Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Geraniin

.beta.-D-Glucopyranose, cyclic 2.fwdarw.7:4.fwdarw.5-(3,6-dihydro-2,9,10,11,11-pentahydroxy-3-oxo-2,6-methano-2H-1-benzoxocin-5,7-dicarboxylate)cyclic 3,6-(4,4,5,5,6,6-hexahydroxy[1,1-biphenyl]-2,2-dicarboxylate) 1-(3,4,5-trihydroxybenzoate), stereoisomer

C41H28O27 (952.0817938)


Geraniin is a tannin. Geraniin is a natural product found in Euphorbia makinoi, Macaranga tanarius, and other organisms with data available. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM.

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215226)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.153378)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Kaempferol

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O6 (286.047736)


Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

justicidins

NAPHTHO(2,3-C)FURAN-1(3H)-ONE, 6,7-DIMETHOXY-9-(3,4-(METHYLENEDIOXY)PHENYL)-

C21H16O6 (364.0946836)


Justicidin B is a lignan. Justicidin B is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available.

   

Indole-3-carboxaldehyde

1H-indole-3-carbaldehyde

C9H7NO (145.0527612)


Indole-3-carboxaldehyde (IAld or I3A), also known as 3-formylindole or 3-indolealdehyde, belongs to the class of organic compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. In humans, I3A is a biologically active metabolite which acts as a receptor agonist at the aryl hydrocarbon receptor in intestinal immune cells. It stimulates the production of interleukin-22 which facilitates mucosal reactivity (PMID:27102537). I3A is a microbially derived tryptophan metabolite produced by Clostridium and Lactobacillus (PMID:30120222, 27102537). I3A has also been found in the urine of patients with untreated phenylketonuria (PMID:5073866). I3A has been detected, but not quantified, in several different foods, such as beans, Brussels sprouts, cucumbers, cereals and cereal products, and white cabbages. This could make I3A a potential biomarker for the consumption of these foods. Indole-3-carbaldehyde is a heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. It has a role as a plant metabolite, a human xenobiotic metabolite, a bacterial metabolite and a marine metabolite. It is a heteroarenecarbaldehyde, an indole alkaloid and a member of indoles. Indole-3-carboxaldehyde is a natural product found in Euphorbia hirsuta, Derris ovalifolia, and other organisms with data available. A heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. Found in barley and tomato seedlings and cotton Indole-3-carboxaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-89-8 (retrieved 2024-07-02) (CAS RN: 487-89-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].

   

Indole-3-carboxylic acid

1H-Indole-3-carboxylic acid

C9H7NO2 (161.0476762)


Indole-3-carboxylic acid, also known as 3-carboxyindole or 3-indolecarboxylate, belongs to the class of organic compounds known as indolecarboxylic acids and derivatives. Indolecarboxylic acids and derivatives are compounds containing a carboxylic acid group (or a derivative thereof) linked to an indole. Naphthylmethylindoles: Any compound containing a 1H-indol-3-yl-(1-naphthyl)methane structure with substitution at the nitrogen atom of the indole ring by an alkyl, haloalkyl, alkenyl, cycloalkylmethyl, cycloalkylethyl, 1-(N-methyl-2-piperidinyl)methyl, or 2-(4-morpholinyl)ethyl group whether or not further substituted in the indole ring to any extent and whether or not substituted in the naphthyl ring to any extent. One example given is JWH-250. Outside of the human body, indole-3-carboxylic acid has been detected, but not quantified in several different foods, such as brassicas, broccoli, pulses, common beets, and barley. This could make indole-3-carboxylic acid a potential biomarker for the consumption of these foods. Notice the pentyl group substituted onto the nitrogen atom of the indole ring. Note that this definition encompasses only those compounds that have OH groups attached to both the phenyl and the cyclohexyl rings, and so does not include compounds such as O-1871 which lacks the cyclohexyl OH group, or compounds such as JWH-337 or JWH-344 which lack the phenolic OH group. Present in plants, e.g. apple (Pyrus malus), garden pea (Pisum sativum) and brassicas Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].

   

Corilagin

(1S,19R,21S,22R,23R)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0^{4,9}.0^{10,15}]tricosa-4,6,8,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806112)


Corilagin is a member of the class of compounds known as ellagitannins, a class of hydrolyzable tannins. Hydrolyzable tannins are tannins with a structure characterized by either of the following models: (1) a structure containing galloyl units (in some cases, shikimic acid units) linked to diverse polyol carbohydrate, catechin, or triterpenoid units, or (2) a structure containing at least two galloyl units C-C coupled to each other and not containing a glycosidically linked catechin unit. Corilagin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Corilagin can be found in pomegranate, which makes corilagin a potential biomarker for the consumption of this food product. Corilagin was first isolated in 1951 from Dividivi extract and from Caesalpinia coriaria, hence the name of the molecule. It can also be found in Alchornea glandulosa and in the leaves of Punica granatum (pomegranate) (Wikipedia). Corilagin has been shown to exhibit thrombolytic function (PMID: 14750026). Corilagin is an ellagitannin with a hexahydroxydiphenoyl group bridging over the 3-O and 6-O of the glucose core. It has a role as an antihypertensive agent, an EC 3.4.15.1 (peptidyl-dipeptidase A) inhibitor, a non-steroidal anti-inflammatory drug and an antioxidant. It is an ellagitannin and a gallate ester. Corilagin is a natural product found in Euphorbia fischeriana, Euphorbia hyssopifolia, and other organisms with data available. Corilagin is a gallotannin. It can be found in Alchornea glandulosa. [Wikipedia] Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3]. Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3].

