydroxy-3-methylpent-4-en-1-yl)-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid

C20H32O3 (320.2351)


   

7-ethenyl-2-hydroxy-1,4a,7-trimethyl-3,4,4b,5,6,9,10,10a-octahydro-2h-phenanthrene-1-carboxylic acid

7-ethenyl-2-hydroxy-1,4a,7-trimethyl-3,4,4b,5,6,9,10,10a-octahydro-2h-phenanthrene-1-carboxylic acid

C20H30O3 (318.2195)


   

4-(2h-1,3-benzodioxol-5-ylmethyl)-3-(2h-1,3-benzodioxol-5-ylmethylidene)oxolan-2-one

4-(2h-1,3-benzodioxol-5-ylmethyl)-3-(2h-1,3-benzodioxol-5-ylmethylidene)oxolan-2-one

C20H16O6 (352.0947)


   

1,4b,6a,8,10a,12a-hexamethyl-8-(4-methylpent-3-en-1-yl)-dodecahydrochrysen-2-one

1,4b,6a,8,10a,12a-hexamethyl-8-(4-methylpent-3-en-1-yl)-dodecahydrochrysen-2-one

C30H50O (426.3861)