Gene Association: PNMA1

UniProt Search: PNMA1 (PROTEIN_CODING)
Function Description: PNMA family member 1

found 30 associated metabolites with current gene based on the text mining result from the pubmed database.

Araloside A

(2S,3S,4R,5R,6R)-6-[[(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-4,4,6a,6b,11,11,14b-heptamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3-[(2S,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,5-dihydroxyoxane-2-carboxylic acid

C47H74O18 (926.4875)


Chikusetsusaponin-IV is a triterpenoid saponin. It has a role as a metabolite. Araloside A is a natural product found in Kalopanax septemlobus, Bassia muricata, and other organisms with data available. Araloside A is found in green vegetables. Araloside A is from Aralia elata (Japanese angelica tree From Aralia elata (Japanese angelica tree). Araloside A is found in green vegetables. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1]. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1].

   

Prometryn

N-[4-(methylsulfanyl)-6-[(propan-2-yl)imino]-1,2,5,6-tetrahydro-1,3,5-triazin-2-ylidene]propan-2-amine

C10H19N5S (241.1361)


CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8564; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8550; ORIGINAL_PRECURSOR_SCAN_NO 8549 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8580; ORIGINAL_PRECURSOR_SCAN_NO 8577 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8544; ORIGINAL_PRECURSOR_SCAN_NO 8542 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8538 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8686; ORIGINAL_PRECURSOR_SCAN_NO 8681 CONFIDENCE standard compound; INTERNAL_ID 4037 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

1,5-anhydroglucitol (1,5-AG)

(2R,3S,4R,5S)-2-(hydroxymethyl)oxane-3,4,5-triol

C6H12O5 (164.0685)


1,5-Anhydrosorbitol or 1,5-anhydroglucitol (1,5-AG) is a validated marker of short-term glycemic control. This substance is derived mainly from food, is well absorbed in the intestine, and is distributed to all organs and tissues. It is metabolically stable, being excreted in the urine when its level exceeds the renal threshold. It is reabsorbed in the renal tubules, and is competitively inhibited by glucosuria, which leads to a reduction in its level in serum. The correlation between this reduction and the amount of glucose present in urine is so close that 1,5 AG can be used as a sensitive, day-to-day, real-time marker of glycemic control. It provides useful information on current glycemic control and is superior to both hemoglobin A1C and fructosamine in detecting near-normoglycemia. 1,5-AG in human plasma has been proposed for several years as a short-term, retrospective marker of glycaemic control and seems to be the most suitable parameter for monitoring glucose excursions. The decrease in serum 1,5-AG is very sensitive to urinary glucose excretion. It is a metabolically inert polyol that competes with glucose for reabsorption in the kidneys. Otherwise stable levels of 1,5-AG are rapidly depleted as blood glucose levels exceed the renal threshold for glucosuria. 1,5-AG is also more tightly associated with glucose fluctuations and postprandial glucose. (PMID: 18088226, 12166605, 7783360, 8940824) [HMDB] 1, 5-Anhydrosorbitol or 1,5-anhydroglucitol (1,5-AG) is a validated marker of short-term glycemic control. This substance is derived mainly from food, is well absorbed in the intestine, and is distributed to all organs and tissues. It is metabolically stable, being excreted in the urine when its level exceeds the renal threshold. It is reabsorbed in the renal tubules and is competitively inhibited by glucosuria, which leads to a reduction in its level in serum. The correlation between this reduction and the amount of glucose present in urine is so close that 1,5 AG can be used as a sensitive, day-to-day, real-time marker of glycemic control. It provides useful information on current glycemic control and is superior to both hemoglobin A1C and fructosamine in detecting near-normoglycemia. 1,5-AG in human plasma has been proposed for several years as a short-term, retrospective marker of glycemic control and seems to be the most suitable parameter for monitoring glucose excursions. The decrease in serum 1,5-AG is very sensitive to urinary glucose excretion. It is a metabolically inert polyol that competes with glucose for reabsorption in the kidneys. Otherwise stable levels of 1,5-AG are rapidly depleted as blood glucose levels exceed the renal threshold for glucosuria. 1,5-AG is also more tightly associated with glucose fluctuations and postprandial glucose (PMID:18088226, 12166605, 7783360, 8940824). 1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.

