Exact Mass: 336.2348

Exact Mass Matches: 336.2348

Found 500 metabolites which its exact mass value is equals to given mass value 336.2348, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Prostaglandin B1

7-{2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoic acid

C20H32O4 (336.23)


Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). PGB1does not inhibit phospholipase activity, but oligomers of PGB1 (PGBx) extracted from human neutrophils inhibit human phospholipases A2 in vitro and in situ in a dose-dependent manner; these oligomers inhibit arachidonic acid mobilization in human neutrophils and endothelial cells. One mechanism for the pharmacological effects of PGBx may be inhibition of cell-associated and extracellular phospholipase A2. PGB1 has the ability to enhance peripheral vascular resistance and elevate blood pressure. The effect is not central in origin and apparently is not the result of changes in cholinergic or alpha-adrenoceptor sensitivity or changes in vascular smooth muscle susceptibility per se. PGB1 blocks S-phase DNA synthesis; inhibition of DNA synthesis does not appear to require elevated levels of cAMP. (PMID: 7667505, 1477202, 2129000, 2597672, 6635328). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2).

   

Prostaglandin A1

7-[(1R,2S)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-3-en-1-yl]heptanoic acid

C20H32O4 (336.23)


Prostaglandin A1 (PGA1, a prostaglandin characterized by a cyclopentenone structure) has a fundamental structure common to punaglandin and clavulone, the antitumor eicosanoids discovered in marine organisms such as corals. It is well established that PGA1, which exert potent antiviral activity in several DNA and RNA virus models, induce heat shock protein (hsp)70 syntheses through cycloheximide sensitive activation of heat shock transcription factor. Antitumor prostaglandins are actively incorporated through cell membrane and control gene expression. P53 (protein 53, is a transcription factor that regulates the cell cycle and functions as a tumor suppressor) independent expression of p21 (also known as cyclin-dependent kinase inhibitor 1A or CDKN1A, is a human gene on chromosome 6 (location 6p21.2), that encodes a cyclin-dependent kinase) and gadd 45 (growth arrest and DNA-damage-inducible, alpha 45, a major breast cancer (BRCA1) target is the DNA damage-responsive gene GADD45) activation of peroxisome proliferative activated receptor gamma (PPARgamma) are involved in antitumor mechanism of these prostaglandins. At the low concentration, these prostaglandins exhibit physiological or pathological activity such as osteoblast calcification, promotion of colon cancer cell proliferation. One of the mechanisms of anti-cancer activity of prostaglandins, has been believed to be that these prostaglandins might have p53 like effect in cells lacking p53. (PMID: 7988663, 11104898)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin A1 (PGA1, a prostaglandin characterized by a cyclopentenone structure) has a fundamental structure common to punaglandin and clavulone, the antitumor eicosanoids discovered in marine organisms such as corals. It is well established that PGA1, which exert potent antiviral activity in several DNA and RNA virus models, induce heat shock protein (hsp)70 syntheses through cycloheximide sensitive activation of heat shock transcription factor. Antitumor prostaglandins are actively incorporated through cell membrane and control gene expression. P53 (protein 53, is a transcription factor that regulates the cell cycle and functions as a tumor suppressor) independent expression of p21 (also known as cyclin-dependent kinase inhibitor 1A or CDKN1A, is a human gene on chromosome 6 (location 6p21.2), that encodes a cyclin-dependent kinase) and gadd 45 (growth arrest and DNA-damage-inducible, alpha 45, a major breast cancer (BRCA1) target is the DNA damage-responsive gene GADD45) activation of peroxisome proliferative activated receptor gamma (PPARgamma) are involved in antitumor mechanism of these prostaglandins. At the low concentration, these prostaglandins exhibit physiological or pathological activity such as osteoblast calcification, promotion of colon cancer cell proliferation. One of the mechanisms of anti-cancer activity of prostaglandins, has been believed to be that these prostaglandins might have p53 like effect in cells lacking p53. (PMID: 7988663, 11104898) D000890 - Anti-Infective Agents > D000998 - Antiviral Agents

   

12(S)-HPETE

(5Z,8Z,10E,14Z)-(12S)-12-Hydroperoxyeicosa-5,8,10,14-tetraenoic acid

C20H32O4 (336.23)


12-HPETE is one of the six monohydroperoxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid (Leukotrienes). Reduction of the hydroperoxide yields the more stable hydroxyl fatty acid (+/-)12-HETE. A family of biologically active compounds derived from arachidonic acid by oxidative metabolism through the 5-lipoxygenase pathway. They participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. They have potent actions on many essential organs and systems, including the cardiovascular, pulmonary, and central nervous system as well as the gastrointestinal tract and the immune system. 12-HPETE is one of the six monohydroperoxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid (Leukotrienes). Reduction of the hydroperoxide yields the more stable hydroxyl fatty acid (+/-)12-HETE. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Diterpenoid SP-II

ent-16beta,17-Dihydroxy-19-kauranoic acid

C20H32O4 (336.23)


   

Leukotriene B4

5S,12R-dihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


A leukotriene composed of (6Z,8E,10E,14Z)-icosatetraenoic acid having (5S)- and (12R)-hydroxy substituents. It is a lipid mediator of inflammation that is generated from arachidonic acid via the 5-lipoxygenase pathway. Chemical was purchased from CAY20110 (Lot 0439924-0).; Diagnostic ions: 335.1, 317.2, 195.1, 129.0, 115.0, 111.5

   

5(S)-Hydroperoxyeicosatetraenoic acid

(6E,8Z,11Z,14Z)-(5S)-5-Hydroperoxyeicosa-6,8,11,14-tetraenoic acid

C20H32O4 (336.23)


5(S)-Hydroperoxyeicosatetraenoic acid is a lipid hydroperoxide precursor of leukotrienes. The first step of biosynthesis of leukotrienes is conversion of arachidonic acid into 5(S)-hydroperoxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid [5(S)-HpETE] by 5- lipoxygenases (5-LOX). Lipid hydroperoxides undergo homolytic decomposition into bifunctional electrophiles, which react with DNA bases to form DNA adducts. These DNA modifications are proposed to be involved in the etiology of cancer, cardiovascular disease, and neurodegeneration. 5-LOX, the enzyme responsible for the formation of 5(S)-HpETE in vivo, is expressed primarily in leukocytes, including monocytes and macrophages. Studies have implicated the 5-LOX pathway as an important mediator in the pathology of atherosclerosis. (PMID: 15777099). Endogenously generated 5-hydroperoxyeicosatetraenoic acid is the preferred substrate for human leukocyte leukotriene A4 synthase activity. Thus, the arachidonic acid moiety is preferentially converted to LTA4 in a concerted reaction without dissociation of a 5-HPETE intermediate. (PMID: 3036580). 5(S)-Hydroperoxyeicosatetraenoic acid is a lipid hydroperoxide precursor of leukotrienes. The first step of biosynthesis of leukotrienes is conversion of arachidonic acid into 5(S)-hydroperoxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid [5(S)-HpETE] by 5- lipoxygenases (5-LOX). Lipid hydroperoxides undergo homolytic decomposition into bifunctional electrophiles, which react with DNA bases to form DNA adducts. These DNA modifications are proposed to be involved in the etiology of cancer, cardiovascular disease, and neurodegeneration.

   

Prostaglandin C1

7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoic acid

C20H32O4 (336.23)


This compound belongs to the family of Prostaglandins and related compounds. These are unsaturated carboxylic acids consisting of of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid.

   

8(S)-HPETE

(5Z,9E,11Z,14Z)-(8R)-8-Hydroxyperoxyeicosa-5,9,11,14-tetraenoate

C20H32O4 (336.23)


   

(5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid

(5Z,9E)-8-hydroxy-10-[(2S)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,9-dienoic acid

C20H32O4 (336.23)


(5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid, also known as Hepoxilin a3 or 8-EH-2, is classified as a member of the Hepoxilins. Hepoxilins are eicosanoids containing an oxirane group attached to the fatty acyl chain. (5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid is considered to be practically insoluble (in water) and acidic

   

15(S)-HPETE

15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid, (S)-(e,Z,Z,Z)-isomer

C20H32O4 (336.23)


15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HPETE) is the corresponding hydroperoxide of 15(S)-HETE and undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, a precursor of heptanone-etheno-2-deoxyguanosine. Reactive oxygen species convert the omega-6 polyunsaturated fatty acid arachidonic acid into (15-HPETE); vitamin C mediates 15(S)-HPETE decomposition. 15(S)-HPETE initiates apoptosis in vascular smooth muscle cells. 15(S)-HPETE is a lipoxygenase metabolite that affects the expression of cell adhesion molecules (CAMs) involved in the adhesion of leukocytes and/or the accumulation of leukocytes in the vascular endothelium, these being the initial events in endothelial cell injury. 15(S)-HPETE induces a loss of cardiomyocytes membrane integrity. 15-(S)HPETE is a hydroperoxide that enhances the activity of the enzymes lipoxygenase [EC 1.13.11.12] and Na+, K+-ATPase [EC 3.6.3.9] of brain microvessels. Lipoxygenase(s) and Na+-K+-ATPase of brain microvessels may play a significant role in the occurrence of ischemic brain edema. (PMID: 15964853, 15723435, 8655602, 8595608, 2662983). D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Portulal

NCI60_007940

C20H32O4 (336.23)


   

15H-11,12-EETA

(5Z,8Z)-10-{3-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxiran-2-yl}deca-5,8-dienoic acid

C20H32O4 (336.23)


15H-11,12-EETA is an epoxyeicosatrienoic acid (EET). The role of EETs in regulation of the cerebral circulation has become more important, since it was realized that EETs are produced in another specialized cell type of the brain, the astrocytes. It has become evident that EETs released from astrocytes may mediate cerebral functional hyperemia. Molecular and pharmacological evidence hve shown that neurotransmitter release and spillover onto astrocytes can generate EETs. Since these EETs may reach the vasculature via astrocyte foot-processes, they have the same potential as their endothelial counterparts to hyperpolarize and dilate cerebral vessels. P450 enzymes contain heme in their catalytic domain and nitric oxide (NO) appears to bind to these heme moieties and block formation of P450 products, including EETs. Thus, there appears to be crosstalk between P450 enzymes and NO/NO synthase. The role of fatty acid metabolites and cerebral blood flow becomes even more complex in light of data demonstrating that cyclooxygenase products can act as substrates for P450 enzymes. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597, 11413051, 10519554, 11893556) [HMDB] 15H-11,12-EETA is an epoxyeicosatrienoic acid (EET). The role of EETs in regulation of the cerebral circulation has become more important, since it was realized that EETs are produced in another specialized cell type of the brain, the astrocytes. It has become evident that EETs released from astrocytes may mediate cerebral functional hyperemia. Molecular and pharmacological evidence hve shown that neurotransmitter release and spillover onto astrocytes can generate EETs. Since these EETs may reach the vasculature via astrocyte foot-processes, they have the same potential as their endothelial counterparts to hyperpolarize and dilate cerebral vessels. P450 enzymes contain heme in their catalytic domain and nitric oxide (NO) appears to bind to these heme moieties and block formation of P450 products, including EETs. Thus, there appears to be crosstalk between P450 enzymes and NO/NO synthase. The role of fatty acid metabolites and cerebral blood flow becomes even more complex in light of data demonstrating that cyclooxygenase products can act as substrates for P450 enzymes. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597, 11413051, 10519554, 11893556).

   

Hepoxilin B3

(5Z,8Z)-10-hydroxy-10-[(2R,3S)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoic acid

C20H32O4 (336.23)


Hepoxilin B3 is a normal human epidermis eicosanoid. Hepoxilin B3 is dramatically elevated in psoriatic lesions. The primary biological action of the hepoxilins appears to relate to their ability to release calcium from intracellular stores through a receptor-mediated action. The receptor is intracellular, and appears to be G-protein coupled. The conversion of hepoxilin into its omega-hydroxy catabolite has recently been demonstrated through the action of an omega-hydroxylase. This enzyme is different from that which oxidizes leukotriene B4, as the former activity is lost when the cell is disrupted, while leukotriene B4-catabolic activity is recovered in both the intact and disrupted cell. Additionally, hepoxilin catabolism is inhibited by CCCP, a mitochondrial uncoupler, while leukotriene catabolism is unaffected. As hepoxilins cause the translocation of calcium from intracellular stores in the endoplasmic reticulum to the mitochondria, it is speculated that hepoxilin omega-oxidation takes place in the mitochondria, and the omega-oxidation product facilitates accumulation of the elevated cytosolic calcium by the mitochondria. (PMID 10692117, 11851887, 10086189) [HMDB] Hepoxilin B3 is a normal human epidermis eicosanoid. Hepoxilin B3 is dramatically elevated in psoriatic lesions. The primary biological action of the hepoxilins appears to relate to their ability to release calcium from intracellular stores through a receptor-mediated action. The receptor is intracellular, and appears to be G-protein coupled. The conversion of hepoxilin into its omega-hydroxy catabolite has recently been demonstrated through the action of an omega-hydroxylase. This enzyme is different from that which oxidizes leukotriene B4, as the former activity is lost when the cell is disrupted, while leukotriene B4-catabolic activity is recovered in both the intact and disrupted cell. Additionally, hepoxilin catabolism is inhibited by CCCP, a mitochondrial uncoupler, while leukotriene catabolism is unaffected. As hepoxilins cause the translocation of calcium from intracellular stores in the endoplasmic reticulum to the mitochondria, it is speculated that hepoxilin omega-oxidation takes place in the mitochondria, and the omega-oxidation product facilitates accumulation of the elevated cytosolic calcium by the mitochondria. (PMID 10692117, 11851887, 10086189).

   

11H-14,15-EETA

(5Z,8Z,12E)-11-hydroxy-13-(3-pentyloxiran-2-yl)trideca-5,8,12-trienoic acid

C20H32O4 (336.23)


11H-14,15-EETA is an epoxyeicosatrienoic acid. Epoxyeicosatrienoic acids (EpETrEs) have been reported recently having vasodilatory effects and a role of P-450-dependent arachidonic acid monooxygenase metabolites is suggested in vasoregulation. The physiological role of this compound has not been totally established, although in other tissues EpETrEs are mainly involved in hormone production and in the vascular and renal systems. Some studies have implicated epoxygenase metabolites of arachidonic acid in the control of steroidogenesis in luteinised granulosa cells. (PMID: 12749593, 12361727, 1650001) [HMDB] 11H-14,15-EETA is an epoxyeicosatrienoic acid. Epoxyeicosatrienoic acids (EpETrEs) have been reported recently having vasodilatory effects and a role of P-450-dependent arachidonic acid monooxygenase metabolites is suggested in vasoregulation. The physiological role of this compound has not been totally established, although in other tissues EpETrEs are mainly involved in hormone production and in the vascular and renal systems. Some studies have implicated epoxygenase metabolites of arachidonic acid in the control of steroidogenesis in luteinised granulosa cells. (PMID: 12749593, 12361727, 1650001).