   

1,6-di-O-Galloylglucose

[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6-(3,4,5-trihydroxybenzoyloxy)oxan-2-yl]methyl 3,4,5-trihydroxybenzoate

C20H20O14 (484.085302)


1,6-di-o-galloylglucose, also known as 1-o,6-O-digalloyl-beta-D-glucose or dgg16 cpd, is a member of the class of compounds known as tannins. Tannins are naturally occurring polyphenols which be categorized into four main classes: hydrolyzable tannin (based on ellagic acid or gallic acid), condensed tannins (made of oligomeric or polymeric proanthocyanidins), complex tannins (made of a catechin bound to a gallotannin or elagitannin), and phlorotannins (oligomers of phloroglucinol). 1,6-di-o-galloylglucose is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 1,6-di-o-galloylglucose can be found in garden rhubarb, which makes 1,6-di-o-galloylglucose a potential biomarker for the consumption of this food product.

   

Myricitrin

5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Myricitrin is a chemical compound. It can be isolated from the root bark of Myrica cerifera (Bayberry, a small tree native to North America). Myricetin 3-rhamnoside is found in many foods, some of which are common grape, black walnut, highbush blueberry, and lentils. Myricitrin is found in black walnut. Myricitrin is a chemical compound. It can be isolated from the root bark of Myrica cerifera (Bayberry, a small tree native to North America) Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB067_Myricitrin_pos_30eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_40eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_10eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_50eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_20eV_CB000029.txt [Raw Data] CB067_Myricitrin_neg_40eV_000020.txt [Raw Data] CB067_Myricitrin_neg_30eV_000020.txt [Raw Data] CB067_Myricitrin_neg_50eV_000020.txt [Raw Data] CB067_Myricitrin_neg_10eV_000020.txt [Raw Data] CB067_Myricitrin_neg_20eV_000020.txt Myricitrin is a major antioxidant flavonoid[1]. Myricitrin is a major antioxidant flavonoid[1].

   

Kaempferide

3,5,7-Trihydroxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C16H12O6 (300.0633852)


Kaempferide is a monomethoxyflavone that is the 4-O-methyl derivative of kaempferol. It has a role as an antihypertensive agent and a metabolite. It is a trihydroxyflavone, a monomethoxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. It is a conjugate acid of a kaempferide(1-). Kaempferide is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Isolated from roots of Alpinia officinarum (lesser galangal). Kaempferide is found in many foods, some of which are herbs and spices, cloves, sour cherry, and european plum. Kaempferide is found in cloves. Kaempferide is isolated from roots of Alpinia officinarum (lesser galangal). A monomethoxyflavone that is the 4-O-methyl derivative of kaempferol. Acquisition and generation of the data is financially supported in part by CREST/JST. Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity. Kaempferide is an orally active flavonol isolated from Hippophae rhamnoides L. Kaempferide has anticancer, anti-inflammatory, antioxidant, antidiabetic, antiobesity, antihypertensive, and neuroprotective activities. Kaempferide induces apoptosis. Kaempferide promotes osteogenesis through antioxidants and can be used in osteoporosis research[1][2][3][4][5][6]. Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Galloyl glucose

(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 3,4,5-trihydroxybenzoate

C13H16O10 (332.0743436)


Galloyl glucose, also known as 1-galloyl-beta-D-glucose or beta-glucogallin, is a member of the class of compounds known as tannins. Tannins are naturally occurring polyphenols which be categorized into four main classes: hydrolyzable tannin (based on ellagic acid or gallic acid), condensed tannins (made of oligomeric or polymeric proanthocyanidins), complex tannins (made of a catechin bound to a gallotannin or elagitannin), and phlorotannins (oligomers of phloroglucinol). Galloyl glucose is soluble (in water) and a very weakly acidic compound (based on its pKa). Galloyl glucose can be found in a number of food items such as pomegranate, strawberry, redcurrant, and rubus (blackberry, raspberry), which makes galloyl glucose a potential biomarker for the consumption of these food products. Galloyl glucose is formed by a gallate 1-beta-glucosyltransferase (UDP-glucose: gallate glucosyltransferase), an enzyme performing the esterification of two substrates, UDP-glucose and gallate to yield two products, UDP and glucogallin. This enzyme can be found in oak leaf preparations .

   

Chebulagic acid

chebulagic acid

C41H30O27 (954.097443)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23094-71-5 (retrieved 2024-09-27) (CAS RN: 23094-71-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Xanthoxylin

Acetophenone, 2-hydroxy-4,6-dimethoxy- (8CI)

C10H12O4 (196.0735552)


obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree). Xanthoxylin is found in many foods, some of which are herbs and spices, german camomile, fats and oils, and pomegranate. Xanthoxylin is found in fats and oils. Xanthoxylin is obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2]. Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2].

   

kaempferol 3-rhamnoside-7-glucoside

(3R-trans)-3,4-bis(1,3-benzodioxol-5-ylmethyl)dihydrofuran-2(3H)-one

C20H18O6 (354.1103328)


Hinokinin (Compound 1) is a compound isolated from the stems of Hypoestes aristate. Hinokinin exhibits moderate activity of HIV-1 protease enzyme[1]. Hinokinin (Compound 1) is a compound isolated from the stems of Hypoestes aristate. Hinokinin exhibits moderate activity of HIV-1 protease enzyme[1].