   

4-(Dimethylamino)azobenzene

N,N-dimethyl-4-[(Z)-2-phenyldiazen-1-yl]aniline

C14H15N3 (225.1266)


4-(Dimethylamino)azobenzene is formerly used as a food dye, use discontinued.Methyl yellow, or C.I. 11020, is a chemical compound which may be used as a pH indicator. In aqueous solution at low pH, methyl yellow appears red. Between pH 2.9 and 4.0, methyl yellow undergoes a transition, to become yellow above pH 4.0. As "butter yellow" the agent had been used as a food additive before its toxicity was recognized (Opie EL). (Wikipedia Formerly used as a food dye, use discontinued D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents

   

Erythritol

1,2,3,4-Butanetetrol,(2R,3R)-rel-

C4H10O4 (122.0579)


Erythritol is a sugar alcohol (or polyol), used as a food additive and sugar substitute. It is naturally occurring and is made from corn using enzymes and fermentation. Its formula is C4H10O4, or HO(CH2)(CHOH)2(CH2)OH; specifically, one particular stereoisomer with that formula. Erythritol is 60–70\\\\\% as sweet as sucrose (table sugar), yet it is almost noncaloric and does not affect blood sugar or cause tooth decay. Erythritol occurs widely in nature and has been found to occur naturally in several foods including wine, sake, beer, watermelon, pear, grape, and soy sauce. Evidence indicates that erythritol also exists endogenously in the tissues and body fluids of humans and animals. Erythritol is absorbed from the proximal intestine by passive diffusion in a manner similar to that of many low molecular weight organic molecules which do not have associated active transport systems. The rate of absorption is related to their molecular size. It passes through the intestinal membranes at a faster rate than larger molecules such as mannitol or glucose. In diabetics, erythritol has also been shown to be rapidly absorbed and excreted unchanged in the urine. Following absorption, ingested erythritol is rapidly distributed throughout the body and has been reported to occur in hepatocytes, pancreatic cells, and vascular smooth muscle cells. Erythritol also has been reported to cross the human placenta and to pass slowly from the plasma into the brain and cerebrospinal fluid (PMID:9862657). Erythritol is found to be associated with ribose-5-phosphate isomerase deficiency, which is an inborn error of metabolism. Bulk sweetener with good taste props. Not metabolised, excreted unchanged in urine. Less sweet than sucrose. Use not yet permitted in most countries (1997). GRAS status for use as a sweetener, thickener, stabiliser, humectant, etc. in food meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1]. meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1].

   

Fluometuron

1,1-dimethyl-3-[3-(trifluoromethyl)phenyl]urea

C10H11F3N2O (232.0823)


Fluometuron is a member of the class of 3-(3,4-substituted-phenyl)-1,1-dimethylureas that is urea in which one of the nitrogens is substituted by a 3-(trifluoromethyl)phenyl group while the other is substituted by two methyl groups. It is a herbicide used for the control of broadleaf weeds and annual grasses in cotton. It has a role as an agrochemical, an environmental contaminant, a herbicide, a xenobiotic and a photosystem-II inhibitor. It is a 3-(3,4-substituted-phenyl)-1,1-dimethylurea and a member of (trifluoromethyl)benzenes. Fluometuron is a soil applied herbicide used to control annual grasses and broad-leaved weeds. In the United States it was approved for use on cotton and sugarcane crops in 1974, but since 1986 is only approved for use on cotton. Its mode of action is selective and inhibits photosynthesis. CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8414; ORIGINAL_PRECURSOR_SCAN_NO 8413 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8483; ORIGINAL_PRECURSOR_SCAN_NO 8479 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8454; ORIGINAL_PRECURSOR_SCAN_NO 8453 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8416; ORIGINAL_PRECURSOR_SCAN_NO 8415 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8468; ORIGINAL_PRECURSOR_SCAN_NO 8466 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4168; ORIGINAL_PRECURSOR_SCAN_NO 4167 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4190; ORIGINAL_PRECURSOR_SCAN_NO 4189 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4172; ORIGINAL_PRECURSOR_SCAN_NO 4171 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8464; ORIGINAL_PRECURSOR_SCAN_NO 8462 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4199; ORIGINAL_PRECURSOR_SCAN_NO 4198 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4184; ORIGINAL_PRECURSOR_SCAN_NO 4183 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4155; ORIGINAL_PRECURSOR_SCAN_NO 4154 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3709 Fluometuron. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2164-17-2 (retrieved 2024-12-16) (CAS RN: 2164-17-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Orphenadrine