   

11(R)-HPETE

(5Z,8Z,12E,14Z)-(11R)-Hydroperoxyeicosa-5,8,12,14-tetraenoic acid

C20H32O4 (336.23)


11R-HPETE is a hydroperoxyeicosatetraenoic acid eicosanoid derived from arachidonic acid. 11R-HPETE is formed from arachidonic acid in the prostaglandin endoperoxide H synthase-1 cyclooxygenase site. 11R-HPETE has been described in other mammalian tissues (rat, sheep). There are two distinct isozymes of prostaglandin H synthase (PGHS), the key enzyme in prostaglandin biosynthesis; PGHS-1 is generally considered to play a housekeeping role, whereas PGHS-2 has been linked to various pathological processes. Both PGHS isozymes have two catalytic activities; they are a cyclooxygenase activity that converts arachidonic acid (AA) to prostaglandin G2 (PGG2) and a peroxidase activity that catalyzes the transformation of PGG2 to prostaglandin H2. Oxygenase activity is completely abolished in aspirin-treated PGHS-1 (ASA-PGHS-1), whereas aspirin-treated PGHS-2 (ASA-PGHS-2) still catalyzes formation of 11(R)-HPETE. (PMID: 12664566, 15292194, 15964853, 12167656) [HMDB] 11R-HPETE is a hydroperoxyeicosatetraenoic acid eicosanoid derived from arachidonic acid. 11R-HPETE is formed from arachidonic acid in the prostaglandin endoperoxide H synthase-1 cyclooxygenase site. 11R-HPETE has been described in other mammalian tissues (rat, sheep). There are two distinct isozymes of prostaglandin H synthase (PGHS), the key enzyme in prostaglandin biosynthesis; PGHS-1 is generally considered to play a housekeeping role, whereas PGHS-2 has been linked to various pathological processes. Both PGHS isozymes have two catalytic activities; they are a cyclooxygenase activity that converts arachidonic acid (AA) to prostaglandin G2 (PGG2) and a peroxidase activity that catalyzes the transformation of PGG2 to prostaglandin H2. Oxygenase activity is completely abolished in aspirin-treated PGHS-1 (ASA-PGHS-1), whereas aspirin-treated PGHS-2 (ASA-PGHS-2) still catalyzes formation of 11(R)-HPETE. (PMID: 12664566, 15292194, 15964853, 12167656).

   

9S-HpETE

(5Z,7E,11Z,14Z)-(9S)-9-Hydroperoxyeicosa-5,7,11,14-tetraenoic acid

C20H32O4 (336.23)


   

Hepoxilin A3

(5Z,9E)-8-hydroxy-10-[(2R,3S)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,9-dienoic acid

C20H32O4 (336.23)


Hepoxilin A3 is an electrophilic eicosanoids synthesized during arachidonic acid oxidative metabolism, which can participate in the Michael addition reaction with glutathione (GSH, a major cellular antioxidant) catalyzed by the GSH-S-transferase (GST) family. GSH-adducts have been observed with molecules synthesized through the 12-lipoxygenase pathway. (PMID 12432937). Hepoxilins have biological actions that appear to have, as their basis, changes in intracellular concentrations of ions including calcium and potassium ions as well as changes in second messenger systems. Recent evidence suggests that the biological actions of the hepoxilins may be receptor-mediated as indicated from data showing the existence of hepoxilin-specific binding proteins in the human neutrophils. Such evidence also implicates the association of G-proteins both in hepoxilin-binding as well as in hepoxilin action. (PMID 7947989). Hepoxilin A3 is an electrophilic eicosanoids synthesized during arachidonic acid oxidative metabolism, which can participate in the Michael addition reaction with glutathione (GSH, a major cellular antioxidant) catalyzed by the GSH-S-transferase (GST) family. GSH-adducts have been observed with molecules synthesized through the 12-lipoxygenase pathway. (PMID 12432937)

   

12(R)-HPETE

(5Z,8Z,10E,14Z)-(12R)-12-Hydroperoxyeicosa-5,8,10,14-tetraenoic acid

C20H32O4 (336.23)


12(R)-HPETE is a hydroperoxyeicosatetraenoic acid eicosanoid derived from arachidonic acid. The epidermal lipoxygenases 12R-LOX and eLOX3 act in sequence to convert arachidonic acid via 12(R)-HPETE to 12(R)-HETE and the corresponding epoxyalcohol, 8(R)-hydroxy-11(R),12(R)-epoxyeicosatrienoic acid. The epidermal lipoxygenases 12R-LOX and eLOX3 are the gene products of ALOX12B and ALOXE3. Mutations in ALOXE3 or ALOX12B have been found in families with autosomal-recessive congenital ichthyosis (ARCI). ARCI is a clinically and genetically heterogeneous group of severe hereditary keratinization disorders characterized by intense scaling of the whole integument, and differences in color and shape, often associated with erythema. Mutations in ALOXE3 and ALOX12B on chromosome 17p13, which code for two different epidermal lipoxygenases, were found in patients with ichthyosiform erythroderma. Genetic studies indicated that 12R-lipoxygenase (12R-LOX) or epidermal lipoxygenase-3 (eLOX3) was mutated in six families affected by non-bullous congenital ichthyosiform erythroderma (NCIE), one of the main clinical forms of ichthyosis. (PMID: 16116617, 15629692). 12(R)-HPETE is a hydroperoxyeicosatetraenoic acid eicosanoid derived from arachidonic acid. The epidermal lipoxygenases 12R-LOX and eLOX3 act in sequence to convert arachidonic acid via 12(R)-HPETE to 12(R)-HETE and the corresponding epoxyalcohol, 8(R)-hydroxy-11(R),12(R)-epoxyeicosatrienoic acid.

   

8(S)-HPETE

(5Z,9E,11Z,14Z)-(8S)-8-Hydroperoxyeicosa-5,9,11,14-tetraenoic acid

C20H32O4 (336.23)


8S-HPETE is metabolized from arachidonic acid by the enzyme 8S-lipoxygenase (8-LOX in mouse, ALOX15 and ALOX15B in human). 8S-HPETE will be readily reduced under physiological circumstances to 8S-hydroxyeicosatetraenoic acid (8S-HETE), a natural agonist of peroxisome proliferator-activated receptor alpha (PPAR alpha). (PMID: 16112079) [HMDB] 8S-HPETE is metabolized from arachidonic acid by the enzyme 8S-lipoxygenase (8-LOX in mouse, ALOX15 and ALOX15B in human). 8S-HPETE will be readily reduced under physiological circumstances to 8S-hydroxyeicosatetraenoic acid (8S-HETE), a natural agonist of peroxisome proliferator-activated receptor alpha (PPAR alpha). (PMID: 16112079).

   

5-HPETE

(6E,8Z,11Z,14Z)-(5S)-5-Hydroperoxyeicosa-6,8,11,14-tetraenoic acid

C20H32O4 (336.23)


Arachidonic acid 5-hydroperoxide (5-hydroperoxyeicosatetraenoic acid, 5-HPETE) is an intermediate in the production of leukotriene A4 from arachidonic acid. [HMDB] Arachidonic acid 5-hydroperoxide (5-hydroperoxyeicosatetraenoic acid, 5-HPETE) is an intermediate in the production of leukotriene A4 from arachidonic acid.

   

8-iso-PGA1

7-[(1S,2S)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-3-en-1-yl]heptanoic acid

C20H32O4 (336.23)


8-iso-PGA1 is an isoprostane. Isoprostanes are arachidonic acid metabolites produced by peroxidative attack of membrane lipids. These accumulate to substantial levels in many clinical conditions characterized in part by accumulation of free radicals and reactive oxygen species, including asthma, hypertension and ischemia reperfusion injury. For this reason, they are frequently used as markers of oxidative stress; however, many are now finding that these molecules are not inert, but in fact evoke powerful biological responses in an increasing array of cell types. In many cases, these biological effects can account in part for the various features and manifestations of those clinical conditions. Thus, it may be possible that the isoprostanes are playing somewhat of a causal role in those disease states. (PMID: 14504139)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 8-iso-PGA1 is an isoprostane. Isoprostanes are arachidonic acid metabolites produced by peroxidative attack of membrane lipids. These accumulate to substantial levels in many clinical conditions characterized in part by accumulation of free radicals and reactive oxygen species, including asthma, hypertension and ischemia reperfusion injury. For this reason, they are frequently used as markers of oxidative stress; however, many are now finding that these molecules are not inert, but in fact evoke powerful biological responses in an increasing array of cell types. In many cases, these biological effects can account in part for the various features and manifestations of those clinical conditions. Thus, it may be possible that the isoprostanes are playing somewhat of a causal role in those disease states. (PMID: 14504139)

   

8,15-DiHETE

(5Z,9E,11Z,13E)-8,15-dihydroxyicosa-5,9,11,13-tetraenoic acid

C20H32O4 (336.23)


8,15-DiHETE is a double oxidation product of arachadonic acid. It is generated through the action of 15-lipoxygenase (PMID: 8334154). 8,15-DiHETE is also known as eosinophil chemotactic factor of anaphylaxis (ECF-A). In particular it is able to selectively attract eosinophils and neutrophils from mixed leukocyte populations.Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 8,15-DiHETE is a double oxidation product of arachadonic acid. It is generated through the action of 15-lipoxygenase (PMID: 8334154). 8,15-DiHETE is also known as eosinophil chemotactic factor of anaphylaxis (ECF-A). In particular it is able to selectively attract eosinophils and neutrophils from mixed leukocyte populations.

   

Leukotriene B4

(6Z,8E,10E,14Z)-(5S,12R)-5,12-Dihydroxyeicosa-6,8,10,14-tetraenoic acid

C20H32O4 (336.23)


Leukotriene B4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region, and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by omega-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the omega-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted in human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before omega-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. The term leukotriene was coined to indicate the presence of three conjugated double bonds within the 20-carbon structure of arachidonic acid as well as the fact that these compounds were derived from leucocytes such as PMNNs or transformed mast cells. Interestingly, most of the cells known to express 5-LO are of myeloid origin, which includes neutrophils, eosinophils, mast cells, macrophages, basophils, and monocytes. Leukotriene biosynthesis begins with the specific oxidation of arachidonic acid by a free radical mechanism as a consequence of interaction with 5-LO. The first enzymatic step involves the abstraction of a hydrogen atom from C-7 of arachidonate followed by the addition of molecular oxygen to form 5-HpETE (5-hydroperoxyeicosatetraenoic acid). A second enzymatic step is also catalyzed by 5-LO and involves removal of a hydrogen atom from C-10, resulting in the formation of the conjugated triene epoxide LTA4. LTA4 must then be released by 5-LO and encounter either LTA4-H (LTA4 hydrolase) or LTC4-S [LTC4 (leukotriene C4) synthase]. LTA4-H can stereospecifically add water to C-12 while retaining a specific double-bond geometry, leading to LTB4 [leukotriene B4, 5(S),12(R)-dihydroxy-6,8,10,14-(Z,E,E,Z)-eicosatetraenoic acid]. If LTA4 encounters LTC4-S, then the reactive epoxide is opened at C-6 by the thiol anion of glutathione to form the product LTC4 [5(S)-hydroxy-6(R)-S-glutathyionyl-7,9,11,14- (E,E,Z,Z)-eicosatetraenoic acid], essentially a glutathionyl adduct of oxidized arachidonic acid. Both of these terminal leukotrienes are biologically active in that specific GPCRs recognize these chemical structures and receptor recognition initiates complex intracellular signalling cascades. In order for these molecules to serve as lipid mediators, however, they must be released from the biosynthetic cell into the extracellular milieu so that they can encounter the corresponding GPCRs. Surprising features of this cascade include the recognition of the assembly of critical enzymes at the perinuclear region of the cell and even localization of 5-LO within the nucleus of some cells. Under some situations, the budding phagosome has been found to assemble these proteins. Non-enzymatic proteins such as FLAP are now known as critical partners of this protein-machine assembly. An unexpected pathway of leukotriene biosynthesis involves the transfer of the chemically reactive intermediate, LTA4, from the biosynthetic cell followed by conversion into LTB4 or LTC4 by other cells that do not express ...

   

12,20-DiHETE

(5Z,8Z,10E,14Z)-12,20-dihydroxyicosa-5,8,10,14-tetraenoic acid

C20H32O4 (336.23)


This compound belongs to the family of Hydroxyeicosatetraenoic Acids. These are eicosanoic acids with an attached hydroxyl group and four CC double bonds.......

   

9alpha-(3-Methylbutanoyloxy)-4S-hydroxy-10(14)-oplopen-3-one

1-(1-Hydroxyethyl)-4-methylidene-2-oxo-7-(propan-2-yl)-octahydro-1H-inden-5-yl 3-methylbutanoic acid

C20H32O4 (336.23)


9alpha-(3-Methylbutanoyloxy)-4S-hydroxy-10(14)-oplopen-3-one is found in tea. 9alpha-(3-Methylbutanoyloxy)-4S-hydroxy-10(14)-oplopen-3-one is a constituent of flower buds of Tussilago farfara (coltsfoot). Constituent of flower buds of Tussilago farfara (coltsfoot). 9alpha-(3-Methylbutanoyloxy)-4S-hydroxy-10(14)-oplopen-3-one is found in tea.

   

14,15-DiHETE

(5Z,8Z,11Z,17Z)-14,15-dihydroxyicosa-5,8,11,17-tetraenoic acid

C20H32O4 (336.23)


14,15-DiHETE is an oxygenated lipid found in human blood. This fatty acyl belongs to the main class of eicosanoids and the sub class of hydroxy/hydroperoxyeicosatetraenoic acids. (Lipid Maps) [HMDB] 14,15-DiHETE is an oxygenated lipid found in human blood. This fatty acyl belongs to the main class of eicosanoids and the sub class of hydroxy/hydroperoxyeicosatetraenoic acids. (Lipid Maps).

   

5,15-DiHETE

(5S,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoic acid

C20H32O4 (336.23)


5,15-DiHETE or 5,15-dihydroxyeicosatetraenoic acid is a double oxidation product of arachadonic acid. (PMID: 6817003). It is produced by the action of lipoxygenases (specifically 5-lipoxygenase and 15 lipoxygenase) in the liver and in neutrophils. [HMDB] 5,15-DiHETE or 5,15-dihydroxyeicosatetraenoic acid is a double oxidation product of arachadonic acid. (PMID: 6817003). It is produced by the action of lipoxygenases (specifically 5-lipoxygenase and 15 lipoxygenase) in the liver and in neutrophils.

   

17,18-DiHETE

(5Z,8Z,11Z,14Z)-17,18-Dihydroxyeicosa-5,8,11,14-tetraenoic acid

C20H32O4 (336.23)


17,18-DiHETE is an oxygenated lipid found in human blood. This fatty acyl belongs to the main class of eicosanoids and sub class of hydroxy/hydroperoxyeicosatetraenoic acids. (Lipid Maps) [HMDB] 17,18-DiHETE is an oxygenated lipid found in human blood. This fatty acyl belongs to the main class of eicosanoids and sub class of hydroxy/hydroperoxyeicosatetraenoic acids. (Lipid Maps).

   

(14S)-14,15-Dihydroxy-8(17),13(16)-labdadien-19-oic acid

5-(4,5-dihydroxy-3-methylidenepentyl)-1,4a-dimethyl-6-methylidene-hexahydro-2H-naphthalene-1-carboxylic acid

C20H32O4 (336.23)


(14S)-14,15-Dihydroxy-8(17),13(16)-labdadien-19-oic acid is found in fruits. (14S)-14,15-Dihydroxy-8(17),13(16)-labdadien-19-oic acid is a constituent of Juniperus communis (juniper) Constituent of Juniperus communis (juniper). (14S)-14,15-Dihydroxy-8(17),13(16)-labdadien-19-oic acid is found in fruits.