   
   

Methyl_gallate

InChI=1/C8H8O5/c1-13-8(12)4-2-5(9)7(11)6(10)3-4/h2-3,9-11H,1H

C8H8O5 (184.0371718)


Methyl 3,4,5-trihydroxybenzoate is a gallate ester obtained by the formal condensation of gallic acid with methanol. It exhibits anti-oxidant, anti-tumor, anti-microbial and anti-inflammatory properties. It has a role as a plant metabolite, an anti-inflammatory agent and an antioxidant. Methyl gallate is a natural product found in Euphorbia teheranica, Euphorbia hyssopifolia, and other organisms with data available. See also: Paeonia lactiflora root (part of). A gallate ester obtained by the formal condensation of gallic acid with methanol. It exhibits anti-oxidant, anti-tumor, anti-microbial and anti-inflammatory properties. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.

   

Quercetin 3-O-diglucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C27H30O17 (626.148293)


Quercetin 3-gentiobioside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Quercetin 3-gentiobioside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Quercetin 3-gentiobioside can be found in guava, opium poppy, and soy bean, which makes quercetin 3-gentiobioside a potential biomarker for the consumption of these food products. Quercetin 3-beta-gentiobioside is a quercetin O-glycoside in which the hydroxy hydrogen at position 3 of quercetin has been replaced by a gentiobiosyl group. It has a role as a Brassica napus metabolite. It is a quercetin O-glycoside, a disaccharide derivative and a tetrahydroxyflavone. It is functionally related to a gentiobiose. Quercetin 3-gentiobioside is a natural product found in Senegalia pennata, Vachellia tortilis, and other organisms with data available. A quercetin O-glycoside in which the hydroxy hydrogen at position 3 of quercetin has been replaced by a gentiobiosyl group. Quercetin 3-gentiobioside is isolated from A. iwayomogi, AR and AGE formation inhibitor, demonstrates biological activities against Aldose reductase (AR) and the formation of advanced glycation endproducts (AGEs)[1]. Quercetin 3-gentiobioside is isolated from A. iwayomogi, AR and AGE formation inhibitor, demonstrates biological activities against Aldose reductase (AR) and the formation of advanced glycation endproducts (AGEs)[1].

   

Lirioresinol A

4-[6-(4-hydroxy-3,5-dimethoxy-phenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2,6-dimethoxy-phenol

C22H26O8 (418.1627596)


Syringaresinol is a lignan that is 7,9:7,9-diepoxylignane substituted by hydroxy groups at positions 4 and 4 and methoxy groups at positions 3, 3, 5 and 5 respectively. It has a role as a plant metabolite. It is a lignan, a polyphenol, an aromatic ether, a furofuran and a polyether. Syringaresinol is a natural product found in Dracaena draco, Ficus septica, and other organisms with data available. A lignan that is 7,9:7,9-diepoxylignane substituted by hydroxy groups at positions 4 and 4 and methoxy groups at positions 3, 3, 5 and 5 respectively. Isolated from Artemisia absinthium (wormwood). Lirioresinol A is found in alcoholic beverages and herbs and spices. Lirioresinol A is found in alcoholic beverages. Lirioresinol A is isolated from Artemisia absinthium (wormwood).

   

1,6-Digalloyl-beta-D-glucopyranose

[3,4,5-Trihydroxy-6-(3,4,5-trihydroxybenzoyloxy)oxan-2-yl]methyl 3,4,5-trihydroxybenzoic acid

C20H20O14 (484.085302)


1,6-Digalloyl-beta-D-glucopyranose is found in green vegetables. 1,6-Digalloyl-beta-D-glucopyranose is present in commercial rhubarb. Present in commercial rhubarb. 1,6-Digalloyl-beta-D-glucopyranose is found in green vegetables.

   

beta-Glucogallin

3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl 3,4,5-trihydroxybenzoic acid

C13H16O10 (332.0743436)


beta-Glucogallin is found in green vegetables. beta-Glucogallin is isolated from various plants, e.g. Rheum officinale (Chinese rhubarb), Eucalyptus species. Isolated from various plants, e.g. Rheum officinale (Chinese rhubarb), Eucalyptus subspecies 1-Glucosyl gallate is found in tea and green vegetables.

   

Isoquercitroside

3-{[5-(1,2-dihydroxyethyl)-3,4-dihydroxyoxolan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C21H20O12 (464.09547200000003)


   

Methyl gallate

345-Trihydroxy-benzoic acid methyl ester

C8H8O5 (184.0371718)


Methyl gallate, also known as methyl 3 or methyl galloic acid, is a member of the class of compounds known as galloyl esters. Galloyl esters are organic compounds that contain an ester derivative of 3,4,5-trihydroxybenzoic acid. Methyl gallate is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Methyl gallate can be found in peach and pomegranate, which makes methyl gallate a potential biomarker for the consumption of these food products. Methyl gallate is a phenolic compound. It is the methyl ester of gallic acid . Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.

   

Quercetin 3-O-rhamnoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C21H20O11 (448.100557)


   

Quercetin-3-o-rutinose

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O16 (610.153378)


   

Quercetin 3-galactosyl-(1->6)-glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O17 (626.148293)


Quercetin 3-galactosyl-(1->6)-glucoside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Quercetin 3-galactosyl-(1->6)-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Quercetin 3-galactosyl-(1->6)-glucoside can be found in broad bean, which makes quercetin 3-galactosyl-(1->6)-glucoside a potential biomarker for the consumption of this food product.

   

Brevifolincarboxylic acid

7,8,9-trihydroxy-3,5-dioxo-1H,2H,3H,5H-cyclopenta[c]isochromene-1-carboxylic acid

C13H8O8 (292.0219168)


Brevifolincarboxylic acid belongs to isocoumarins and derivatives class of compounds. Those are polycyclic compounds containing an isochromane which bears a ketone at the carbon C1. Brevifolincarboxylic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Brevifolincarboxylic acid can be found in pomegranate, which makes brevifolincarboxylic acid a potential biomarker for the consumption of this food product. Brevifolincarboxylic acid is extracted from Polygonum capitatum[1], has inhibitory effect on the aryl hydrocarbon receptor (AhR)[2]. Brevifolincarboxylic acid is an α-glucosidase inhibitor with an IC50 of 323.46 μM[3]. Brevifolincarboxylic acid is extracted from Polygonum capitatum[1], has inhibitory effect on the aryl hydrocarbon receptor (AhR)[2]. Brevifolincarboxylic acid is an α-glucosidase inhibitor with an IC50 of 323.46 μM[3].