N,N-Dimethyl-2-[(O-methyl-alpha-phenylbenzyl)oxy]ethylamine

C18H23NO (269.178)


Orphenadrine is only found in individuals that have used or taken this drug. It is a muscarinic antagonist used to treat drug-induced parkinsonism and to relieve pain from muscle spasm. [PubChem]Orphenadrine binds and inhibits both histamine H1 receptors and NMDA receptors. It restores the motor disturbances induced by neuroleptics, in particular the hyperkinesia. The dopamine deficiency in the striatum increases the stimulating effects of the cholinergic system. This stimulation is counteracted by the anticholinergic effect of orphenadrine. It may have a relaxing effect on skeletal muscle spasms and it has a mood elevating effect. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065686 - Cytochrome P-450 CYP2B6 Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant CONFIDENCE standard compound; EAWAG_UCHEM_ID 3276

   

Linoleic acid

C18:2 9C, 12C Omega6 todos cis-9,12-octadienoico

C18H32O2 (280.2402)


Linoleic acid is a doubly unsaturated fatty acid, also known as an omega-6 fatty acid, occurring widely in plant glycosides. In this particular polyunsaturated fatty acid (PUFA), the first double bond is located between the sixth and seventh carbon atom from the methyl end of the fatty acid (n-6). Linoleic acid is an essential fatty acid in human nutrition because it cannot be synthesized by humans. It is used in the biosynthesis of prostaglandins (via arachidonic acid) and cell membranes (From Stedman, 26th ed). Linoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5] Linoleic acid is a polyunsaturated, omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from Latin linum 'flax', and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.

   

Dimethylamine

N-Methylmethanamine (acd/name 4.0)

C2H7N (45.0578)


Dimethylamine (DMA) is an organic secondary amine. It is a colorless, liquefied and flammable gas with an ammonia and fish-like odor. Dimethylamine is abundantly present in human urine. Main sources of urinary DMA have been reported to include trimethylamine N-oxide, a common food component, and asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis. ADMA is excreted in the urine in part unmetabolized and in part after hydrolysis to DMA by dimethylarginine dimethylaminohydrolase (DDAH). Statistically significant increases in urinary DMA have been found in individuals after the consumption of fish and seafoods. The highest values were obtained for individuals that consumed coley, squid and whiting with cod, haddock, sardine, skate and swordfish (PMID: 18282650). It has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). As a pure chemical substance Dimethylamine is used as dehairing agent in tanning, in dyes, in rubber accelerators, in soaps and cleaning compounds and as an agricultural fungicide. In the body, DMA also undergoes nitrosation under weak acid conditions to give dimethlynitrosamine. Study has shown that DMA is a metabolite of Arthrobacter and Micrococcus (PMID: 11422368 ; PMID: 7191). Aminating agent in the manuf. of ion-exchange resins for food processing KEIO_ID D103

   

L-Homocysteic acid

(2S)-2-Amino-4-sulphobutanoic acid

C4H9NO5S (183.0201)


L-homocysteic acid is a homocysteic acid with L-configuration. It has a role as a NMDA receptor agonist. It is an enantiomer of a D-homocysteic acid. L-Homocysteic acid is a sulfur-containing glutamic acid analog and a potent NMDA receptor agonist. It is related to homocysteine, a by-product of methionine metabolism. It belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Short-term incubation of lymphocytes with homocysteine or its oxidation product homocysteinic acid increased the formation of reactive oxygen species and cell necrosis [HMDB]