   

6-trans-Leukotriene B4

5(S),12(R)-Dihydroxy-6,8,10,14-(trans,trans,trans,cis)-eicosatetraenoic acid

C20H32O4 (336.23)


Leukotriene B4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by b-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/ 15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. The term leukotriene was coined to indicate the presence of three conjugated double bonds within the 20-carbon structure of arachidonic acid as well as the fact that these compounds were derived from leucocytes such as PMNNs or transformed mast cells. Interestingly, most of the cells known to express 5-LO are of myeloid origin, which includes neutrophils, eosinophils, mast cells, macrophages, basophils and monocytes. Leukotriene biosynthesis begins with the specific oxidation of arachidonic acid by a free radical mechanism as a consequence of interaction with 5-LO. The first enzymatic step involves the abstraction of a hydrogen atom from C-7 of arachidonate followed by the addition of molecular oxygen to form 5-HpETE (5-hydroperoxyeicosatetraenoic acid). A second enzymatic step is also catalysed by 5-LO and involves removal of a hydrogen atom from C-10, resulting in formation of the conjugated triene epoxide LTA4. LTA4 must then be released by 5-LO and encounter either LTA4-H (LTA4 hydrolase) or LTC4-S [LTC4 (leukotriene C4) synthase]. LTA4-H can stereospecifically add water to C-12 while retaining a specific double-bond geometry, leading to LTB4 [leukotriene B4, 5(S),12(R)-dihydroxy-6,8,10,14-(Z,E,E,Z)-eicosatetraenoic acid]. If LTA4 encounters LTC4-S, then the reactive epoxide is opened at C-6 by the thiol anion of glutathione to form the product LTC4 [5(S)-hydroxy-6(R)-S-glutathyionyl-7,9,11,14- (E,E,Z,Z)-eicosatetraenoic acid], essentially a glutathionyl adduct of oxidized arachidonic acid. Both of these terminal leukotrienes are biologically active in that specific GPCRs recognize these chemical structures and receptor recognition initiates complex intracellular signalling cascades. In order for these molecules to serve as lipid mediators, however, they must be released from the biosynthetic cell into the extracellular milieu so that they can encounter the corresponding GPCRs. Surprising features of this cascade include the recognition of the assembly of critical enzymes at the perinuclear region of the cell and even localization of 5-LO within the nucleus of some cells. Under some situations, the budding phagosome has been found to assemble these proteins. Non-enzymatic proteins such as FLAP are now known as critical partners of this protein-machine assembly. An unexpected pathway of leukotriene biosynthesis involves the transfer of the chemically reactive intermediate, LTA4, from the biosynthetic cell followed by conversion into LTB4 or LTC4 by other cells that do not express 5-LO. (PMID 17... 6-trans-Leukotriene B4 is an enzymatic metabolite of leukotriene B4(LTB4). A greater increase in LTB4 and 6-trans-LTB4 (one of its hydroxylated 5-lipoxygenase metabolic derivatives) occurs after stimulation with calcium-ionophore in asthma patients compared to healthy controls. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region, and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by omega-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation (PMID: 17623009, 2176862, 7649996, 9667737, 2125732). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.

   

6-trans-12-epi-Leukotriene B4

5(S),12(S)-Dihydroxy-6,8,10,14-(trans,trans,trans,cis)-eicosatetraenoic acid

C20H32O4 (336.23)


6-trans-12-epi-Leukotriene B4 is the metabolite of lipid omega-oxidation of leukotriene B4 (LTB4). LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. omega-Oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region, and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by omega-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the omega-carboxy position and after CoA ester formation (PMID: 7649996, 17623009, 2853166, 6088485). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 6-trans-12-epi-Leukotriene B4 is the metabolite of lipid omega-oxidation of leukotriene B4 (LTB4). LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 7649996, 17623009, 2853166, 6088485)

   

12(S)-Leukotriene B4

(5S,6Z,8E,10E,12S,14Z)-5,12-Dihydroxy-6,8,10,14-eicosatetraenoic acid

C20H32O4 (336.23)


12(S)-Leukotriene B4 is an agonist of G-protein-coupled receptors for leukotriene B4 (LTB4), BLT1, and BLT2. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region, and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by omega-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the omega-carboxy position and after CoA ester formation (PMID: 7649996, 17623009, 2866160, 15866883). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 12(S)-Leukotriene B4 is an agonist of G-protein-coupled receptors for leukotriene B4 (LTB4), BLT1 and BLT2. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 7649996, 17623009, 2866160, 15866883)

   

10,11-dihydro-12-oxo-LTB4

12-oxo-(5S)-Hydroxy-(6Z,8E,14Z)-eicosatrienoic acid anion

C20H32O4 (336.23)


10,11-dihydro-12-oxo-LTB4 is formed when leukotriene B4 (LTB4) is metabolized by beta-oxidation.LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 8632343, 9667737). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 10,11-dihydro-12-oxo-LTB4 is formed when leukotriene B4 (LTB4) is metabolized by beta-oxidation.LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 8632343, 9667737)

   

6,7-dihydro-5-oxo-12-epi-LTB4

(8E,10E,12R,14Z)-12-hydroxy-5-oxoicosa-8,10,14-trienoic acid

C20H32O4 (336.23)


6,7-dihydro-5-oxo-12-epi-LTB4 is formed when leukotriene B4 (LTB4) is metabolized by beta-oxidation. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 8632343, 9667737). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 6,7-dihydro-5-oxo-12-epi-LTB4 is formed when leukotriene B4 (LTB4) is metabolized by beta-oxidation. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 8632343, 9667737)

   

ent-1(10)-Halimene-15,19-dioic acid

5-(4-carboxy-3-methylbutyl)-1,5,6-trimethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid

C20H32O4 (336.23)


ent-1(10)-Halimene-15,19-dioic acid is found in fruits. ent-1(10)-Halimene-15,19-dioic acid is isolated (as di-Me ester) from seed-pod resin of Hymenaea courbaril. Isol. (as di-Me ester) from seed-pod resin of Hymenaea courbaril. ent-1(10)-Halimene-15,19-dioic acid is found in fruits.

   

9-Deoxy-delta12-PGD2

(5Z)-7-[(1R,2E)-2-[(3S)-3-hydroxyoctylidene]-3-oxocyclopentyl]hept-5-enoic acid

C20H32O4 (336.23)


This compound belongs to the family of Prostaglandins and related compounds. These are unsaturated carboxylic acids consisting of of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid.

   

5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid

(6E,8E,10E,14E)-5,12-dihydroxyicosa-6,8,10,14-tetraenoic acid

C20H32O4 (336.23)


5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid is classified as a member of the Leukotrienes. Leukotrienes are eicosanoids containing a hydroxyl group attached to the aliphatic chain of an arachidonic acid. Leukotrienes have four double bonds, three (and only three) of which are conjugated. 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid is considered to be practically insoluble (in water) and acidic. 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid is an eicosanoid lipid molecule

   

10-hydroxy-11S,12S-epoxy-5Z,8Z,14Z-eicosatrienoic acid

(8Z)-10-hydroxy-10-[(3S)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoic acid

C20H32O4 (336.23)


10-hydroxy-11S,12S-epoxy-5Z,8Z,14Z-eicosatrienoic acid, also known as Hepoxilin b3 or EPHETA, is classified as a member of the Hepoxilins. Hepoxilins are eicosanoids containing an oxirane group attached to the fatty acyl chain. 10-hydroxy-11S,12S-epoxy-5Z,8Z,14Z-eicosatrienoic acid is considered to be practically insoluble (in water) and acidic

   

5,20-DiHETE

(6E,8E,11E,14E)-5,20-dihydroxyicosa-6,8,11,14-tetraenoic acid

C20H32O4 (336.23)


5,20-DiHETE is also known as 5,20-Dihydroxy-6,8,11,14-eicosatetraenoic acid. 5,20-DiHETE is considered to be practically insoluble (in water) and acidic

   

5(S),11(R)-DiHETE

(5S,6E,8Z,11R,12E,14Z)-5,11-dihydroxyicosa-6,8,12,14-tetraenoic acid

C20H32O4 (336.23)


5(S),11(R)-DiHETE is also known as 5,11-DiHETE or 5S,11R-Dihydroxy-6E,8Z,12E,14Z-eicosatetraenoate. 5(S),11(R)-DiHETE is considered to be practically insoluble (in water) and acidic. 5(S),11(R)-DiHETE is an eicosanoid lipid molecule

   

5(S),15(R)-DiHETE(1-)

5(S),15(S)-Dihydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid

C20H32O4 (336.23)


5(S),15(R)-DiHETE(1-) is considered to be practically insoluble (in water) and acidic

   

8,20-DiHETE

(5Z,11Z,14Z)-8,20-dihydroxyicosa-5,9,11,14-tetraenoic acid

C20H32O4 (336.23)


8,20-DiHETE is also known as 8,20-Dihydroxy-5Z,9E,11Z,14Z-eicosatetraenoate or (5Z,9E,11Z,14Z)-8,20-Dihydroxyicosatetraenoate. 8,20-DiHETE is considered to be practically insoluble (in water) and acidic

   

15-HPETE

15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid, (S)-(e,Z,Z,Z)-isomer

C20H32O4 (336.23)


15-HPETE is also known as 15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid or (6E,8Z,11Z,14Z)-15-Hydroperoxyicosatetraenoate. 15-HPETE is considered to be practically insoluble (in water) and acidic. 15-HPETE is an eicosanoid lipid molecule

   

5(S),15(R)-DiHETE

(5S,6E,8Z,11Z,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoic acid

C20H32O4 (336.23)


5(S),15(R)-DiHETE is also known as 5S,15R-DiHETE or 5S,15R-Dihydroxy-6E,8Z,11Z,13E-eicosatetraenoate. 5(S),15(R)-DiHETE is considered to be practically insoluble (in water) and acidic. 5(S),15(R)-DiHETE is an eicosanoid lipid molecule

   

Prostaglandin C1(1-)

7-[2-(3-hydroxyoct-1-en-1-yl)-5-oxocyclopent-2-en-1-yl]heptanoic acid

C20H32O4 (336.23)


Prostaglandin C1(1-) is also known as Prostaglandin C1 anion. Prostaglandin C1(1-) is considered to be practically insoluble (in water) and acidic

   

(+/-)-11,12-Dihydroxy-5Z,8Z,14Z,17Z-eicosatetraenoic acid

(+/-)-11,12-dihydroxy-5Z,8Z,14Z,17Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

12-Hydroperoxy-5,8,10,14-eicosatetraenoic acid

12-L-Hydroperoxy-5,8,10,14-eicosatetraenoic acid

C20H32O4 (336.23)


   

12-Hydroperoxy-icosatetraenoic acid

12-hydroperoxyicosa-2,4,6,8-tetraenoic acid

C20H32O4 (336.23)


   

15-Hydroperoxyicosa-5,8,11,13-tetraenoic acid

15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid, (S)-(e,Z,Z,Z)-isomer

C20H32O4 (336.23)


   

5-Hydroperoxyeicosatetraenoic acid

5-hydroperoxyicosa-2,4,6,8-tetraenoic acid

C20H32O4 (336.23)


   

5-Hydroperoxyicosa-6,8,11,14-tetraenoic acid

cis,trans-5-Hydroperoxy-6,8,11,14-eicosatetraenoic acid

C20H32O4 (336.23)


Arachidonic acid 5-hydroperoxide (5-hydroperoxyeicosatetraenoic acid, 5-HPETE) is an intermediate in the production of leukotriene A4 from arachidonic acid. [HMDB]

   

8S,15S-Dihydroxy-5Z,9E,11Z,13E-eicosatetraenoic acid

8S,15S-dihydroxy-5Z,9E,11Z,13E-eicosatetraenoic acid

C20H32O4 (336.23)


   

(3E,7E,11R,12E)-11-Hydroxy-3,7,11,15-tetramethyl-14-oxohexadeca-3,7,12-trienoic acid

(3E,7E,11R,12E)-11-Hydroxy-3,7,11,15-tetramethyl-14-oxohexadeca-3,7,12-trienoic acid

C20H32O4 (336.23)


   

Dihydroxyeicosatetraenoic acid

2,3-dihydroxyicosa-2,4,6,8-tetraenoic acid

C20H32O4 (336.23)


   

Prostaglandin A-1

7-{2-[(1Z)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-3-en-1-yl}heptanoic acid

C20H32O4 (336.23)


Prostaglandin a-1 is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Prostaglandin a-1 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Prostaglandin a-1 can be found in garden onion and soft-necked garlic, which makes prostaglandin a-1 a potential biomarker for the consumption of these food products.

   

Prostaglandin B-1

7-{2-[(1Z)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoic acid

C20H32O4 (336.23)


Prostaglandin b-1 is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Prostaglandin b-1 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Prostaglandin b-1 can be found in soft-necked garlic, which makes prostaglandin b-1 a potential biomarker for the consumption of this food product.

   

[9]-Gingerol

5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)tridecan-3-one

C20H32O4 (336.23)


[9]-gingerol is a member of the class of compounds known as gingerols. Gingerols are compounds containing a gingerol moiety, which is structurally characterized by a 4-hydroxy-3-methoxyphenyl group substituted at the C6 carbon atom by a 5-hydroxy-alkane-3-one. [9]-gingerol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). [9]-gingerol can be found in ginger, which makes [9]-gingerol a potential biomarker for the consumption of this food product.

   

Methyl-[8]-gingerol

1-(3,4-dimethoxyphenyl)-5-hydroxydodecan-3-one

C20H32O4 (336.23)


Methyl-[8]-gingerol is a member of the class of compounds known as dimethoxybenzenes. Dimethoxybenzenes are organic aromatic compounds containing a monocyclic benzene moiety carrying exactly two methoxy groups. Methyl-[8]-gingerol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Methyl-[8]-gingerol can be found in ginger, which makes methyl-[8]-gingerol a potential biomarker for the consumption of this food product.