   

Myricitrin

5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Myricitrin is a glycosyloxyflavone that consists of myricetin attached to a alpha-L-rhamnopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Myrica cerifera, it exhibits anti-allergic activity. It has a role as an anti-allergic agent, an EC 1.14.13.39 (nitric oxide synthase) inhibitor, an EC 2.7.11.13 (protein kinase C) inhibitor and a plant metabolite. It is a pentahydroxyflavone, a glycosyloxyflavone, an alpha-L-rhamnoside and a monosaccharide derivative. It is functionally related to a myricetin. It is a conjugate acid of a myricitrin(1-). Myricitrin is a natural product found in Syzygium levinei, Limonium aureum, and other organisms with data available. A glycosyloxyflavone that consists of myricetin attached to a alpha-L-rhamnopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Myrica cerifera, it exhibits anti-allergic activity. Myricitrin is a major antioxidant flavonoid[1]. Myricitrin is a major antioxidant flavonoid[1].

   

Xanthoxylin

2 inverted exclamation mark -Hydroxy-4 inverted exclamation mark ,6 inverted exclamation mark -dimethoxyacetophenone

C10H12O4 (196.0735552)


obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree). Xanthoxylin is found in many foods, some of which are herbs and spices, german camomile, fats and oils, and pomegranate. Xanthoxylin is a carboxylic ester. It is functionally related to a phloroglucinol. Xanthoxylin is a natural product found in Euphorbia portulacoides, Pulicaria incisa, and other organisms with data available. Xanthoxylin is found in fats and oils. Xanthoxylin is obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2]. Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2].

   

Methyl gallate

methyl 3,4,5-trihydroxybenzoate

C8H8O5 (184.0371718)


Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Retrojusticidin B

Retrojusticidin B

C21H16O6 (364.0946836)


   

3,5,7-Trihydroxyflavone 3-glucoside-8-sulfate

3- (beta-D-Glucopyranosyloxy) -5,7-dihydroxy-4-oxo-2-phenyl-4H-1-benzopyran-8-sulfonic acid

C21H20O13S (512.062459)


   
   

Kaempferol 8-C-sulfate

3,5,7-Trihydroxy-2- (4-hydroxyphenyl) -4-oxo-4H-1-benzopyran-8-sulfonic acid

C15H10O9S (366.00455300000004)


   

Swartziol

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-5,7,4-Trihydroxyflavonol

C15H10O6 (286.047736)


Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Kaempferol

Kaempferol

C15H10O6 (286.047736)


Annotation level-3 Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.010 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.011 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2141; CONFIDENCE confident structure IPB_RECORD: 3341; CONFIDENCE confident structure IPB_RECORD: 3321; CONFIDENCE confident structure CONFIDENCE confident structure; IPB_RECORD: 3321 IPB_RECORD: 141; CONFIDENCE confident structure Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   
   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromenone

C27H30O16 (610.153378)


C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2352 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.724 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1921; CONFIDENCE confident structure Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Lirioresinol b

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2,6-DIMETHOXY-, (1R-(1.ALPHA.,3A.ALPHA.,4.ALPHA.,6A.ALPHA.))-

C22H26O8 (418.1627596)


(-)-syringaresinol is the (7beta,7beta,8beta,8beta)-stereoisomer of syringaresinol. It is an enantiomer of a (+)-syringaresinol. (-)-Syringaresinol is a natural product found in Pittosporum illicioides, Cinnamomum kotoense, and other organisms with data available. The (7beta,7beta,8beta,8beta)-stereoisomer of syringaresinol. (-)-Syringaresinol, found in stems of Annona Montana, possesses anti-cancer activity[1]. (-)-Syringaresinol, found in stems of Annona Montana, possesses anti-cancer activity[1].

   

Hinokinin

(3R,4R)-3,4-bis(benzo(d)(1,3)dioxol-5-ylmethyl)dihydrofuran-2(3H)-one

C20H18O6 (354.1103328)


Hinokinin is a lignan that is dihydrofuran-2(3H)-one (gamma-butyrolactone) substituted by a 3,4-methylenedioxybenzyl group at positions 3 and 4 (the 3R,4R-diastereoisomer). It has a role as a trypanocidal drug. It is a lignan, a gamma-lactone and a member of benzodioxoles. Hinokinin is a natural product found in Piper nigrum, Chamaecyparis obtusa, and other organisms with data available. A lignan that is dihydrofuran-2(3H)-one (gamma-butyrolactone) substituted by a 3,4-methylenedioxybenzyl group at positions 3 and 4 (the 3R,4R-diastereoisomer). Hinokinin (Compound 1) is a compound isolated from the stems of Hypoestes aristate. Hinokinin exhibits moderate activity of HIV-1 protease enzyme[1]. Hinokinin (Compound 1) is a compound isolated from the stems of Hypoestes aristate. Hinokinin exhibits moderate activity of HIV-1 protease enzyme[1].

   

1H-Indole-3-carboxylic acid

1H-Indole-3-carboxylic acid

C9H7NO2 (161.0476762)


IPB_RECORD: 302; CONFIDENCE confident structure CONFIDENCE confident structure; IPB_RECORD: 302

   

3-Indolecarboxylic acid

Indole-3-carboxylic acid_120169

C9H7NO2 (161.0476762)


An indole-3-carboxylic acid carrying a carboxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 2301; CONFIDENCE confident structure Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].