   

Trimethylamine

Trimethylamine aqueous solution

C3H9N (59.0735)


Trimethylamine, also known as NMe3, N(CH3)3, and TMA, is a colorless, hygroscopic, and flammable simple amine with a typical fishy odor in low concentrations and an ammonia like odor in higher concentrations. Trimethylamine has a boiling point of 2.9 degree centigrade and is a gas at room temperature. Trimethylamine usually comes in pressurized gas cylinders or as a 40\\% solution in water. Trimethylamine is a nitrogenous base and its positively charged cation is called trimethylammonium cation. A common salt of trimethylamine is trimethylammonium chloride, a hygroscopic colorless solid. Trimethylamine is a product of decomposition of plants and animals. It is the substance mainly responsible for the fishy odor often associated with fouling fish, bacterial vagina infections, and bad breath. It is also associated with taking large doses of choline. Trimethylaminuria is a genetic disorder in which the body is unable to metabolize trimethylamine from food sources. Patients develop a characteristic fish odour of their sweat, urine, and breath after the consumption of choline-rich foods. Trimethylaminuria is an autosomal recessive disorder involving a trimethylamine oxidase deficiency. Trimethylaminuria has also been observed in a certain breed of Rhode Island Red chicken that produces eggs with a fishy smell. Trimethylamine in the urine is a biomarker for the consumption of legumes. It has also been found to be a product of various types of bacteria, such as Achromobacter, Acinetobacter, Actinobacteria, Aeromonas, Alcaligenes, Alteromonas, Anaerococcus, Bacillus, Bacteroides, Bacteroidetes, Burkholderia, Campylobacter, Citrobacter, Clostridium, Desulfitobacterium, Desulfovibrio, Desulfuromonas, Edwardsiella, Enterobacter, Enterococcus, Escherichia, Eubacterium, Firmicutes, Flavobacterium, Gammaproteobacteria, Haloanaerobacter, Klebsiella, Micrococcus, Mobiluncus, Olsenella, Photobacterium, Proteobacteria, Proteus, Providencia, Pseudomonas, Rhodopseudomonas, Ruminococcus, Salmonella, Sarcina, Serratia, Shewanella, Shigella, Sinorhizobium, Sporomusa, Staphylococcus, Stigmatella, Streptococcus, Vibrio and Yokenella (PMID:26687352; PMID:25108210; PMID:24909875; PMID:28506279; PMID:27190056). Trimethylamine is a marker for urinary tract infection brought on by E. coli. (PMID:25108210; PMID:24909875). It has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Trimethylamine, also known as NMe3 or TMA, is a nitrogenous base and can be readily protonated to give trimethylammonium cation. Trimethylammonium chloride is a hygroscopic colorless solid prepared from hydrochloric acid. Trimethylamine is a product of decomposition of plants and animals. It is the substance mainly responsible for the fishy odor often associated with fouling fish, bacterial vagina infections, and bad breath. It is also associated with taking large doses of choline (Wikipedia). Trimethylamine is an organic compound with the formula N(CH3)3. This colorless, hygroscopic, and flammable tertiary amine has a strong "fishy" odor in low concentrations and an ammonia-like odor at higher concentrations. It is a gas at room temperature but is usually sold in pressurized gas cylinders or as a 40\\% solution in water. Trimethylamine has a boiling point of 2.9 degree centigrade. Trimethylamine is a nitrogenous base and its positively charged cation is called trimethylammonium cation. A common salt of trimethylamine is trimethylammonium chloride, a hygroscopic colorless solid (Wikipedia). Trimethylaminuria is a genetic disorder in which the body is unable to metabolize trimethylamine from food sources. Patients develop a characteristic fish odour of their sweat, urine, and breath after the consumption of choline-rich foods. Trimethylaminuria is an autosomal recessive disorder involving a trimethylamine oxidase deficiency. Trimethylaminuria has also been observed in a certain breed of Rhode Island Red chicken that produces eggs with a fishy smell (Wikipedia). Trimethylamine in the urine is a biomarker for the consumption of legumes. Trimethylamine is found in many foods, some of which are fishes, alcoholic beverages, milk and milk products, and rice.