   

pinifolic acid

pinifolic acid

C20H32O4 (336.23)


   

Constanolactone A

Constanolactone A

C20H32O4 (336.23)


   

ent-14S,15-Dihydroxy-1(10),13(16)-halimadien-18-oic acid

ent-14S,15-Dihydroxy-1(10),13(16)-halimadien-18-oic acid

C20H32O4 (336.23)


   

17-Hydroxygrindelic acid

17-Hydroxygrindelic acid

C20H32O4 (336.23)


   

7alpha-Hydroxy-8(17)-dehydrogrindelic acid

7alpha-Hydroxy-8(17)-dehydrogrindelic acid

C20H32O4 (336.23)


   

Dihydroflexibilide

(-)-Dihydroflexibilide

C20H32O4 (336.23)


   

18-Hydroxygrindelic acid

18-Hydroxygrindelic acid

C20H32O4 (336.23)


   

Henrilabdane B

Henrilabdane B

C20H32O4 (336.23)


   

6alpha-Hydroxygrindelic acid

6alpha-Hydroxygrindelic acid

C20H32O4 (336.23)


   

DTXSID50702840

DTXSID50702840

C20H32O4 (336.23)


   

(E)-ent-3beta-3,18-Dihydroxy-8(17),13-labdadien-15-oic acid

(E)-ent-3beta-3,18-Dihydroxy-8(17),13-labdadien-15-oic acid

C20H32O4 (336.23)


   

8alphaH,ent-3beta-Hydroxy-17-oxo-13Z-labden-15oic acid

8alphaH,ent-3beta-Hydroxy-17-oxo-13Z-labden-15oic acid

C20H32O4 (336.23)


   

Haplociliatic acid

Haplociliatic acid

C20H32O4 (336.23)


   

Leoheteronone D

Leoheteronone D

C20H32O4 (336.23)


   

8-Senecioyloxy-14-thapsanol

8-Senecioyloxy-14-thapsanol

C20H32O4 (336.23)


   

Dunniana acid A

(+)-Dunniana acid A

C20H32O4 (336.23)


   

(13S)-7-Labdene-15,18-dioic acid

(13S)-7-Labdene-15,18-dioic acid

C20H32O4 (336.23)


   

1,9-Dideoxy-7-deacetylforskolin

1,9-Dideoxy-7-deacetylforskolin

C20H32O4 (336.23)


   

Cladiellaperoxide

Cladiellaperoxide

C20H32O4 (336.23)


   

2alpha,3alpha,4beta-Trihydroxy-ent-cleroda-13(16),14-diene-15,16-oxide

2alpha,3alpha,4beta-Trihydroxy-ent-cleroda-13(16),14-diene-15,16-oxide

C20H32O4 (336.23)


   

Rubescensin I

Rubescensin I

C20H32O4 (336.23)


   

Deacetylvitexilactone

(+)-Deacetylvitexilactone

C20H32O4 (336.23)


   

ent-8alphaH,13E-Labdene-15,17-dioic acid

ent-8alphaH,13E-Labdene-15,17-dioic acid

C20H32O4 (336.23)


   

Marrubenol

Marrubenol

C20H32O4 (336.23)


   

6alpha-Hydroxy-7-oxo-13,14-dihydrokolavenic acid

6alpha-Hydroxy-7-oxo-13,14-dihydrokolavenic acid

C20H32O4 (336.23)


   

Topsentolide B3

Topsentolide B3

C20H32O4 (336.23)


   

2beta-Hydroxy-2alpha-colensenoic acid

2beta-Hydroxy-2alpha-colensenoic acid

C20H32O4 (336.23)


   

Havardic acid A

Havardic acid A

C20H32O4 (336.23)


   

Rubescensin P

Rubescensin P

C20H32O4 (336.23)


   

Crassumolide E

Crassumolide E

C20H32O4 (336.23)


   

Broussonetone B

Broussonetone B

C20H32O4 (336.23)


   

Vitexifolin E

Vitexifolin E

C20H32O4 (336.23)


   

(E)-ent-2alpha-17-Dihydroxy-7,13-labdienepentenoic acid

(E)-ent-2alpha-17-Dihydroxy-7,13-labdienepentenoic acid

C20H32O4 (336.23)


   

Leucasdin C

Leucasdin C

C20H32O4 (336.23)


   

8alpha,12R-Epoxy-6beta,11alpha-dihydroxy-13E-labden-1-one

8alpha,12R-Epoxy-6beta,11alpha-dihydroxy-13E-labden-1-one

C20H32O4 (336.23)


   

[1-Acetyloctahydro-4-hydroxy-7-(1-methylethyl)-1H-inden-4-yl]methyl ester 2-methyl-2-butenoic acid

[1-Acetyloctahydro-4-hydroxy-7-(1-methylethyl)-1H-inden-4-yl]methyl ester 2-methyl-2-butenoic acid

C20H32O4 (336.23)


   

ent-16,17-Hydroxy-7,13Z-Labdadiene-15-oic acid

ent-16,17-Hydroxy-7,13Z-Labdadiene-15-oic acid

C20H32O4 (336.23)


   

Cervicol

Cervicol

C20H32O4 (336.23)


   

Sterebin J

Sterebin J

C20H32O4 (336.23)


   

Acanthoaustralide

Acanthoaustralide

C20H32O4 (336.23)


   

3beta-Hydroxygrindelic acid

3beta-Hydroxygrindelic acid

C20H32O4 (336.23)


   

Coleosol

Coleosol

C20H32O4 (336.23)


   

2beta,3beta-Dihydroxy-8(17),13Z-labdadien-15-oic acid

2beta,3beta-Dihydroxy-8(17),13Z-labdadien-15-oic acid

C20H32O4 (336.23)


   

Albopilosin G

Albopilosin G

C20H32O4 (336.23)


   

8-Angeloyloxy-14-thapsanol

8-Angeloyloxy-14-thapsanol

C20H32O4 (336.23)


   

Scapanin B

Scapanin B

C20H32O4 (336.23)


   

Dimerobrasiolide

Dimerobrasiolide

C20H32O4 (336.23)


   

(E,E,E,E)-1,5,15-Trihydroxy-2,6,10,13-phytatetraen-12-one

(E,E,E,E)-1,5,15-Trihydroxy-2,6,10,13-phytatetraen-12-one

C20H32O4 (336.23)


   

6E-Geranylgeraniol-19-oic acid

6E-Geranylgeraniol-19-oic acid

C20H32O4 (336.23)


   

1,15-Dihydroxy-12-oxo-2,6,13-phytatrien-19-al

1,15-Dihydroxy-12-oxo-2,6,13-phytatrien-19-al

C20H32O4 (336.23)


   

13R,14R-Epoxy-15S-hydroxy-5Z,8Z,11Z-eicosatrienoic acid

13R,14R-Epoxy-15S-hydroxy-5Z,8Z,11Z-eicosatrienoic acid

C20H32O4 (336.23)


   

8S,9S-Epoxy-7S-hydroxy-5Z,11Z,14Z-eicosatrienoic acid

8S,9S-Epoxy-7S-hydroxy-5Z,11Z,14Z-eicosatrienoic acid

C20H32O4 (336.23)


   

Decahydro-alpha,4a-dimethyl-8-methylene-7-(3-methyl-1-oxobutoxy)-2-naphthaleneacetic acid

Decahydro-alpha,4a-dimethyl-8-methylene-7-(3-methyl-1-oxobutoxy)-2-naphthaleneacetic acid

C20H32O4 (336.23)


   

ent-3beta,7beta-Dihydroxy-8(17),13-labdadiene-15-oic acid

ent-3beta,7beta-Dihydroxy-8(17),13-labdadiene-15-oic acid

C20H32O4 (336.23)


   

16-Hydroxybacchasalicylic acid

16-Hydroxybacchasalicylic acid

C20H32O4 (336.23)


   

ent-13,14-Epoxy-15-hydroxy-1(10)-halimen-18-oic acid

ent-13,14-Epoxy-15-hydroxy-1(10)-halimen-18-oic acid

C20H32O4 (336.23)


   

Porwenin A

Porwenin A

C20H32O4 (336.23)


   

8S,9S-Epoxy-7R-hydroxy-5Z,11Z,14Z-eicosatrienoic acid

8S,9S-Epoxy-7R-hydroxy-5Z,11Z,14Z-eicosatrienoic acid

C20H32O4 (336.23)


   

6beta-Hydroxygrindelic acid

6beta-Hydroxygrindelic acid

C20H32O4 (336.23)


   

19-Hydroxygrindelic acid

19-Hydroxygrindelic acid

C20H32O4 (336.23)


   

8betaH,ent-3beta-Hydroxy-17-oxo-13Z-labden-15oic acid

8betaH,ent-3beta-Hydroxy-17-oxo-13Z-labden-15oic acid

C20H32O4 (336.23)


   

ent-8alphaH,13Z-Labdene-15,17-dioic acid

ent-8alphaH,13Z-Labdene-15,17-dioic acid

C20H32O4 (336.23)


   

Junicedric acid

Junicedric acid

C20H32O4 (336.23)


   

Oliveric acid

Oliveric acid

C20H32O4 (336.23)


   

ent-14R,15-Dihydroxy-1(10),13(16)-halimadien-18-oic acid methyl ester

ent-14R,15-Dihydroxy-1(10),13(16)-halimadien-18-oic acid methyl ester

C20H32O4 (336.23)


   

Cistodioic acid

Cistodioic acid

C20H32O4 (336.23)


   

ent-16α,17-Dihydroxy-19-kauranoic acid

(5beta,8alpha,9beta,10alpha)-16,17-dihydroxykauran-18-oic acid

C20H32O4 (336.23)


A ent-kaurane diterpenoid that is ent-kaurane-19-oic acid substituted by hydroxy groups at positions 16 and 17 (the 16beta stereoisomer). It is isolated from Helianthus sp. and Annona squamosa and exhibits anti-HIV activity.

   

1,19-Dihydroxy-2,6,10,14-phytatetraen-18-oic acid

1,19-Dihydroxy-2,6,10,14-phytatetraen-18-oic acid

C20H32O4 (336.23)


   

15,16-Dihydroxy-8(14)-pimaren-19-oic acid

15,16-Dihydroxy-8(14)-pimaren-19-oic acid

C20H32O4 (336.23)


   

Smaditerpenic acid B

Smaditerpenic acid B

C20H32O4 (336.23)


   

12-Hydroxycupressic acid

12-Hydroxycupressic acid

C20H32O4 (336.23)


   

6-Hydroxy-2,6-dimethyl-5-(2-oxoheptyl)-3-(2-oxopentyl)-2-cyclohexen-1-one

6-Hydroxy-2,6-dimethyl-5-(2-oxoheptyl)-3-(2-oxopentyl)-2-cyclohexen-1-one

C20H32O4 (336.23)


   

Prostaglandin F2α 1-11-lactone

Prostaglandin F2α 1-11-lactone

C20H32O4 (336.23)


   

Dihydroagathic acid

Dihydroagathic acid

C20H32O4 (336.23)


   

(2E,6E,10Z)-12-hydroxy-10-(hydroxymethyl)-6-methyl-2-(4-methylpent-3-enyl)dodeca-2,6,10-trienoic acid

(2E,6E,10Z)-12-hydroxy-10-(hydroxymethyl)-6-methyl-2-(4-methylpent-3-enyl)dodeca-2,6,10-trienoic acid

C20H32O4 (336.23)


   

[(2Z)-6-hydroxy-2,6-dimethylocta-2,7-dienyl] 2-(5-ethenyl-5-methyloxolan-2-yl)propanoate

[(2Z)-6-hydroxy-2,6-dimethylocta-2,7-dienyl] 2-(5-ethenyl-5-methyloxolan-2-yl)propanoate

C20H32O4 (336.23)


   

(Z)-5-[(1S,2R,4aR,8aR)-5-(hydroxymethyl)-1,2,4a-trimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-(hydroxymethyl)pent-2-enoic acid

(Z)-5-[(1S,2R,4aR,8aR)-5-(hydroxymethyl)-1,2,4a-trimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-(hydroxymethyl)pent-2-enoic acid

C20H32O4 (336.23)


   

Q63408869

Q63408869

C20H32O4 (336.23)


   

5(S),6(R)-diHETE

(5R,6S)-3-[(DIPHENOXYPHOSPHINYL)OXY]-6-[(1R)-1-HYDROXYETHYL]-7-OXO-1-AZABICYCLO[3.2.0]HEPT-2-ENE-2-CARBOXYLICACID(4-NITROPHENYL)METHYLESTER

C20H32O4 (336.23)


   

Hepoxilin a

8-Hydroxy-11,12-epoxyeicosa-5,9,14-trienoic acid

C20H32O4 (336.23)


   

grayanotoxin XVIII

grayanotoxin XVIII

C20H32O4 (336.23)


   

8-O-angeloylshiromodiol|8-O-Tigloylshiromodiol|shiromodiol-8-O-angelate

8-O-angeloylshiromodiol|8-O-Tigloylshiromodiol|shiromodiol-8-O-angelate

C20H32O4 (336.23)


   

3-O-(2-methylbutyryl)-3-epi-cuauhtemone

3-O-(2-methylbutyryl)-3-epi-cuauhtemone

C20H32O4 (336.23)


   

CHEMBL3416165

CHEMBL3416165

C20H32O4 (336.23)


   

(16alpha)-16,17,18-trihydroxyphyllocladan-3-one|(4alpha,5alpha,9alpha,10beta,16alpha)-16,17,18-trihydroxykauran-3-one

(16alpha)-16,17,18-trihydroxyphyllocladan-3-one|(4alpha,5alpha,9alpha,10beta,16alpha)-16,17,18-trihydroxykauran-3-one

C20H32O4 (336.23)


   

beta-1,15-dihydro-8,10-di-epi-chandonanthone

beta-1,15-dihydro-8,10-di-epi-chandonanthone

C20H32O4 (336.23)


   

(4R,5E,8R,9E,11S)-4,8-dimethyl-8-hydroxy-11-isopropyl-14-oxo-5,9-pentadecadien-4-olide

(4R,5E,8R,9E,11S)-4,8-dimethyl-8-hydroxy-11-isopropyl-14-oxo-5,9-pentadecadien-4-olide

C20H32O4 (336.23)


   

NCI60_007941

NCI60_007941

C20H32O4 (336.23)


   

wyethic acid

wyethic acid

C20H32O4 (336.23)


   

(2R,3R,4aR,7R,8R,8aR)-octahydro-3-hydroxy-3-(hydroxymethyl)-8-methyl-7-(1-methylethenyl)-2H-2,4a-ethanonaphthalene-8-propanoic acid|3-[(1R,4R,5R,6R,8R,9R)-9-hydroxy-9-(hydroxymethyl)-5-methyl-4-(1-methylethenyl)tricyclo[6.2.2.01,6]dodec-5-yl]propanoic acid|agallochaol C

(2R,3R,4aR,7R,8R,8aR)-octahydro-3-hydroxy-3-(hydroxymethyl)-8-methyl-7-(1-methylethenyl)-2H-2,4a-ethanonaphthalene-8-propanoic acid|3-[(1R,4R,5R,6R,8R,9R)-9-hydroxy-9-(hydroxymethyl)-5-methyl-4-(1-methylethenyl)tricyclo[6.2.2.01,6]dodec-5-yl]propanoic acid|agallochaol C

C20H32O4 (336.23)


   

(+)-cis,anti,cis-3-hydroxy-1,8,12,12-tetramethyl-4-oxatricyclo[6.4.0.02,6]-dodecan-9-yl senecioate|(1R,2R,3S,6R,8R,9R)-3-hydroxy-1,8,12,12-tetramethyl-4-oxatricyclo[6.4.0.0(2,6)]dodecan-9-yl 3-methylbut-2-enoate|10-hydroxy-10,11-epoxythapsan-5-yl senecioate|3-Senecioyloxy-14,15-epoxythapsan-14-ol

(+)-cis,anti,cis-3-hydroxy-1,8,12,12-tetramethyl-4-oxatricyclo[6.4.0.02,6]-dodecan-9-yl senecioate|(1R,2R,3S,6R,8R,9R)-3-hydroxy-1,8,12,12-tetramethyl-4-oxatricyclo[6.4.0.0(2,6)]dodecan-9-yl 3-methylbut-2-enoate|10-hydroxy-10,11-epoxythapsan-5-yl senecioate|3-Senecioyloxy-14,15-epoxythapsan-14-ol

C20H32O4 (336.23)


   

Sandaracopimaradien-2alpha,3beta,18,19-tetrol

Sandaracopimaradien-2alpha,3beta,18,19-tetrol

C20H32O4 (336.23)


   

8-O-Senecioylshiromodiol

8-O-Senecioylshiromodiol

C20H32O4 (336.23)


   

12-hydroxy-8-O-angeloyltovarol

12-hydroxy-8-O-angeloyltovarol

C20H32O4 (336.23)


   

3,6-Dihydroxy-2-(1-oxo-10-tetradecenyl)-2-cyclohexen-1-one

3,6-Dihydroxy-2-(1-oxo-10-tetradecenyl)-2-cyclohexen-1-one

C20H32O4 (336.23)