   

Justicidin B

Justicidin B

C21H16O6 (364.0946836)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.212 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.209

   

Kaempferide

Kaempferide

C16H12O6 (300.06338519999997)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.191 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.194 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.190 Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity. Kaempferide is an orally active flavonol isolated from Hippophae rhamnoides L. Kaempferide has anticancer, anti-inflammatory, antioxidant, antidiabetic, antiobesity, antihypertensive, and neuroprotective activities. Kaempferide induces apoptosis. Kaempferide promotes osteogenesis through antioxidants and can be used in osteoporosis research[1][2][3][4][5][6]. Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity.

   

Indole-3-carboxaldehyde

INDOLE-3-CARBOXYALDEHYDE

C9H7NO (145.0527612)


Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].

   

Kaempferid

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-methoxyphenyl)- (9CI)

C16H12O6 (300.06338519999997)


Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity. Kaempferide is an orally active flavonol isolated from Hippophae rhamnoides L. Kaempferide has anticancer, anti-inflammatory, antioxidant, antidiabetic, antiobesity, antihypertensive, and neuroprotective activities. Kaempferide induces apoptosis. Kaempferide promotes osteogenesis through antioxidants and can be used in osteoporosis research[1][2][3][4][5][6]. Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity.

   

syringaresinol

4-[4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1627596)


   
   

b-Glucogallin

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 3,4,5-trihydroxybenzoate

C13H16O10 (332.0743436)


   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.042651)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215226)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

771-50-6

InChI=1\C9H7NO2\c11-9(12)7-5-10-8-4-2-1-3-6(7)8\h1-5,10H,(H,11,12

C9H7NO2 (161.0476762)


Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].

   

AI3-52407

5-21-08-00246 (Beilstein Handbook Reference)

C9H7NO (145.0527612)


Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].

   

99-24-1

InChI=1\C8H8O5\c1-13-8(12)4-2-5(9)7(11)6(10)3-4\h2-3,9-11H,1H

C8H8O5 (184.0371718)


Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.

   

brevifolin

Ethanone, 1-(2-hydroxy-4,6-dimethoxyphenyl)-

C10H12O4 (196.0735552)


Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2]. Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2].

   

AIDS-085621

3,4,5-trihydroxybenzoic acid [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[oxo-(3,4,5-trihydroxyphenyl)methoxy]methyl]-2-tetrahydropyranyl] ester

C20H20O14 (484.085302)


   

554-37-0

3,4,5-trihydroxybenzoic acid [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl] ester

C13H16O10 (332.0743436)


   

Isoquercitroside

3-{[5-(1,2-dihydroxyethyl)-3,4-dihydroxyoxolan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   
   
   

beta-Glucogallin

1-Galloyl-beta-glucose

C13H16O10 (332.0743436)


   

1,6-bis-O-galloyl-beta-D-glucose

1,6-bis-O-galloyl-beta-D-glucose

C20H20O14 (484.085302)


A galloyl-beta-D-glucose compound having two galloyl groups in the 1- and 6-positions.

   

(2s,3r,4s,5s,6r)-2-{[4-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-6,7-dimethoxy-3-methylnaphthalen-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[4-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-6,7-dimethoxy-3-methylnaphthalen-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C27H32O11 (532.1944522)


   

(2s,3r,4s,5s,6r)-2-{[4-(2h-1,3-benzodioxol-5-yl)-2-(hydroxymethyl)-6,7-dimethoxy-3-methylnaphthalen-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[4-(2h-1,3-benzodioxol-5-yl)-2-(hydroxymethyl)-6,7-dimethoxy-3-methylnaphthalen-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C27H30O11 (530.178803)


   

(2r)-4-(2h-1,3-benzodioxol-5-yl)-2-(2h-1,3-benzodioxol-5-ylmethyl)but-3-yne-1,2-diol

(2r)-4-(2h-1,3-benzodioxol-5-yl)-2-(2h-1,3-benzodioxol-5-ylmethyl)but-3-yne-1,2-diol

C19H16O6 (340.0946836)


   

(7r,8s,26r,28s,29s)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11,13,15,17(22),18,20,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

(7r,8s,26r,28s,29s)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11,13,15,17(22),18,20,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

C41H28O27 (952.0817938)


   

(2s,3r,4r,5r,6r)-3-hydroxy-4,5-bis(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

(2s,3r,4r,5r,6r)-3-hydroxy-4,5-bis(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C34H28O22 (788.1072188)


   

4,9,9,14,17,20,20-heptamethyl-23-oxo-24-oxahexacyclo[11.9.2.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0¹⁷,²²]tetracosa-5(10),11-dien-8-yl benzoate

4,9,9,14,17,20,20-heptamethyl-23-oxo-24-oxahexacyclo[11.9.2.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0¹⁷,²²]tetracosa-5(10),11-dien-8-yl benzoate

C37H48O4 (556.3552407999999)


   

(1s,8r,9r,18r,19s,21r,22s)-7,7,8,12,13,22-hexahydroxy-21-(hydroxymethyl)-3,6,16-trioxo-2,17,20,23-tetraoxapentacyclo[16.3.1.1⁸,¹¹.0⁴,⁹.0¹⁰,¹⁵]tricosa-4,10,12,14-tetraen-19-yl 3,4,5-trihydroxybenzoate

(1s,8r,9r,18r,19s,21r,22s)-7,7,8,12,13,22-hexahydroxy-21-(hydroxymethyl)-3,6,16-trioxo-2,17,20,23-tetraoxapentacyclo[16.3.1.1⁸,¹¹.0⁴,⁹.0¹⁰,¹⁵]tricosa-4,10,12,14-tetraen-19-yl 3,4,5-trihydroxybenzoate