   

Naphthazarin

InChI=1\C10H6O4\c11-5-1-2-6(12)10-8(14)4-3-7(13)9(5)10\h1-4,11-12

C10H6O4 (190.0266)


A naphthoquinone that is 1,4-naphthoquinone in which the hydrogens at positions 5 and 8 are replaced by hydroxy groups. D000970 - Antineoplastic Agents

   

Sodium hydroxide (NaOH)

Sodium hydroxide (NaOH)

HNaO (39.9925)


It is used in food processing as a pH control agent, washing/surface removal agent, clarifying/flocculating agent, oxidising/reducing agent, flavour and flavour modifier, sanitising/fumigating agent, appearance control agent for colours and colour modifiers D009676 - Noxae > D002424 - Caustics Same as: D01169

   

1,5-Anhydrosorbitol

1,5-anhydro-D-Glucitol

C6H12O5 (164.0685)


An anhydro sugar of D-glucitol. 1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.

   

9Z,12E-Octadecadienoic acid

Linoleic acid, potassium salt, (Z,Z)-isomer

C18H32O2 (280.2402)


   

DL-Homocysteic acid

Homocysteic acid, monosodium salt, (+-)-isomer

C4H9NO5S (183.0201)


   

5,8-Dihydroxy-1,4-naphthoquinone

5,8-dihydroxy-1,4-dihydronaphthalene-1,4-dione

C10H6O4 (190.0266)


D000970 - Antineoplastic Agents

   

1,5-Anhydroglucitol

1,5-anhydro-D-Glucitol

C6H12O5 (164.0685)


1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.

   

dimethylamine

dimethylamine

C2H7N (45.0578)


A secondary aliphatic amine where both N-substituents are methyl.

   

prometryn

Pesticide5_Prometryne_C10H19N5S_1,3,5-Triazine-2,4-diamine, N,N-bis(1-methylethyl)-6-(methylthio)-

C10H19N5S (241.1361)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 133

   

L-Homocysteic acid

L-Homocysteic acid

C4H9NO5S (183.0201)


   

trimethylamine

trimethylamine

C3H9N (59.0735)


A tertiary amine that is ammonia in which each hydrogen atom is substituted by an methyl group.

   

Erythrit

rel-(2R,3S)-1,2,3,4-Butanetetrol

C4H10O4 (122.0579)


D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents The meso-diastereomer of butane-1,2,3,4-tetrol. meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1]. meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1].

   

Ascarite II

Sodium hydroxide

HNaO (39.9925)


D009676 - Noxae > D002424 - Caustics Same as: D01169

   

Polygalytol

(2R,3S,4R,5S)-2-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C6H12O5 (164.0685)


1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.

   

LS-1667

Trimethylamine, aqueous solutions not >50\\% trimethylamine, by mass [UN1297] [Flammable liquid]

C3H9N (59.0735)


   

Araloside_A

(2S,3S,4R,5R,6R)-6-[[(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-4,4,6a,6b,11,11,14b-heptamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3-[(2S,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,5-dihydroxyoxane-2-carboxylic acid

C47H74O18 (926.4875)


Chikusetsusaponin-IV is a triterpenoid saponin. It has a role as a metabolite. Araloside A is a natural product found in Kalopanax septemlobus, Bassia muricata, and other organisms with data available. A natural product found in Panax japonicus var. major. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1]. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1].

   

orphenadrine

orphenadrine

C18H23NO (269.178)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065686 - Cytochrome P-450 CYP2B6 Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant

   

Methyl Yellow

4-(Dimethylamino)azobenzene

C14H15N3 (225.1266)


D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents

   

Homocysteic acid

DL-Homocysteic acid

C4H9NO5S (183.0201)