   

14,15-dihydroxyicosa-5,8,10,12-tetraenoic acid

14,15-dihydroxyicosa-5,8,10,12-tetraenoic acid

C20H32O4 (336.23)


   

7beta,8-dihydroxy-15-isopimaren-18-oic acid

7beta,8-dihydroxy-15-isopimaren-18-oic acid

C20H32O4 (336.23)


   

NCI60_002341

NCI60_002341

C20H32O4 (336.23)


   

(ent-3beta,4alpha,5alpha)-3,4-Dihydroxy-13-cleroden-15,16-olide|3alpha,4beta-dihydroxy-5beta,10beta-cis-17alpha,20alpha-cleroda-13(14)-en-15,16-olide

(ent-3beta,4alpha,5alpha)-3,4-Dihydroxy-13-cleroden-15,16-olide|3alpha,4beta-dihydroxy-5beta,10beta-cis-17alpha,20alpha-cleroda-13(14)-en-15,16-olide

C20H32O4 (336.23)


   

3beta-angeloyloxy-4,5-epoxy-6beta-hydroxygermacr-1(10)-ene

3beta-angeloyloxy-4,5-epoxy-6beta-hydroxygermacr-1(10)-ene

C20H32O4 (336.23)


   

Udoteatrial

Udoteatrial

C20H32O4 (336.23)


   

hydroperoxyclerodane

hydroperoxyclerodane

C20H32O4 (336.23)


   

Floridiolic acid

Floridiolic acid

C20H32O4 (336.23)


   

19,20-dihydroxy-16-oxo-geranyl nerol

19,20-dihydroxy-16-oxo-geranyl nerol

C20H32O4 (336.23)


   

dichotone

dichotone

C20H32O4 (336.23)


   

5-Hydroxy-14-oxo-3-visciden-20-oic acid

5-Hydroxy-14-oxo-3-visciden-20-oic acid

C20H32O4 (336.23)


   

2H-1-Benzoxacyclohexadecin-16(18aH)-one, 3,4,5,6,7,8,9,10,11,12,13,14-dodecahydro-18,18a-dihydroxy-2-methyl-

2H-1-Benzoxacyclohexadecin-16(18aH)-one, 3,4,5,6,7,8,9,10,11,12,13,14-dodecahydro-18,18a-dihydroxy-2-methyl-

C20H32O4 (336.23)


   

11-Epimer,17,18-dihydro-Constanolactone G

11-Epimer,17,18-dihydro-Constanolactone G

C20H32O4 (336.23)


   

NSC302286

NSC302286

C20H32O4 (336.23)


   

(ent-4alpha,16R)-4,16-Dihydroxy-13-cleroden-15,16-olide|4beta,16alpha-dihydroxyclerod-13(14)Z-en-15,16-olide

(ent-4alpha,16R)-4,16-Dihydroxy-13-cleroden-15,16-olide|4beta,16alpha-dihydroxyclerod-13(14)Z-en-15,16-olide

C20H32O4 (336.23)


   

ent-6alpha,16alpha,17-trihydroxyatisan-3-one

ent-6alpha,16alpha,17-trihydroxyatisan-3-one

C20H32O4 (336.23)


   

ent-12alpha,16-epoxy-2beta,15alpha,19-trihydroxypimar-8(14)-ene|ent-12??,16-Epoxy-2??,15??,19-trihydroxypimar-8(14)-ene

ent-12alpha,16-epoxy-2beta,15alpha,19-trihydroxypimar-8(14)-ene|ent-12??,16-Epoxy-2??,15??,19-trihydroxypimar-8(14)-ene

C20H32O4 (336.23)


   

MEGxp0_000634

MEGxp0_000634

C20H32O4 (336.23)


   

ent-12alpha,16-epoxy-2beta,15alpha,19-trihydroxypimar-8-ene|ent-12??,16-Epoxy-2??,15??,19-trihydroxypimar-8-ene

ent-12alpha,16-epoxy-2beta,15alpha,19-trihydroxypimar-8-ene|ent-12??,16-Epoxy-2??,15??,19-trihydroxypimar-8-ene

C20H32O4 (336.23)


   

methyl-4alpha-hydroxy-18-norgrindeloate

methyl-4alpha-hydroxy-18-norgrindeloate

C20H32O4 (336.23)


   

(15S)-15,16-Dihydroxy-3,4-seco-enantio-pimara-4(18),7-dien-3-oic acid

(15S)-15,16-Dihydroxy-3,4-seco-enantio-pimara-4(18),7-dien-3-oic acid

C20H32O4 (336.23)


   

grayanototoxin-XVIII|Grayanotoxin XVIII|grayanotoxin-XVIII

grayanototoxin-XVIII|Grayanotoxin XVIII|grayanotoxin-XVIII

C20H32O4 (336.23)


   

1-Oxojaeskeanadiol isovalerate

1-Oxojaeskeanadiol isovalerate

C20H32O4 (336.23)


   

13,14-dihydroxy-mulin-11-en-20-oic acid|14-dihydroxymulin-11-en-20-oic acid|mulin-11-ene-13alpha,14alpha-dihydroxy-20-oic acid

13,14-dihydroxy-mulin-11-en-20-oic acid|14-dihydroxymulin-11-en-20-oic acid|mulin-11-ene-13alpha,14alpha-dihydroxy-20-oic acid

C20H32O4 (336.23)


   

Isoacanthoaustralide

Isoacanthoaustralide

C20H32O4 (336.23)


   

(1S,6R)-1-senecioyloxy-6,14-epoxythapsan-15-ol

(1S,6R)-1-senecioyloxy-6,14-epoxythapsan-15-ol

C20H32O4 (336.23)


   

12alpha,13beta-dihydroxyabiet-8(14)-en-18-oic acid

12alpha,13beta-dihydroxyabiet-8(14)-en-18-oic acid

C20H32O4 (336.23)


   

Halicholactone

Halicholactone

C20H32O4 (336.23)


   

poltulene|portulene

poltulene|portulene

C20H32O4 (336.23)


   

(1alpha,4alpha,9alpha)-1,4,9-Trihydroxy-2-dolasten-6-one|(1R*,4S*,5R*,8S*,9S*,12S*,14S*)-trihydroxydolasta-2-en-6-one

(1alpha,4alpha,9alpha)-1,4,9-Trihydroxy-2-dolasten-6-one|(1R*,4S*,5R*,8S*,9S*,12S*,14S*)-trihydroxydolasta-2-en-6-one

C20H32O4 (336.23)


   

Premarrubenol

Premarrubenol

C20H32O4 (336.23)


   

(1S*,2R*,3S*,4S*,6R*,7R*,8R*,11R*)-2,11:8,11-diepoxy-12(20)-capnosene-4,6-diol

(1S*,2R*,3S*,4S*,6R*,7R*,8R*,11R*)-2,11:8,11-diepoxy-12(20)-capnosene-4,6-diol

C20H32O4 (336.23)


   

(2R,3aS,7aR,8S,10aS,10bR)-2-ethenyldecahydro-8-(2-hydroxypropan-2-yl)-2,7a,10a-trimethyloxepino[2,3,4-de]chromen-5(2H)-one|agallochaexcoerin A

(2R,3aS,7aR,8S,10aS,10bR)-2-ethenyldecahydro-8-(2-hydroxypropan-2-yl)-2,7a,10a-trimethyloxepino[2,3,4-de]chromen-5(2H)-one|agallochaexcoerin A

C20H32O4 (336.23)


   

18,19-dihydroxy-ent-cleroda-3,13E-dien-15-oic acid

18,19-dihydroxy-ent-cleroda-3,13E-dien-15-oic acid

C20H32O4 (336.23)


   

lapidol 2-methylbutyrate

lapidol 2-methylbutyrate

C20H32O4 (336.23)


   

3-ethyl-2-methoxy-5-methyl-6-(9-oxoundecyl)pyran-4-one

3-ethyl-2-methoxy-5-methyl-6-(9-oxoundecyl)pyran-4-one

C20H32O4 (336.23)


   

15,16,18-trihydroxy-2-oxo-ent-pimar-8(14)-ene

15,16,18-trihydroxy-2-oxo-ent-pimar-8(14)-ene

C20H32O4 (336.23)


   

Garberic acid

Garberic acid

C20H32O4 (336.23)


   

ent-3beta,7alpha,18-Trihydroxy-15beta,16-epoxy-kauran

ent-3beta,7alpha,18-Trihydroxy-15beta,16-epoxy-kauran

C20H32O4 (336.23)


   

stolonidiol

stolonidiol

C20H32O4 (336.23)


   

NSC687956

NSC687956

C20H32O4 (336.23)


   

13,14-epoxyimbricatolic acid

13,14-epoxyimbricatolic acid

C20H32O4 (336.23)


   

13S,14S-Epoxide-(8alpha,12R,13E)-8,12-Epoxy-13-labdene-15,16-diol

13S,14S-Epoxide-(8alpha,12R,13E)-8,12-Epoxy-13-labdene-15,16-diol

C20H32O4 (336.23)


   

(9beta,16alpha)-9,16,17-trihydroxy-ent-kauran-2-one

(9beta,16alpha)-9,16,17-trihydroxy-ent-kauran-2-one

C20H32O4 (336.23)


   

ent-3S,16S,17-Trihydroxy-kauran-2-one

ent-3S,16S,17-Trihydroxy-kauran-2-one

C20H32O4 (336.23)


   

(ent-6alpha)-6,17-Dihydroxy-3,4-seco-15-beyeren-3-oic acid|Ent-6alpha.17-dihydroxy-3.4-secobeyer-15-en-3-oic-saeure

(ent-6alpha)-6,17-Dihydroxy-3,4-seco-15-beyeren-3-oic acid|Ent-6alpha.17-dihydroxy-3.4-secobeyer-15-en-3-oic-saeure

C20H32O4 (336.23)


   

7alpha,8alpha-Epoxy-7,8-dihydro-grindelsaeure

7alpha,8alpha-Epoxy-7,8-dihydro-grindelsaeure

C20H32O4 (336.23)


   

Sarcodiol

Sarcodiol

C20H32O4 (336.23)


   

(1R*,2S*,3R*,4S*,7S*,8S*,11R*,12S*)-1,3-epoxy-4,8-dihydroxybasman-6-one

(1R*,2S*,3R*,4S*,7S*,8S*,11R*,12S*)-1,3-epoxy-4,8-dihydroxybasman-6-one

C20H32O4 (336.23)


   

(5R,13(15)E,16Z)-13(15),16-Spatadiene-5,14,18,19-tetrol

(5R,13(15)E,16Z)-13(15),16-Spatadiene-5,14,18,19-tetrol

C20H32O4 (336.23)


   

16beta,18-dihydroxyaphidicolan-17-oic acid

16beta,18-dihydroxyaphidicolan-17-oic acid

C20H32O4 (336.23)


   

11-deoxy Prostaglandin E2

11-deoxy Prostaglandin E2

C20H32O4 (336.23)


   

(ent-2??,7??,13E) 2,7-Dihydroxy-3,13-clerodadien-15-oic acid

(ent-2??,7??,13E) 2,7-Dihydroxy-3,13-clerodadien-15-oic acid

C20H32O4 (336.23)


   

7,8-dihydroflabellatene A

7,8-dihydroflabellatene A

C20H32O4 (336.23)


   

pterokaurane P3

pterokaurane P3

C20H32O4 (336.23)


   

Podoblastin B

Podoblastin B

C20H32O4 (336.23)


   

2beta,14beta,15alpha,18-tetrahydroxy-ent-kaur-16-ene|pterokaurane M2

2beta,14beta,15alpha,18-tetrahydroxy-ent-kaur-16-ene|pterokaurane M2

C20H32O4 (336.23)


   

ent-17,18-dihydroxykauran-19-oic acid|Siegesbeckic acid

ent-17,18-dihydroxykauran-19-oic acid|Siegesbeckic acid

C20H32O4 (336.23)


   

1,18-dihydroxydecipi-14-en-19-oic acid

1,18-dihydroxydecipi-14-en-19-oic acid

C20H32O4 (336.23)


   

7,8-dihydro-8,15-dihydroabietic acid

7,8-dihydro-8,15-dihydroabietic acid

C20H32O4 (336.23)


   

(4R,5R,6R)-4,5-epoxy-11-hydroxygermacr-1(10)-en-6-yl (Z)-2-methylbut-2-enoate

(4R,5R,6R)-4,5-epoxy-11-hydroxygermacr-1(10)-en-6-yl (Z)-2-methylbut-2-enoate

C20H32O4 (336.23)


   

16beta,17-dihydroxyaphidicolan-18-oic acid

16beta,17-dihydroxyaphidicolan-18-oic acid

C20H32O4 (336.23)


   

2-Hydroxy-5-methoxy-3-tridecylcyclohexa-2,5-diene-1,4-dione

2-Hydroxy-5-methoxy-3-tridecylcyclohexa-2,5-diene-1,4-dione

C20H32O4 (336.23)


   

(10E)-3,12-dihydroxy-3,7,11,15-tetramethyl-1,10,14-hexadecatrien-5,13-dione

(10E)-3,12-dihydroxy-3,7,11,15-tetramethyl-1,10,14-hexadecatrien-5,13-dione

C20H32O4 (336.23)


   

(Z)-2-Methylbut-2-enoic acid (1R,2S,4aR,7R,8aR)-1-hydroxy-7-isopropyl-1,4a-dimethyl-6-oxodecahydronaphthalen-2-yl ester|3beta-angeloyloxy-4beta-hydroxy-7alpha-H-eudesman-8-one|3beta-Angeloyloxy-4beta-hydroxyeudesman-8-one

(Z)-2-Methylbut-2-enoic acid (1R,2S,4aR,7R,8aR)-1-hydroxy-7-isopropyl-1,4a-dimethyl-6-oxodecahydronaphthalen-2-yl ester|3beta-angeloyloxy-4beta-hydroxy-7alpha-H-eudesman-8-one|3beta-Angeloyloxy-4beta-hydroxyeudesman-8-one

C20H32O4 (336.23)


   

1beta,6alpha,7alpha,9alpha-tetrahydroxypimara-8(14),15-diene|spaeropsidin F|sphaeropsidin F

1beta,6alpha,7alpha,9alpha-tetrahydroxypimara-8(14),15-diene|spaeropsidin F|sphaeropsidin F

C20H32O4 (336.23)


   

(5Z,8Z,10E,12S,14Z,19R)-12,19-Dihydroxy-5,8,10,14-eicosatetraenoic acid|(5Z,8Z,10E,12S,14Z,19S)-12,19-Dihydroxy-5,8,10,14-eicosatetraenoic acid

(5Z,8Z,10E,12S,14Z,19R)-12,19-Dihydroxy-5,8,10,14-eicosatetraenoic acid|(5Z,8Z,10E,12S,14Z,19S)-12,19-Dihydroxy-5,8,10,14-eicosatetraenoic acid

C20H32O4 (336.23)


   

8-Daucene-2,4,6-triol-2-Angeloyl

8-Daucene-2,4,6-triol-2-Angeloyl

C20H32O4 (336.23)


   

scapanin G

scapanin G

C20H32O4 (336.23)


   

(2S,13R)-2,13-dihydroxy-1(10),14-ent-halimadien-18-oic acid

(2S,13R)-2,13-dihydroxy-1(10),14-ent-halimadien-18-oic acid

C20H32O4 (336.23)


   