C27H22O19 (650.0755262)


   

(2s)-4-(2h-1,3-benzodioxol-5-yl)-2-(2h-1,3-benzodioxol-5-ylmethyl)but-3-yne-1,2-diol

(2s)-4-(2h-1,3-benzodioxol-5-yl)-2-(2h-1,3-benzodioxol-5-ylmethyl)but-3-yne-1,2-diol

C19H16O6 (340.0946836)


   

(1r,4s,8s,13r,14s,17r,22r)-4,9,9,14,17,20,20-heptamethyl-23-oxo-24-oxahexacyclo[11.9.2.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0¹⁷,²²]tetracosa-5(10),11-dien-8-yl benzoate

(1r,4s,8s,13r,14s,17r,22r)-4,9,9,14,17,20,20-heptamethyl-23-oxo-24-oxahexacyclo[11.9.2.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0¹⁷,²²]tetracosa-5(10),11-dien-8-yl benzoate

C37H48O4 (556.3552407999999)


   

(1r,4s,8s,13r,14s,17r,22r)-4,9,9,14,17,20,20-heptamethyl-23-oxo-24-oxahexacyclo[11.9.2.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0¹⁷,²²]tetracosa-5(10),11-dien-8-yl 2-hydroxybenzoate

(1r,4s,8s,13r,14s,17r,22r)-4,9,9,14,17,20,20-heptamethyl-23-oxo-24-oxahexacyclo[11.9.2.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0¹⁷,²²]tetracosa-5(10),11-dien-8-yl 2-hydroxybenzoate

C37H48O5 (572.3501557999999)


   

9-(2h-1,3-benzodioxol-5-yl)-3,5,6,7-tetramethoxy-3h-naphtho[2,3-c]furan-1-one

9-(2h-1,3-benzodioxol-5-yl)-3,5,6,7-tetramethoxy-3h-naphtho[2,3-c]furan-1-one

C23H20O8 (424.115812)


   

(1r,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

(1r,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

C41H28O27 (952.0817938)


   

1,2,4,13,14,15,18,19,20,34,35-undecahydroxy-5,10,23,31-tetraoxo-6,9,24,27,30,39-hexaoxaoctacyclo[34.2.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]nonatriaconta-11(16),12,14,17,19,21,32(37),33,35-nonaen-28-yl 3,4,5-trihydroxybenzoate

1,2,4,13,14,15,18,19,20,34,35-undecahydroxy-5,10,23,31-tetraoxo-6,9,24,27,30,39-hexaoxaoctacyclo[34.2.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]nonatriaconta-11(16),12,14,17,19,21,32(37),33,35-nonaen-28-yl 3,4,5-trihydroxybenzoate

C40H30O26 (926.102528)


   

3,4-dihydroxy-5-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

3,4-dihydroxy-5-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C27H24O18 (636.0962604)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C20H20O14 (484.085302)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.09547200000003)


   

3,5,7-trihydroxy-4-oxo-2-phenylchromene-8-sulfonic acid

3,5,7-trihydroxy-4-oxo-2-phenylchromene-8-sulfonic acid

C15H10O8S (350.00963800000005)


   

[16,17,20-trihydroxy-7-(hydroxymethyl)-2,10,13-trioxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,14-tetraoxatetracyclo[10.6.1.1⁴,⁸.0¹⁵,¹⁹]icosa-1(18),15(19),16-trien-11-yl]acetic acid

[16,17,20-trihydroxy-7-(hydroxymethyl)-2,10,13-trioxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,14-tetraoxatetracyclo[10.6.1.1⁴,⁸.0¹⁵,¹⁹]icosa-1(18),15(19),16-trien-11-yl]acetic acid

C26H22O18 (622.0806112)


   

9-(2h-1,3-benzodioxol-5-yl)-3,6,7-trimethoxy-3h-naphtho[2,3-c]furan-1-one

9-(2h-1,3-benzodioxol-5-yl)-3,6,7-trimethoxy-3h-naphtho[2,3-c]furan-1-one

C22H18O7 (394.1052478)


   

3,4-bis(2h-1,3-benzodioxol-5-ylmethyl)oxolan-2-one

3,4-bis(2h-1,3-benzodioxol-5-ylmethyl)oxolan-2-one

C20H18O6 (354.1103328)


   

(8r,9s,27r,29s,30r)-2,3,14,15,16,19,20,21,35,36-decahydroxy-6,11,24,32-tetraoxo-7,10,25,28,31,40-hexaoxaoctacyclo[35.2.1.0⁵,³⁹.0⁸,²⁷.0⁹,³⁰.0¹²,¹⁷.0¹⁸,²³.0³³,³⁸]tetraconta-1(39),2,4,12(17),13,15,18,20,22,33,35,37-dodecaen-29-yl 3,4,5-trihydroxybenzoate

(8r,9s,27r,29s,30r)-2,3,14,15,16,19,20,21,35,36-decahydroxy-6,11,24,32-tetraoxo-7,10,25,28,31,40-hexaoxaoctacyclo[35.2.1.0⁵,³⁹.0⁸,²⁷.0⁹,³⁰.0¹²,¹⁷.0¹⁸,²³.0³³,³⁸]tetraconta-1(39),2,4,12(17),13,15,18,20,22,33,35,37-dodecaen-29-yl 3,4,5-trihydroxybenzoate

C41H26O25 (918.0763146)


   

