Asperulosidic (BioDeep_00000231029)

 

Secondary id: BioDeep_00000230210, BioDeep_00000231074, BioDeep_00000402724

PANOMIX_OTCML-2023


代谢物信息卡片


(1S,4aS,5S,7aS)-7-(acetyloxymethyl)-5-hydroxy-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

化学式: C18H24O12 (432.1267704)
中文名称: Asperulosidic Acid, 车叶草苷酸, 车叶草苷酸
谱图信息: 最多检出来源 Viridiplantae(plant) 2.84%

分子结构信息

SMILES: CC(=O)OCC1=CC(C2C1C(OC=C2C(=O)O)OC3C(C(C(C(O3)CO)O)O)O)O
InChI: InChI=1S/C18H24O12/c1-6(20)27-4-7-2-9(21)12-8(16(25)26)5-28-17(11(7)12)30-18-15(24)14(23)13(22)10(3-19)29-18/h2,5,9-15,17-19,21-24H,3-4H2,1H3,(H,25,26)/t9-,10+,11+,12-,13+,14-,15+,17-,18-/m0/s1

描述信息

Asperulosidic acid is a glycoside and an iridoid monoterpenoid.
Asperulosidic acid is a natural product found in Spermacoce alata, Knoxia roxburghii, and other organisms with data available.
Asperulosidic Acid (ASPA), a bioactive iridoid glycoside, is extracted from the herbs of Hedyotis diffusa Willd. Asperulosidic Acid (ASPA) has anti-tumor, anti-oxidant, and anti-inflammatory activities[1]. ASPA is related to the inhibition of inflammatory cytokines (TNF-α, IL-6) and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways[2].
Asperulosidic Acid (ASPA), a bioactive iridoid glycoside, is extracted from the herbs of Hedyotis diffusa Willd. Asperulosidic Acid (ASPA) has anti-tumor, anti-oxidant, and anti-inflammatory activities[1]. ASPA is related to the inhibition of inflammatory cytokines (TNF-α, IL-6) and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways[2].
Asperulosidic Acid (ASPA), a bioactive iridoid glycoside, is extracted from the herbs of Hedyotis diffusa Willd. Asperulosidic Acid (ASPA) has anti-tumor, anti-oxidant, and anti-inflammatory activities[1]. ASPA is related to the inhibition of inflammatory cytokines (TNF-α, IL-6) and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways[2].

同义名列表

10 个代谢物同义名

(1S,4aS,5S,7aS)-7-(acetyloxymethyl)-5-hydroxy-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid; CYCLOPENTA(C)PYRAN-4-CARBOXYLIC ACID, 7-((ACETYLOXY)METHYL)-1-(.BETA.-D-GLUCOPYRANOSYLOXY)-1,4A,5,7A-TETRAHYDRO-5-HYDROXY-, (1S-(1.ALPHA.,4A.ALPHA.,5.BETA.,7A.ALPHA.))-; CYCLOPENTA(C)PYRAN-4-CARBOXYLIC ACID, 1.ALPHA.-(.BETA.-D-GLUCOPYRANOSYLOXY)-1,4A.ALPHA.,5,7A.ALPHA.-TETRAHYDRO-5.BETA.-HYDROXY-7-(HYDROXYMETHYL)-, 7-ACETATE; CYCLOPENTA(C)PYRAN-4-CARBOXYLIC ACID, 7-((ACETYLOXY)METHYL)-1-(.BETA.-D-GLUCOPYRANOSYLOXY)-1,4A,5,7A-TETRAHYDRO-5-HYDROXY-, (1S,4AS,5S,7AS)-; Asperulosidic acid, >=90\\% (LC/MS-ELSD); Asperulosidic acid; Asperuloside acid; Asperulosidic; MEGxp0_000737; ACon1_001484