(13E)-15, 16-Dihydroxy-8(17), 13-labdadien-19-oic acid

(13E)-15, 16-Dihydroxy-8(17), 13-labdadien-19-oic acid

C20H32O4 (336.23)


   

7beta,13S-dihydroxylabda-8(17),14-dien-19-oic acid

7beta,13S-dihydroxylabda-8(17),14-dien-19-oic acid

C20H32O4 (336.23)


   

ent-5alpha,2-oxodolabr-3-ene-3,15,16-triol

ent-5alpha,2-oxodolabr-3-ene-3,15,16-triol

C20H32O4 (336.23)


   

furanocembranoid 3

furanocembranoid 3

C20H32O4 (336.23)


   

ballodiolic acid

ballodiolic acid

C20H32O4 (336.23)


   

13beta,15,18-trihydroxyabiet-8(14)-en-7-one|13beta,18-dihydroxy-8(14)-abieten-7-one

13beta,15,18-trihydroxyabiet-8(14)-en-7-one|13beta,18-dihydroxy-8(14)-abieten-7-one

C20H32O4 (336.23)


   

3beta,7beta,14-trihydroxy-15,16-epoxylabda-8(17),12Z-dien|coronarin I

3beta,7beta,14-trihydroxy-15,16-epoxylabda-8(17),12Z-dien|coronarin I

C20H32O4 (336.23)


   

(2S,7S,8R,11S,12R,3E)-8,12-dihydroxy-7,11:2,16-bisepoxycembra-1(15),3-diene|crassumol B

(2S,7S,8R,11S,12R,3E)-8,12-dihydroxy-7,11:2,16-bisepoxycembra-1(15),3-diene|crassumol B

C20H32O4 (336.23)


   

ent-16beta-hydroxykauran-3,4-lactone

ent-16beta-hydroxykauran-3,4-lactone

C20H32O4 (336.23)


   

16beta,17,19-trihydroxy-3-oxo-atisane

16beta,17,19-trihydroxy-3-oxo-atisane

C20H32O4 (336.23)


   

monaphilone C

monaphilone C

C20H32O4 (336.23)


   

(1R,2R,6R,7R,8R,9R,10S,12S)-6-isopropyl-3,9-dimethyl-13-methylene-15-oxatricyclo[6.6.1.02,7]pentadec-3-ene-9,10,12-triol|4alpha-hydroxycladieunicellin A|cladieunicellin B

(1R,2R,6R,7R,8R,9R,10S,12S)-6-isopropyl-3,9-dimethyl-13-methylene-15-oxatricyclo[6.6.1.02,7]pentadec-3-ene-9,10,12-triol|4alpha-hydroxycladieunicellin A|cladieunicellin B

C20H32O4 (336.23)


   

15,16-epoxy-labda-13(16),14-dieno-6beta,7beta,9alpha-triol|15,16-epoxylabda-13(16),14-diene-6beta,7beta,9alpha-triol

15,16-epoxy-labda-13(16),14-dieno-6beta,7beta,9alpha-triol|15,16-epoxylabda-13(16),14-diene-6beta,7beta,9alpha-triol

C20H32O4 (336.23)


   

mallonicusin F

mallonicusin F

C20H32O4 (336.23)


   

Hueafuranoid A

Hueafuranoid A

C20H32O4 (336.23)


   

4-Hydroxy-2,5,5,8a-tetramethyl-3,4,4,5-tetrahydrodispiro[decalin-1,2(5H)-furan-5,3(2H)-furan]-2-one

4-Hydroxy-2,5,5,8a-tetramethyl-3,4,4,5-tetrahydrodispiro[decalin-1,2(5H)-furan-5,3(2H)-furan]-2-one

C20H32O4 (336.23)


   

mallonicusin G

mallonicusin G

C20H32O4 (336.23)


   

(1R*,3S*,4S*,7S*,8S*,11R*,14R*,12E)-3,4:7,8-diepoxydolabell-12-ene-14,18-diol

(1R*,3S*,4S*,7S*,8S*,11R*,14R*,12E)-3,4:7,8-diepoxydolabell-12-ene-14,18-diol

C20H32O4 (336.23)


   

3alpha,7alpha,14beta-trihydroxy-16beta-methyl-ent-kaur-15-one|glaucocalyxin J

3alpha,7alpha,14beta-trihydroxy-16beta-methyl-ent-kaur-15-one|glaucocalyxin J

C20H32O4 (336.23)


   

13beta,14beta-dihydroxyabieta-8(9)-en-19-oic acid|jiadifenoic acid F

13beta,14beta-dihydroxyabieta-8(9)-en-19-oic acid|jiadifenoic acid F

C20H32O4 (336.23)


   

(rel-5S,6R,8R,9R,10S,13S)-6-hydroxy-9,13-epoxylabda-15,16-olide|vitextrifolin F

(rel-5S,6R,8R,9R,10S,13S)-6-hydroxy-9,13-epoxylabda-15,16-olide|vitextrifolin F

C20H32O4 (336.23)


   

2,3-dihydroxy-haliman-5,13Z-diene-15-oic acid|salicifolic acid

2,3-dihydroxy-haliman-5,13Z-diene-15-oic acid|salicifolic acid

C20H32O4 (336.23)


   

9,13-epoxy-15,16-dihydroxylabd-5-en-7-one|leoleorin I|leonurenone A

9,13-epoxy-15,16-dihydroxylabd-5-en-7-one|leoleorin I|leonurenone A

C20H32O4 (336.23)


   

(1S,2S,4aS,4bS,8R,8aR,10aS)-4a,10a-epoxy-dodecahydro-1-hydroxy-4b,8-dimethyl-2-(1-methylethyl)-phenanthrene-8-carboxylic acid|(8alpha,13beta,14alpha)-8,9-epoxy-14-hydroxyabietan-18-oic acid|8alpha,9alpha-epoxysuaveolic acid

(1S,2S,4aS,4bS,8R,8aR,10aS)-4a,10a-epoxy-dodecahydro-1-hydroxy-4b,8-dimethyl-2-(1-methylethyl)-phenanthrene-8-carboxylic acid|(8alpha,13beta,14alpha)-8,9-epoxy-14-hydroxyabietan-18-oic acid|8alpha,9alpha-epoxysuaveolic acid

C20H32O4 (336.23)


   

mallonicusin A

mallonicusin A

C20H32O4 (336.23)


   

arbolide A

arbolide A

C20H32O4 (336.23)


   

ent-15,16-dihydroxypimar-8(14)-en-18-oic acid

ent-15,16-dihydroxypimar-8(14)-en-18-oic acid

C20H32O4 (336.23)


   

(1S,2R,4aS,5S,8aR)-octahydro-1-[(3S)-3-hydroxy-3-methylpent-4-en-1-yl]-5,8a-dimethylspiro[naphthalene-2(1H)2?-oxirane]-5-carboxylic acid|8,20-epoxy-13-hydroxy-ent-labd-14-en-18-oic acid|labdorffianic acid B

(1S,2R,4aS,5S,8aR)-octahydro-1-[(3S)-3-hydroxy-3-methylpent-4-en-1-yl]-5,8a-dimethylspiro[naphthalene-2(1H)2?-oxirane]-5-carboxylic acid|8,20-epoxy-13-hydroxy-ent-labd-14-en-18-oic acid|labdorffianic acid B

C20H32O4 (336.23)


   

3,4-seco-12RS,13SR-dihydroxy-4(18),8(17),14(15)-labdatrien-3-oic acid

3,4-seco-12RS,13SR-dihydroxy-4(18),8(17),14(15)-labdatrien-3-oic acid

C20H32O4 (336.23)


   

sinumaximol H

sinumaximol H

C20H32O4 (336.23)


   

(rel-3S,5S,8R,9R,10S)-3,9-dihydroxy-13(14)-labden-16,15-olide

(rel-3S,5S,8R,9R,10S)-3,9-dihydroxy-13(14)-labden-16,15-olide

C20H32O4 (336.23)


   

radianspene D

radianspene D

C20H32O4 (336.23)


   

leucanthol

leucanthol

C20H32O4 (336.23)


   

3-angelate of felikiol|Ferticin

3-angelate of felikiol|Ferticin

C20H32O4 (336.23)


   

Eurupestrol-9-angelicat

Eurupestrol-9-angelicat

C20H32O4 (336.23)


   

2beta,3beta,16-trihydroxy-ent-pimar-8(14)-en-15-one|ent-2alpha, 3alpha, 16-Trihydroxy-8(14)-pimaren-15-one|flickinflimbrol A

2beta,3beta,16-trihydroxy-ent-pimar-8(14)-en-15-one|ent-2alpha, 3alpha, 16-Trihydroxy-8(14)-pimaren-15-one|flickinflimbrol A

C20H32O4 (336.23)


   

8-Methyl-1-oxopodopyrone

8-Methyl-1-oxopodopyrone

C20H32O4 (336.23)


   

(1R,3R,4aS,6aS,8R,10aR,10bR)-3-ethenyldodecahydro-1,8-dihydroxy-3,4a,7,7,10a-pentamethyl-9H-benzo[f]chromen-9-one|agallochaexcoerin C

(1R,3R,4aS,6aS,8R,10aR,10bR)-3-ethenyldodecahydro-1,8-dihydroxy-3,4a,7,7,10a-pentamethyl-9H-benzo[f]chromen-9-one|agallochaexcoerin C

C20H32O4 (336.23)


   

methyl ent-8alpha,16-dihydroxylabdan-6,13E-dien-15-oate

methyl ent-8alpha,16-dihydroxylabdan-6,13E-dien-15-oate

C20H32O4 (336.23)


   

9beta-O-angeloyl akichenol

9beta-O-angeloyl akichenol

C20H32O4 (336.23)


   

1alpha,5beta,11beta-trihydroxy-7-oxo-ros-15-ene|1??,5??,11??-Trihydroxy-7-oxo-ros-15-ene

1alpha,5beta,11beta-trihydroxy-7-oxo-ros-15-ene|1??,5??,11??-Trihydroxy-7-oxo-ros-15-ene

C20H32O4 (336.23)


   

2-oxo-5-epi-fagonene

2-oxo-5-epi-fagonene

C20H32O4 (336.23)


   

7alpha,15-dihydroxy-ent-clerod-3-en-18,19-olide

7alpha,15-dihydroxy-ent-clerod-3-en-18,19-olide

C20H32O4 (336.23)


   

Pusillatetrol

Pusillatetrol

C20H32O4 (336.23)


   

(ent-14alpha,16beta)-14,16,17-Trihydroxy-3-atisanone

(ent-14alpha,16beta)-14,16,17-Trihydroxy-3-atisanone

C20H32O4 (336.23)


   

13beta-hydroxy-7-keto-13,14-dihydroabietic acid

13beta-hydroxy-7-keto-13,14-dihydroabietic acid

C20H32O4 (336.23)


   

2beta,3alpha,9xi,13xi-tetrahydroxy-1(15),8(19)-trinervitadiene

2beta,3alpha,9xi,13xi-tetrahydroxy-1(15),8(19)-trinervitadiene

C20H32O4 (336.23)


   

18-hydroxy-7-oxo-friedolabd-5-en-15-oic acid

18-hydroxy-7-oxo-friedolabd-5-en-15-oic acid

C20H32O4 (336.23)


   

Linearol+

Linearol+

C20H32O4 (336.23)


   

Salvicin

Salvicin

C20H32O4 (336.23)


   

Grammitic acid

Grammitic acid

C20H32O4 (336.23)


   

ent-2alpha,13,14alpha,15beta-Tetrahydroxykaur-16-en

ent-2alpha,13,14alpha,15beta-Tetrahydroxykaur-16-en

C20H32O4 (336.23)


   

cycloshiromodiol-8-O-angelate

cycloshiromodiol-8-O-angelate

C20H32O4 (336.23)


   

ent-3beta,18-Dihydroxylabda-8(17),13E-dien-15-oic acid

ent-3beta,18-Dihydroxylabda-8(17),13E-dien-15-oic acid

C20H32O4 (336.23)


   

Fumotoshidin B

Fumotoshidin B

C20H32O4 (336.23)


   

(5beta,7alpha,8alpha,9beta,10alpha,11beta,13alpha,14R,16beta)-7,11,14-trihydroxykauran-15-one|(7alpha,11beta,14beta,16R)-7,11,14-trihydroxy-ent-kaur-15-one

(5beta,7alpha,8alpha,9beta,10alpha,11beta,13alpha,14R,16beta)-7,11,14-trihydroxykauran-15-one|(7alpha,11beta,14beta,16R)-7,11,14-trihydroxy-ent-kaur-15-one

C20H32O4 (336.23)


   

16-O-demethyl-3-epi-cotylenol|phomopsiol

16-O-demethyl-3-epi-cotylenol|phomopsiol

C20H32O4 (336.23)


   

16,17-dihydrorostronol F

16,17-dihydrorostronol F

C20H32O4 (336.23)


   

6,7-epoxy-19-hydroxy-12-oxo-6,7-dihydrogeranyl nerol

6,7-epoxy-19-hydroxy-12-oxo-6,7-dihydrogeranyl nerol

C20H32O4 (336.23)


   

friedolabd-5-en-15,18-dioic acid

friedolabd-5-en-15,18-dioic acid

C20H32O4 (336.23)


   

MEGxp0_000966

MEGxp0_000966

C20H32O4 (336.23)


   

(5R,15xi,16E,18xi)-13,16-Spatadiene-5,15,18,19-tetrol|5(R),15,18(R and S),19-tetrahydroxyspata-13,16(E)-diene|5(R),15,18(R/S)-trihydroxyspata-13,16-diene|5(R),15,18,19-tetrahydroxyspata-13,16(E)-diene

(5R,15xi,16E,18xi)-13,16-Spatadiene-5,15,18,19-tetrol|5(R),15,18(R and S),19-tetrahydroxyspata-13,16(E)-diene|5(R),15,18(R/S)-trihydroxyspata-13,16-diene|5(R),15,18,19-tetrahydroxyspata-13,16(E)-diene

C20H32O4 (336.23)


   

epoxysinfernol

epoxysinfernol

C20H32O4 (336.23)


   

(13S)-ent-7beta-hydroxy-2-oxo-3-cleroden-15-oic acid|ent-7??-Hydroxy-2-oxo-3-cleroden-15-oic acid

(13S)-ent-7beta-hydroxy-2-oxo-3-cleroden-15-oic acid|ent-7??-Hydroxy-2-oxo-3-cleroden-15-oic acid

C20H32O4 (336.23)


   

Fumotoshidin A

Fumotoshidin A

C20H32O4 (336.23)


   

3beta,13-dihydroxylabda-8(20),14-dien-19-oic acid

3beta,13-dihydroxylabda-8(20),14-dien-19-oic acid

C20H32O4 (336.23)


   

7-Angeloyloxy-14,15-epoxythapsan-14-ol

7-Angeloyloxy-14,15-epoxythapsan-14-ol

C20H32O4 (336.23)


   

labda-8(17),14-diene-2alpha,13-diol-19-oic acid

labda-8(17),14-diene-2alpha,13-diol-19-oic acid

C20H32O4 (336.23)


   

5beta,9betaH,10alpha,3,4-seco-labd-7,13(Z)-dien-3,15,dioic acid|ent-3,4-Seco-7,13-labdadiene-3,15-dioic acid

5beta,9betaH,10alpha,3,4-seco-labd-7,13(Z)-dien-3,15,dioic acid|ent-3,4-Seco-7,13-labdadiene-3,15-dioic acid