(1r,2s,3s)-1-(3,4-dimethoxyphenyl)-6,7-dimethoxy-2,3-bis(methoxymethyl)-1,2,3,4-tetrahydronaphthalene

(1r,2s,3s)-1-(3,4-dimethoxyphenyl)-6,7-dimethoxy-2,3-bis(methoxymethyl)-1,2,3,4-tetrahydronaphthalene

C24H32O6 (416.2198772)


   

[13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11,13,15,17(22),18,20,34(38),35-nonaen-29-yl]acetic acid

[13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11,13,15,17(22),18,20,34(38),35-nonaen-29-yl]acetic acid

C41H30O27 (954.097443)


   

5-(3,4-dimethoxyphenyl)-6,7-bis(methoxymethyl)-2h,5h,6h,7h,8h-naphtho[2,3-d][1,3]dioxole

5-(3,4-dimethoxyphenyl)-6,7-bis(methoxymethyl)-2h,5h,6h,7h,8h-naphtho[2,3-d][1,3]dioxole

C23H28O6 (400.1885788)


   

1-(2h-1,3-benzodioxol-5-yl)-6,7-dimethoxy-3-(methoxymethyl)naphthalene-2-carbaldehyde

1-(2h-1,3-benzodioxol-5-yl)-6,7-dimethoxy-3-(methoxymethyl)naphthalene-2-carbaldehyde

C22H20O6 (380.125982)


   

6-[(2r,3r)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-4-methoxy-2h-1,3-benzodioxole

6-[(2r,3r)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-4-methoxy-2h-1,3-benzodioxole

C24H32O7 (432.2147922)


   

(1s,19r,21s,22r,23r)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate

(1s,19r,21s,22r,23r)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806112)


   

(1r,4s,8s,13r,14s,17r,22r)-4,9,9,14,17,20,20-heptamethyl-23-oxo-24-oxahexacyclo[11.9.2.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0¹⁷,²²]tetracosa-5(10),11-dien-8-yl acetate

(1r,4s,8s,13r,14s,17r,22r)-4,9,9,14,17,20,20-heptamethyl-23-oxo-24-oxahexacyclo[11.9.2.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0¹⁷,²²]tetracosa-5(10),11-dien-8-yl acetate

C32H46O4 (494.3395916)


   

(3r,4'r,5's,6s,6ar,23'r,25's,26'r,35'r,36'r)-3a,6,10',11',12',15',16',17',31',32',36',37'-dodecahydroxy-2,2',7',20',28',41'-hexaoxo-6,6a-dihydro-5h-3',6',21',24',27',38',42'-heptaoxaspiro[furo[3,2-b]furan-3,39'-nonacyclo[35.2.2.1³³,³⁶.0¹,³⁵.0⁴,²³.0⁵,²⁶.0⁸,¹³.0¹⁴,¹⁹.0²⁹,³⁴]dotetracontane]-8'(13'),9',11',14',16',18',29',31',33'-nonaen-25'-yl 3,4,5-trihydroxybenzoate

(3r,4'r,5's,6s,6ar,23'r,25's,26'r,35'r,36'r)-3a,6,10',11',12',15',16',17',31',32',36',37'-dodecahydroxy-2,2',7',20',28',41'-hexaoxo-6,6a-dihydro-5h-3',6',21',24',27',38',42'-heptaoxaspiro[furo[3,2-b]furan-3,39'-nonacyclo[35.2.2.1³³,³⁶.0¹,³⁵.0⁴,²³.0⁵,²⁶.0⁸,¹³.0¹⁴,¹⁹.0²⁹,³⁴]dotetracontane]-8'(13'),9',11',14',16',18',29',31',33'-nonaen-25'-yl 3,4,5-trihydroxybenzoate

C47H34O32 (1110.1033164)


   

(2s,3r,4r,5s,6r)-3,4-dihydroxy-5-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

(2s,3r,4r,5s,6r)-3,4-dihydroxy-5-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C27H24O18 (636.0962604)


   

4,9,9,14,17,20,20-heptamethyl-23-oxo-24-oxahexacyclo[11.9.2.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0¹⁷,²²]tetracosa-5(10),11-dien-8-yl 2-hydroxybenzoate

4,9,9,14,17,20,20-heptamethyl-23-oxo-24-oxahexacyclo[11.9.2.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0¹⁷,²²]tetracosa-5(10),11-dien-8-yl 2-hydroxybenzoate

C37H48O5 (572.3501557999999)


   

[(5r,7r)-13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11(16),12,14,17,19,21,34(38),35-nonaen-29-yl]acetic acid

[(5r,7r)-13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11(16),12,14,17,19,21,34(38),35-nonaen-29-yl]acetic acid

C41H30O27 (954.097443)


   

3,4,5-trihydroxy-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

3,4,5-trihydroxy-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C20H20O14 (484.085302)


   

(1s,7s,9r,18r,19s,21r,22s)-7,8,8,12,13,22-hexahydroxy-21-(hydroxymethyl)-3,6,16-trioxo-2,17,20,23-tetraoxapentacyclo[16.3.1.1⁷,¹¹.0⁴,⁹.0¹⁰,¹⁵]tricosa-4,10,12,14-tetraen-19-yl 3,4,5-trihydroxybenzoate

(1s,7s,9r,18r,19s,21r,22s)-7,8,8,12,13,22-hexahydroxy-21-(hydroxymethyl)-3,6,16-trioxo-2,17,20,23-tetraoxapentacyclo[16.3.1.1⁷,¹¹.0⁴,⁹.0¹⁰,¹⁵]tricosa-4,10,12,14-tetraen-19-yl 3,4,5-trihydroxybenzoate

C27H22O19 (650.0755262)


   