数据库引用编号

7 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

32 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jing Wang, Birui Shi, Yueqing Pan, Zhuan Yang, Wei Zou, Menghua Liu. Asperulosidic Acid Ameliorates Renal Interstitial Fibrosis via Removing Indoxyl Sulfate by Up-Regulating Organic Anion Transporters in a Unilateral Ureteral Obstruction Mice Model. Molecules (Basel, Switzerland). 2023 Nov; 28(23):. doi: 10.3390/molecules28237690. [PMID: 38067420]
  • Liang Li, Huiwen Qiu. Asperulosidic Acid Restrains Hepatocellular Carcinoma Development and Enhances Chemosensitivity Through Inactivating the MEKK1/NF-κB Pathway. Applied biochemistry and biotechnology. 2023 Apr; ?(?):. doi: 10.1007/s12010-023-04500-2. [PMID: 37097403]
  • Qian Wu, Shukun Gai, Huijie Zhang. Asperulosidic Acid, a Bioactive Iridoid, Alleviates Placental Oxidative Stress and Inflammatory Responses in Gestational Diabetes Mellitus by Suppressing NF-κB and MAPK Signaling Pathways. Pharmacology. 2022; 107(3-4):197-205. doi: 10.1159/000521080. [PMID: 35008094]
  • Jin Su Oh, Geum Su Seong, Yong Deok Kim, Se Young Choung. Effects of Deacetylasperulosidic Acid on Atopic Dermatitis through Modulating Immune Balance and Skin Barrier Function in HaCaT, HMC-1, and EOL-1 Cells. Molecules (Basel, Switzerland). 2021 May; 26(11):. doi: 10.3390/molecules26113298. [PMID: 34070943]
  • So-Yeon Lee, No-June Park, Jonghwan Jegal, Beom-Geun Jo, Sangho Choi, Sang Woo Lee, Md Salah Uddin, Su-Nam Kim, Min Hye Yang. Suppression of DNCB-Induced Atopic Skin Lesions in Mice by Wikstroemia indica Extract. Nutrients. 2020 Jan; 12(1):. doi: 10.3390/nu12010173. [PMID: 31936273]
  • Phi Hung Tran, Viet Dung Le, Thi Ha Do, Thi Luyen Nguyen, Phuong Thao Nguyen, Trong Thong Nguyen, Tien Dat Nguyen. Anti-inflammatory constituents from Psychotria prainii H. Lév. Natural product research. 2019 Mar; 33(5):695-700. doi: 10.1080/14786419.2017.1408095. [PMID: 29212359]
  • Lu Xianyuan, Zou Wei, Dong Yaqian, Zhou Dan, Tong Xueli, Dong Zhanglu, Liang Guanyi, Tang Lan, Liu Menghua. Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Feb; 53(?):274-285. doi: 10.1016/j.phymed.2018.09.009. [PMID: 30668407]
  • Yi Shen, Qi Zhang, Yan-Bin Wu, Yu-Qiong He, Ting Han, Jian-Hua Zhang, Liang Zhao, Hsien-Yeh Hsu, Hong-Tao Song, Bing Lin, Hai-Liang Xin, Yun-Peng Qi, Qiao-Yan Zhang. Pharmacokinetics and tissue distribution of monotropein and deacetyl asperulosidic acid after oral administration of extracts from Morinda officinalis root in rats. BMC complementary and alternative medicine. 2018 Oct; 18(1):288. doi: 10.1186/s12906-018-2351-1. [PMID: 30355303]
  • Chunmin Li, Jian Dong, Jingchang Tian, Zhipeng Deng, Xiujing Song. LC/MS/MS determination and pharmacokinetic study of iridoid glycosides monotropein and deacetylasperulosidic acid isomers in rat plasma after oral administration of Morinda officinalis extract. Biomedical chromatography : BMC. 2016 Feb; 30(2):163-8. doi: 10.1002/bmc.3532. [PMID: 26053360]
  • Miroslava Bittová, Dita Hladůkova, Vendula Roblová, Stanislav Krácmar, Petr Kubán, Vlastimil Kubán. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products. Natural product communications. 2015 Nov; 10(11):1817-20. doi: ". [PMID: 26749805]
  • Kazuya Murata, Yumi Abe, Megumi Futamura-Masuda, Akemi Uwaya, Fumiyuki Isami, Shixin Deng, Hideaki Matsuda. Effect of Morinda citrifolia fruit extract and its iridoid glycosides on blood fluidity. Journal of natural medicines. 2014 Jul; 68(3):498-504. doi: 10.1007/s11418-014-0826-z. [PMID: 24604344]
  • Shixin Deng, Brett J West, 'Afa K Palu, C Jarakae Jensen. Determination and comparative analysis of major iridoids in different parts and cultivation sources of Morinda citrifolia. Phytochemical analysis : PCA. 2011 Jan; 22(1):26-30. doi: 10.1002/pca.1246. [PMID: 20799271]
  • Bin Li, Dong-Ming Zhang, Yong-Ming Luo, Xiao-Guang Chen. Three new and antitumor anthraquinone glycosides from Lasianthus acuminatissimus MERR. Chemical & pharmaceutical bulletin. 2006 Mar; 54(3):297-300. doi: 10.1248/cpb.54.297. [PMID: 16508180]
  • Dong-Hyun Kim, Hyo-Jung Lee, Young-Jun Oh, Min-Jung Kim, Sung-Hoon Kim, Tae-Sook Jeong, Nam-In Baek. Iridoid glycosides isolated from Oldenlandia diffusa inhibit LDL-oxidation. Archives of pharmacal research. 2005 Oct; 28(10):1156-60. doi: 10.1007/bf02972979. [PMID: 16276972]
  • Jae Hyeok Lee, Chung Hwan Ku, Nam-In Baek, Sung-Hoon Kim, Hee Wook Park, Dae Keun Kim. Phytochemical constituents from Diodia teres. Archives of pharmacal research. 2004 Jan; 27(1):40-3. doi: 10.1007/bf02980043. [PMID: 14969336]
  • G Liu, A Bode, W Y Ma, S Sang, C T Ho, Z Dong. Two novel glycosides from the fruits of Morinda citrifolia (noni) inhibit AP-1 transactivation and cell transformation in the mouse epidermal JB6 cell line. Cancer research. 2001 Aug; 61(15):5749-56. doi: ". [PMID: 11479211]