C20H32O4 (336.23)


   

1alpha,19-Dihydroxy-16alpha-(-)-kauran-17-saeure

1alpha,19-Dihydroxy-16alpha-(-)-kauran-17-saeure

C20H32O4 (336.23)


   

Et ester-7,12-Dioxo-8,10-octadecadienoic acid

Et ester-7,12-Dioxo-8,10-octadecadienoic acid

C20H32O4 (336.23)


   

(Z)-(8R,12S)-9,15-dioxoprost-5-enoic acid

(Z)-(8R,12S)-9,15-dioxoprost-5-enoic acid

C20H32O4 (336.23)


   

15,16,17-trihydroxy-7-oxopimar-8(9)-ene

15,16,17-trihydroxy-7-oxopimar-8(9)-ene

C20H32O4 (336.23)


   

4,5-epoxy-6beta-hydroxy-3beta-senecioyloxy-germacr-1(10)-ene

4,5-epoxy-6beta-hydroxy-3beta-senecioyloxy-germacr-1(10)-ene

C20H32O4 (336.23)


   

(ent-7beta,13?鈥?-form-7,18-Dihydroxy-3-cleroden-15,16-olide|15,16-epoxy-7alpha,18-dihydroxy-15-oxo-ent-cleroda-3-ene

(ent-7beta,13?鈥?-form-7,18-Dihydroxy-3-cleroden-15,16-olide|15,16-epoxy-7alpha,18-dihydroxy-15-oxo-ent-cleroda-3-ene

C20H32O4 (336.23)


   

ent-15-oxo-2beta,16,19-trihydroxypimar-8(14)-ene|ent-15-Oxo-2??,16,19-trihydroxypimar-8(14)-ene

ent-15-oxo-2beta,16,19-trihydroxypimar-8(14)-ene|ent-15-Oxo-2??,16,19-trihydroxypimar-8(14)-ene

C20H32O4 (336.23)


   

5,19-Dihydroxy-3,14-viscidadien-20-oic acid

5,19-Dihydroxy-3,14-viscidadien-20-oic acid

C20H32O4 (336.23)


   

1-[2,4,6-trihydroxyphenyl]-1-tetradecanone

1-[2,4,6-trihydroxyphenyl]-1-tetradecanone

C20H32O4 (336.23)


   

Shahamin E

Shahamin E

C20H32O4 (336.23)


   

(4alpha,16alpha)-16,17,19-trihydroxy-ent-kauran-2-one

(4alpha,16alpha)-16,17,19-trihydroxy-ent-kauran-2-one

C20H32O4 (336.23)


   

2-(10-Oxoundecyl)-3-methyl-5-ethyl-6-methoxy-4H-pyran-4-one

2-(10-Oxoundecyl)-3-methyl-5-ethyl-6-methoxy-4H-pyran-4-one

C20H32O4 (336.23)


   

(3alpha,11alpha,14alpha)-14,16-epoxypimar-7-ene-3,11,15-triol|(3aR,5aR,7R,9aS,9bR,10R,11aR)-1,2,3a,5,5a,6,7,8,9,9a,9b,10,11,11a-tetradecahydro-6,6,9a,11a-tetramethylphenanthro[1,2-b]-furan-1,7,10-triol|agallochaol D

(3alpha,11alpha,14alpha)-14,16-epoxypimar-7-ene-3,11,15-triol|(3aR,5aR,7R,9aS,9bR,10R,11aR)-1,2,3a,5,5a,6,7,8,9,9a,9b,10,11,11a-tetradecahydro-6,6,9a,11a-tetramethylphenanthro[1,2-b]-furan-1,7,10-triol|agallochaol D

C20H32O4 (336.23)


   

ent-8,15R-epoxy-3-oxopimara-12alpha,16-diol

ent-8,15R-epoxy-3-oxopimara-12alpha,16-diol

C20H32O4 (336.23)


   

3alpha,7beta,17,18-tetrahydroxy-ent-kaur-15-en; Isoleucanthol|Isoleucanthol

3alpha,7beta,17,18-tetrahydroxy-ent-kaur-15-en; Isoleucanthol|Isoleucanthol

C20H32O4 (336.23)


   

ACMC-1BZ2K

ACMC-1BZ2K

C20H32O4 (336.23)


   

5alpha-hydroxyhaploparvone

5alpha-hydroxyhaploparvone

C20H32O4 (336.23)


   

(3S,6E)-8-formyl-3,7-dimethyloct-6-en-1-yl (3S,6E)-8-formyl-3,7-dimethyloct-6-en-1-oate|obtusal A

(3S,6E)-8-formyl-3,7-dimethyloct-6-en-1-yl (3S,6E)-8-formyl-3,7-dimethyloct-6-en-1-oate|obtusal A

C20H32O4 (336.23)


   

(3R,6S)-6,8-dihydroxy-3-(6-hydroxyundecyl)-3,4-dihydroisocoumarin

(3R,6S)-6,8-dihydroxy-3-(6-hydroxyundecyl)-3,4-dihydroisocoumarin

C20H32O4 (336.23)


   

82026-06-0

82026-06-0

C20H32O4 (336.23)


   

acritopappuslactone

acritopappuslactone

C20H32O4 (336.23)


   

13,14,15,16-tetranor-12,17-diacetoxy-7-labdene|Di-Ac-13,14,15,16-Tetranor-7-labdene-12-17-diol

13,14,15,16-tetranor-12,17-diacetoxy-7-labdene|Di-Ac-13,14,15,16-Tetranor-7-labdene-12-17-diol

C20H32O4 (336.23)


   

15,16,18-Trihydroxy-ent-pimar-7-en-3-one

15,16,18-Trihydroxy-ent-pimar-7-en-3-one

C20H32O4 (336.23)


   

3-Pentanone, 1-(decahydro-1,7-dihydroxy-6,9a-dimethyl-4-methylene-4a,7-epoxy-4aH-benzocyclohepten-6-yl)-4-methyl-, (1.alpha.,4a.alpha.,6.beta.,7.alpha.,9a.beta.)-(-)-

3-Pentanone, 1-(decahydro-1,7-dihydroxy-6,9a-dimethyl-4-methylene-4a,7-epoxy-4aH-benzocyclohepten-6-yl)-4-methyl-, (1.alpha.,4a.alpha.,6.beta.,7.alpha.,9a.beta.)-(-)-

C20H32O4 (336.23)


   

Dihydrolapidin

Dihydrolapidin

C20H32O4 (336.23)


   

2alpha,7alpha-Dihydroxy-8(17),13Z-labdadien-15-oic acid

2alpha,7alpha-Dihydroxy-8(17),13Z-labdadien-15-oic acid

C20H32O4 (336.23)


   

Coronarin B

Coronarin B

C20H32O4 (336.23)


   

2beta,6alpha,18,19-ent-trachylobantetraol

2beta,6alpha,18,19-ent-trachylobantetraol

C20H32O4 (336.23)


   

Indicol

Indicol

C20H32O4 (336.23)


   

7-(4-butyl-2,5-dioxo-3,3a,4,6,7,7a-hexahydro-1H-inden-1-yl)heptanoic acid

7-(4-butyl-2,5-dioxo-3,3a,4,6,7,7a-hexahydro-1H-inden-1-yl)heptanoic acid

C20H32O4 (336.23)


   

8,15-DiHETE

8S,15S-dihydroxy-5Z,9E,11Z,13E-eicosatetraenoic acid

C20H32O4 (336.23)


   

MLS000574941-01!

MLS000574941-01!

C20H32O4 (336.23)


   

(Z)-5-[(1S,2R,4aR,8aR)-5-(hydroxymethyl)-1,2,4a-trimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-(hydroxymethyl)pent-2-enoic acid

NCGC00347775-02!(Z)-5-[(1S,2R,4aR,8aR)-5-(hydroxymethyl)-1,2,4a-trimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-(hydroxymethyl)pent-2-enoic acid

C20H32O4 (336.23)


   

Prostaglandin A1

9-oxo-15S-hydroxy-10Z,13E-prostadienoic acid

C20H32O4 (336.23)


Prostaglandin A1 is a prostaglandins A. It is a conjugate acid of a prostaglandin A1(1-).

   

C20H32O4_1-Naphthalenecarboxylic acid, decahydro-5-[(3E)-5-hydroxy-3-(hydroxymethyl)-3-penten-1-yl]-1,4a-dimethyl-6-methylene

NCGC00347803-02_C20H32O4_1-Naphthalenecarboxylic acid, decahydro-5-[(3E)-5-hydroxy-3-(hydroxymethyl)-3-penten-1-yl]-1,4a-dimethyl-6-methylene-

C20H32O4 (336.23)


   

C20H32O4_2-Furanacetic acid, 5-ethenyltetrahydro-alpha,5-dimethyl-, (2Z)-6-hydroxy-2,6-dimethyl-2,7-octadien-1-yl ester

NCGC00347515-02_C20H32O4_2-Furanacetic acid, 5-ethenyltetrahydro-alpha,5-dimethyl-, (2Z)-6-hydroxy-2,6-dimethyl-2,7-octadien-1-yl ester

C20H32O4 (336.23)


   

C20H32O4_1-Naphthalenepentanoic acid, 5-carboxydecahydro-beta,5,8a-trimethyl-2-methylene

NCGC00385898-01_C20H32O4_1-Naphthalenepentanoic acid, 5-carboxydecahydro-beta,5,8a-trimethyl-2-methylene-

C20H32O4 (336.23)


   

Eicosanoids_5,15-DiHETE_C20H32O4

Eicosanoids_5,15-DiHETE_C20H32O4

C20H32O4 (336.23)


   

14-hydroxy-14-(hydroxymethyl)-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

14-hydroxy-14-(hydroxymethyl)-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C20H32O4 (336.23)


   

A9PE2C

A9PE2C

C20H32O4 (336.23)


Literature spectrum; CONFIDENCE Tentative identification: isomers possible (Level 3); The position of the carboxylic group was assigned arbitrarily; locations of branching points are undetermined; Digitised from figure: approximate intensities

   

5-HpETE

(6E,8Z,11Z,14Z)-(5S)-5-Hydroperoxyeicosa-6,8,11,14-tetraenoic acid

C20H32O4 (336.23)


A HPETE that consists of (6E,8Z,11Z,14Z)-icosatetraenoic acid in which the hydroperoxy group is located at position 5. An icosatetraenoic acid in which the double bonds are located at the 6-7, 8-9, 11-12, and 14-15 positions and have E, Z, Z, and Z geometry, respectively, and in which the pro-S hydrogen is substituted by a hydroperoxy group. CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001297.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001297.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001297.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001297.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001297.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001297.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]

   

LTB4-[d4]

LTB4-[d4]

C20H32O4 (336.23)


CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0145.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0145.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0145.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001331.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001331.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001331.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001331.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001331.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001331.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]

   

5,12-DiHETE

6,8,10,14-Eicosatetraenoic acid, 5,12-dihydroxy-

C20H32O4 (336.23)


CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001299.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001299.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001299.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001299.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001299.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001299.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]

   

5,6-DiHETE

5,6-DiHETE

C20H32O4 (336.23)


CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0116.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0116.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0116.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001301.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001301.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001301.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001301.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001301.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001301.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]

   

6-trans-Leukotriene B4

6-trans-Leukotriene B4

C20H32O4 (336.23)


A leukotriene that is the 6-trans-isomer of leukotriene B4.

   

(2E,6E,10Z)-12-hydroxy-10-(hydroxymethyl)-6-methyl-2-(4-methylpent-3-enyl)dodeca-2,6,10-trienoic acid_major

(2E,6E,10Z)-12-hydroxy-10-(hydroxymethyl)-6-methyl-2-(4-methylpent-3-enyl)dodeca-2,6,10-trienoic acid_major

C20H32O4 (336.23)


   

(Z)-5-[(1S,2R,4aR,8aR)-5-(hydroxymethyl)-1,2,4a-trimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-(hydroxymethyl)pent-2-enoic acid_major

(Z)-5-[(1S,2R,4aR,8aR)-5-(hydroxymethyl)-1,2,4a-trimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-(hydroxymethyl)pent-2-enoic acid_major

C20H32O4 (336.23)


   

[(2Z)-6-hydroxy-2,6-dimethylocta-2,7-dienyl] 2-(5-ethenyl-5-methyloxolan-2-yl)propanoate_major

[(2Z)-6-hydroxy-2,6-dimethylocta-2,7-dienyl] 2-(5-ethenyl-5-methyloxolan-2-yl)propanoate_major

C20H32O4 (336.23)


   

(2E,6E,10Z)-12-hydroxy-10-(hydroxymethyl)-6-methyl-2-(4-methylpent-3-enyl)dodeca-2,6,10-trienoic acid_62.1\\%

(2E,6E,10Z)-12-hydroxy-10-(hydroxymethyl)-6-methyl-2-(4-methylpent-3-enyl)dodeca-2,6,10-trienoic acid_62.1\\%

C20H32O4 (336.23)


   

14-hydroxy-14-(hydroxymethyl)-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid_major

14-hydroxy-14-(hydroxymethyl)-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid_major

C20H32O4 (336.23)


   

Ethyl 2-(3-(8-hydroxyoctyl)phenoxy)-2-methylpropanoate

Ethyl 2-(3-(8-hydroxyoctyl)phenoxy)-2-methylpropanoate

C20H32O4 (336.23)


   

14-hydroxy-14-(hydroxymethyl)-5,9-dimethyltetracyclo[11.2.1.0¹,¹?.0?,?]hexadecane-5-carboxylic acid

14-hydroxy-14-(hydroxymethyl)-5,9-dimethyltetracyclo[11.2.1.0¹,¹?.0?,?]hexadecane-5-carboxylic acid

C20H32O4 (336.23)


   

Methyl 8-gingerol

Methyl 8-gingerol

C20H32O4 (336.23)


   

15-epi-PGA1

9-oxo-15R-hydroxy-10Z,13E-prostadienoic acid

C20H32O4 (336.23)


   

11-deoxy-PGE2

9-oxo-15S-hydroxy-5Z,13E-prostadienoic acid

C20H32O4 (336.23)


   

PGF2&alpha

9α,11α,15S-trihydroxy-prosta-5Z,13E-dien-1-oic acid, 1,15-lactone

C20H32O4 (336.23)


   

12-epi-LTB4

5S,12S-dihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

5S,6R-DiHETE

5S,6R-dihydroxy-7E,9E,11Z,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

9-HpETE

9-hydroperoxy-5,7E,11Z,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


A HPETE in which the hydroxy group is located at position 9 with the four double bonds at positions 5, 7, 11 and 14 (the 5Z,7E,11Z,14Z geoisomer).

   

11-HpETE

11-hydroperoxy-5Z,8Z,12E,14-eicosatetraenoic acid

C20H32O4 (336.23)


   

5S,15S-DiHETE

5S,15S-dihydroxy-6E,8Z,10Z,13E-eicosatetraenoic acid

C20H32O4 (336.23)


   

8S,15S-DiHETE(Z,E,E,E)

8S,15S-dihydroxy-5Z,9E,11Z,13E-eicosatetraenoic acid

C20H32O4 (336.23)


   

5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid

5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid

C20H32O4 (336.23)


   

8,15-dihydroxy-5,9,11,13-eicosatetraenoic acid

5,9,11,13-Eicosatetraenoic acid, 8,15-dihydroxy-

C20H32O4 (336.23)


   

8,9-DiHETE

(+/-)-8,9-dihydroxy-5Z,11Z,14Z,17Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

(±)-14,15-DiHETE

(±)-14,15-dihydroxy-5Z,8Z,11Z,17Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

(±)-17,18-DiHETE

(±)-17,18-dihydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

11,12-DiHETE

(+/-)-11,12-dihydroxy-5Z,8Z,14Z,17Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

hepoxilin A3

(5Z,9E,14Z)-(11S,12S)-11,12-Epoxy-8-hydroxyeicosa-5,9,14-trienoic acid

C20H32O4 (336.23)


A hepoxilin having (5Z,9E,14Z) double bond stereochemistry, an 8-hydroxy substituent and an 11S,12S-epoxy group.