4-(2h-1,3-benzodioxol-5-yl)-2-(2h-1,3-benzodioxol-5-ylmethyl)but-3-yne-1,2-diol

4-(2h-1,3-benzodioxol-5-yl)-2-(2h-1,3-benzodioxol-5-ylmethyl)but-3-yne-1,2-diol

C19H16O6 (340.0946836)


   

[4-(2h-1,3-benzodioxol-5-yl)-6,7-dimethoxy-3-methylnaphthalen-2-yl]methanol

[4-(2h-1,3-benzodioxol-5-yl)-6,7-dimethoxy-3-methylnaphthalen-2-yl]methanol

C21H20O5 (352.13106700000003)


   

(7s,8s,9r)-9-(3,4-dimethoxyphenyl)-4-methoxy-7,8-bis(methoxymethyl)-2h,6h,7h,8h,9h-naphtho[1,2-d][1,3]dioxole

(7s,8s,9r)-9-(3,4-dimethoxyphenyl)-4-methoxy-7,8-bis(methoxymethyl)-2h,6h,7h,8h,9h-naphtho[1,2-d][1,3]dioxole

C24H30O7 (430.199143)


   

(7r,8s,26r,28s,29r)-1,2,4,13,14,15,18,19,20,34,35-undecahydroxy-5,10,23,31-tetraoxo-6,9,24,27,30,39-hexaoxaoctacyclo[34.2.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]nonatriaconta-11(16),12,14,17,19,21,32,34,36-nonaen-28-yl 3,4,5-trihydroxybenzoate

(7r,8s,26r,28s,29r)-1,2,4,13,14,15,18,19,20,34,35-undecahydroxy-5,10,23,31-tetraoxo-6,9,24,27,30,39-hexaoxaoctacyclo[34.2.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]nonatriaconta-11(16),12,14,17,19,21,32,34,36-nonaen-28-yl 3,4,5-trihydroxybenzoate

C40H30O26 (926.102528)


   

(2s,3r,4s,5s,6r)-2-{[4-(2h-1,3-benzodioxol-5-yl)-2,3-bis(hydroxymethyl)-6,7-dimethoxynaphthalen-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[4-(2h-1,3-benzodioxol-5-yl)-2,3-bis(hydroxymethyl)-6,7-dimethoxynaphthalen-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C27H30O12 (546.173718)


   

[(4r,5s,7r,8s,11s,12s,20s)-16,17,20-trihydroxy-7-(hydroxymethyl)-2,10,13-trioxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,14-tetraoxatetracyclo[10.6.1.1⁴,⁸.0¹⁵,¹⁹]icosa-1(18),15(19),16-trien-11-yl]acetic acid

[(4r,5s,7r,8s,11s,12s,20s)-16,17,20-trihydroxy-7-(hydroxymethyl)-2,10,13-trioxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,14-tetraoxatetracyclo[10.6.1.1⁴,⁸.0¹⁵,¹⁹]icosa-1(18),15(19),16-trien-11-yl]acetic acid

C26H22O18 (622.0806112)


   

5,7-dihydroxy-4-oxo-2-phenyl-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromene-8-sulfonic acid

5,7-dihydroxy-4-oxo-2-phenyl-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromene-8-sulfonic acid

C21H20O13S (512.062459)


   

4,9,9,14,17,20,20-heptamethyl-23-oxo-24-oxahexacyclo[11.9.2.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0¹⁷,²²]tetracosa-5(10),11-dien-8-yl acetate

4,9,9,14,17,20,20-heptamethyl-23-oxo-24-oxahexacyclo[11.9.2.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0¹⁷,²²]tetracosa-5(10),11-dien-8-yl acetate

C32H46O4 (494.3395916)


   

3-hydroxy-4,5-bis(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

3-hydroxy-4,5-bis(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C34H28O22 (788.1072188)


   

5-[5-(3,4-dimethoxyphenyl)-3,4-bis(methoxymethyl)oxolan-2-yl]-2h-1,3-benzodioxole

5-[5-(3,4-dimethoxyphenyl)-3,4-bis(methoxymethyl)oxolan-2-yl]-2h-1,3-benzodioxole

C23H28O7 (416.1834938)


   

3a,6,10',11',12',15',16',17',31',32',36',37'-dodecahydroxy-2,2',7',20',28',41'-hexaoxo-6,6a-dihydro-5h-3',6',21',24',27',38',42'-heptaoxaspiro[furo[3,2-b]furan-3,39'-nonacyclo[35.2.2.1³³,³⁶.0¹,³⁵.0⁴,²³.0⁵,²⁶.0⁸,¹³.0¹⁴,¹⁹.0²⁹,³⁴]dotetracontane]-8'(13'),9',11',14',16',18',29'(34'),30',32'-nonaen-25'-yl 3,4,5-trihydroxybenzoate

3a,6,10',11',12',15',16',17',31',32',36',37'-dodecahydroxy-2,2',7',20',28',41'-hexaoxo-6,6a-dihydro-5h-3',6',21',24',27',38',42'-heptaoxaspiro[furo[3,2-b]furan-3,39'-nonacyclo[35.2.2.1³³,³⁶.0¹,³⁵.0⁴,²³.0⁵,²⁶.0⁸,¹³.0¹⁴,¹⁹.0²⁹,³⁴]dotetracontane]-8'(13'),9',11',14',16',18',29'(34'),30',32'-nonaen-25'-yl 3,4,5-trihydroxybenzoate

C47H34O32 (1110.1033164)


   

5,7-dihydroxy-4-oxo-2-phenyl-3-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromene-8-sulfonic acid

5,7-dihydroxy-4-oxo-2-phenyl-3-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromene-8-sulfonic acid

C21H20O13S (512.062459)