   

8-iso-PGA1

9-oxo-15S-hydroxy-10Z,13E-prostadienoic acid-cyclo[8S,12S]

C20H32O4 (336.23)


   

5(S),6(S)-DiHETE

5S,6S-dihydroxy-7E,9E,11Z,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

12(S),20-diHETE

12(S),20-diHETE

C20H32O4 (336.23)


   

8(R),15(S)-DiHETE

8(R),15(S)-DiHETE

C20H32O4 (336.23)


   

5(S),12(S)-DiHETE

5S,12S-dihydroxy-6E,8E,10E,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

5(S),6(R)-11-trans DiHETE

11-trans-5S,6R-dihydroxy-7E,9E,11E,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

(±)12-HpETE

12-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

8,12-iso-iPF2α-VI 1,5- lactone

6-((E)-2-((1R,2S,3R,5S)-3,5-dihydroxy-2-((Z)-oct-2-enyl)cyclopentyl)vinyl)tetrahydro-2H-pyran-2-one

C20H32O4 (336.23)


   

Bicyclo Prostaglandin E1

11-deoxy-13,14-dihydro-15-keto-11β,16ξ-cycloprostaglandin E1

C20H32O4 (336.23)


   

PGF2alpha-1,9-lactone

11R,15S-dihydroxy-5Z,13E-prostadienoic acid-1,9S-lactone

C20H32O4 (336.23)


   

5,11-diHETE

5S,11R-dihydroxy-6E,8Z,12E,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

(-)-Stolondiol

(-)-7,8:10,11-diepoxy-4(16)-dolabellene-17,18-diol

C20H32O4 (336.23)


   

14,15-DiHETE

(+/-)-14,15-dihydroxy-5Z,8Z,11Z,17Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

17,18-DiHETE

(5Z,8Z,11Z,14Z)-17,18-Dihydroxyicosa-5,8,11,14-tetraenoic acid

C20H32O4 (336.23)


A DiHETE consisting of arachidonic acid having the two hydroxy substituents located at position 17 and 18.

   

5Z,8Z,11Z-Eicosatrienedioic acid

5Z,8Z,11Z-Eicosatriene-1,20-dioic acid

C20H32O4 (336.23)


   

6-trans-LTB4

5S,12R-dihydroxy-6E,8E,10E,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

6-trans-12-epi-LTB4

5S,12S-dihydroxy-6E,8E,10E,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

6-hydroperoxy-4E,8Z,11Z,14Z-eicosatetraenoic acid

6-hydroperoxy-4E,8Z,11Z,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

14-hydroperoxy-5Z,8Z,11Z,15E-eicosatetraenoic acid

14-hydroperoxy-5Z,8Z,11Z,15E-eicosatetraenoic acid

C20H32O4 (336.23)


   

14,15-dihydroxy-5,8,10,12-eicosatetraenoic acid

14,15-dihydroxy-5,8,10,12-eicosatetraenoic acid

C20H32O4 (336.23)


   

5S,15R-diHETE

5S,15R-dihydroxy-6E,8Z,11Z,13E-eicosatetraenoic acid

C20H32O4 (336.23)


   

14,15-HxB3 (13R)

13R-hydroxy-14S,15S-epoxy-5Z,8Z,11Z-eicosatrienoic acid

C20H32O4 (336.23)


   

14,15-HxA3 (11S)

11S-hydroxy-14S,15S-epoxy-5Z,8Z,12E-eicosatrienoic acid

C20H32O4 (336.23)


   

(14S)-14,15-Dihydroxy-8(17),13(16)-labdadien-19-oic acid

5-(4,5-dihydroxy-3-methylidenepentyl)-1,4a-dimethyl-6-methylidene-decahydronaphthalene-1-carboxylic acid

C20H32O4 (336.23)


   

9alpha-(3-Methylbutanoyloxy)-4S-hydroxy-10(14)-oplopen-3-one

1-(1-hydroxyethyl)-4-methylidene-2-oxo-7-(propan-2-yl)-octahydro-1H-inden-5-yl 3-methylbutanoate

C20H32O4 (336.23)


   

ent-1(10)-Halimene-15,19-dioic acid

5-(4-carboxy-3-methylbutyl)-1,5,6-trimethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid

C20H32O4 (336.23)


   

5S,12S-DiHETE

5S,12S-dihydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

FA 20:4;O2

(5S,12R,6E,8Z,10E,14Z)-5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid;(5S,6E,8Z,10E,12R,14Z)-5,12-dihydroxyeicosa-6,8,10,14-tetraenoic acid;(6E,8Z)-LTB4;5(S),12(R)-dihydroxy-6(E),8(Z),10(E),14(Z)-eicosatetraenoic acid;5(S),12(R)-dihydroxy-6(E),8(Z),10(E),14(Z)-icosatetraenoic acid;Delta(6)-trans,Delta(8)-cis-LTB4

C20H32O4 (336.23)


   

Prostaglandin B1

9-oxo-15S-hydroxy-8(12),13E-prostadienoic acid

C20H32O4 (336.23)


A member of the class of prostaglandins B that is prosta-8(12),13-dien-1-oic acid carrying oxo and hydroxy substituents at positions 9 and 15 respectively (the 13E,15S-stereoisomer).

   

Prostaglandin C1

9-oxo-15S-hydroxy-11Z,13E-prostadienoic acid

C20H32O4 (336.23)


   

12S-HpETE

12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

15-HpETE

(5Z,8Z,11Z,13E)-15-hydroperoxyeicosa-5,8,11,13-tetraenoic acid

C20H32O4 (336.23)


A HPETE that consists of (5Z,8Z,11Z,13E)-icosatetraenoic acid in which the hydroperoxy group is located at position 15. D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

8R-HPETE

(5Z,9E,11Z,14Z)-(8R)-8-Hydroxyperoxyeicosa-5,9,11,14-tetraenoate

C20H32O4 (336.23)


   

11R-HpETE

(5Z,8Z,12E,14Z)-(11R)-Hydroperoxyeicosa-5,8,12,14-tetraenoic acid

C20H32O4 (336.23)


   

Pileadimenthenol C

Pileadimenthenol C

C20H32O4 (336.23)


   

ent-3-oxo,14alpha,16beta,17-trihydroxyatisane

ent-3-oxo,14alpha,16beta,17-trihydroxyatisane

C20H32O4 (336.23)


   

2-HYDROXY-5-METHOXY-3-TRIDECYL[1,4]BENZOQUINONE

2-HYDROXY-5-METHOXY-3-TRIDECYL[1,4]BENZOQUINONE

C20H32O4 (336.23)


   

14,15-dehydro leukotriene b4

14,15-dehydro leukotriene b4

C20H32O4 (336.23)


   

Thiol-C9-PEG4

Thiol-C9-PEG4

C17H36O4S (336.2334)


   

Methyl N-Boc-2-bromo-5-sulfamoylbenzoate

Methyl N-Boc-2-bromo-5-sulfamoylbenzoate

C18H32N4S (336.2348)


   

6BETA,7BETA-DIHYDROXY-8,13-EPOXY-LABD-14-EN-11-ONE

6BETA,7BETA-DIHYDROXY-8,13-EPOXY-LABD-14-EN-11-ONE

C20H32O4 (336.23)


   

4,8-Dimethyl-8-hydroxy-11-(1-methylethyl)-14-oxo-5,9-pentadeca-dien-4-olide

4,8-Dimethyl-8-hydroxy-11-(1-methylethyl)-14-oxo-5,9-pentadeca-dien-4-olide

C20H32O4 (336.23)


   

[5S-[5R*(1E,4S*,5E,7R*)]]-Dihydro-5-[4-hydroxy-4-methyl-7-(1-methylethyl)-10-oxo-1,5-undecadienyl]-5-methyl-2(3H)-furanone

[5S-[5R*(1E,4S*,5E,7R*)]]-Dihydro-5-[4-hydroxy-4-methyl-7-(1-methylethyl)-10-oxo-1,5-undecadienyl]-5-methyl-2(3H)-furanone

C20H32O4 (336.23)


   

[5R-[5R*(1E,4S*,5E,7S*)]]-Dihydro-5-[4-hydroxy-4-methyl-7-(1-methylethyl)-10-oxo-1,5-undecadienyl]-5-methyl-2(3H)-furanone

[5R-[5R*(1E,4S*,5E,7S*)]]-Dihydro-5-[4-hydroxy-4-methyl-7-(1-methylethyl)-10-oxo-1,5-undecadienyl]-5-methyl-2(3H)-furanone

C20H32O4 (336.23)


   

(8S)-hepoxilin A3

(8S)-hepoxilin A3

C20H32O4 (336.23)


A hepoxilin A3 in which the stereocentre at position 8 has S-configuration

   

Bio1_001201

7-[2-[(E,3S)-3-hydroxyoct-1-enyl]-5-keto-1-cyclopentenyl]enanthic acid

C20H32O4 (336.23)


   

15(S)-HPETE

15-hydroperoxy-5,8,11,13-eicosatetraenoic acid

C20H32O4 (336.23)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides The (S)-enantiomer of 15-HPETE. 15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HPETE) is the corresponding hydroperoxide of 15(S)-HETE and undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, a precursor of heptanone-etheno-2-deoxyguanosine. Reactive oxygen species convert the omega-6 polyunsaturated fatty acid arachidonic acid into (15-HPETE); vitamin C mediates 15(S)-HPETE decomposition. 15(S)-HPETE initiates apoptosis in vascular smooth muscle cells. 15(S)-HPETE is a lipoxygenase metabolite that affects the expression of cell adhesion molecules (CAMs) involved in the adhesion of leukocytes and/or the accumulation of leukocytes in the vascular endothelium, these being the initial events in endothelial cell injury. 15(S)-HPETE induces a loss of cardiomyocytes membrane integrity. 15-(S)HPETE is a hydroperoxide that enhances the activity of the enzymes lipoxygenase [EC 1.13.11.12] and Na+, K+-ATPase [EC 3.6.3.9] of brain microvessels. Lipoxygenase(s) and Na+-K+-ATPase of brain microvessels may play a significant role in the occurrence of ischemic brain edema. (PMID: 15964853, 15723435, 8655602, 8595608, 2662983) [HMDB]

   

12-Hydroxy-10-(hydroxymethyl)-6-methyl-2-(4-methylpent-3-enyl)dodeca-2,6,10-trienoic acid

12-Hydroxy-10-(hydroxymethyl)-6-methyl-2-(4-methylpent-3-enyl)dodeca-2,6,10-trienoic acid

C20H32O4 (336.23)


   

3-(Hydroxymethyl)-5-[5-(hydroxymethyl)-1,2,4a-trimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]pent-2-enoic acid

3-(Hydroxymethyl)-5-[5-(hydroxymethyl)-1,2,4a-trimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]pent-2-enoic acid

C20H32O4 (336.23)


   

Methyl [2-(4-nonylphenoxy)ethoxy]acetate

Methyl [2-(4-nonylphenoxy)ethoxy]acetate

C20H32O4 (336.23)


   

(6E,8Z,11Z,13E)-5,15-dihydroxyeicosa-6,8,11,13-tetraenoic acid

(6E,8Z,11Z,13E)-5,15-dihydroxyeicosa-6,8,11,13-tetraenoic acid

C20H32O4 (336.23)


   

(13R)-hydroxy-(14S,15S)-epoxyicosa-(5Z,8Z,11Z)-trienoic acid

(13R)-hydroxy-(14S,15S)-epoxyicosa-(5Z,8Z,11Z)-trienoic acid

C20H32O4 (336.23)


A trienoic fatty acid consisting of (5Z,8Z,11Z)-icosa-5,9,14-trienoic acid having additional (13R)-hydroxy- and (14S,15S)-epoxy groups.

   

(5Z,8Z,11S,12E)-11-hydroxy-13-[(2S,3S)-3-pentyloxiran-2-yl]trideca-5,8,12-trienoic acid

(5Z,8Z,11S,12E)-11-hydroxy-13-[(2S,3S)-3-pentyloxiran-2-yl]trideca-5,8,12-trienoic acid

C20H32O4 (336.23)


   

(5Z,8Z,11Z,13E,15R)-15-hydroperoxyicosa-5,8,11,13-tetraenoic acid

(5Z,8Z,11Z,13E,15R)-15-hydroperoxyicosa-5,8,11,13-tetraenoic acid

C20H32O4 (336.23)


   

(10R)-hydroxy-(11S,12S)-epoxyicosa-(5Z,8Z,14Z)-trienoic acid

(10R)-hydroxy-(11S,12S)-epoxyicosa-(5Z,8Z,14Z)-trienoic acid

C20H32O4 (336.23)


A trienoic fatty acid consisting of (5Z,8Z,14Z)-icosa-5,9,14-trienoic acid having additional (10R)-hydroxy- and (11S,12S)-epoxy groups.

   

(8R)-hydroxy-(11R,12R)-epoxyicosa-(5Z,9E,14Z)-trienoic acid

(8R)-hydroxy-(11R,12R)-epoxyicosa-(5Z,9E,14Z)-trienoic acid

C20H32O4 (336.23)


A trienoic fatty acid consisting of (5Z,9E,14Z)-icosa-5,9,14-trienoic acid having additional (8R)-hydroxy- and (11R,12R)-epoxy groups.

   

(8R)-hydroxy-(11S,12S)-epoxyicosa-(5Z,9E,14Z)-trienoic acid

(8R)-hydroxy-(11S,12S)-epoxyicosa-(5Z,9E,14Z)-trienoic acid

C20H32O4 (336.23)


A trienoic fatty acid consisting of (5Z,9E,14Z)-icosa-5,9,14-trienoic acid having additional (8R)-hydroxy- and (11S,12S)-epoxy groups.

   

fusicoccin H aglycon

fusicoccin H aglycon

C20H32O4 (336.23)


   

7-[(1R,2S)-2-[(E)-3-hydroxyoct-1-enyl]-5-oxocyclopent-3-en-1-yl]heptanoic acid

7-[(1R,2S)-2-[(E)-3-hydroxyoct-1-enyl]-5-oxocyclopent-3-en-1-yl]heptanoic acid

C20H32O4 (336.23)


   

(5Z,8Z,10R)-10-hydroxy-10-[(2R,3S)-3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoic acid

(5Z,8Z,10R)-10-hydroxy-10-[(2R,3S)-3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoic acid

C20H32O4 (336.23)


   

(Z)-7-[(2S,3S)-3-[(1R,2Z,5Z)-1-hydroxyundeca-2,5-dienyl]oxiran-2-yl]hept-5-enoic acid

(Z)-7-[(2S,3S)-3-[(1R,2Z,5Z)-1-hydroxyundeca-2,5-dienyl]oxiran-2-yl]hept-5-enoic acid

C20H32O4 (336.23)


   

(5S,7E,9E,11Z,13E,15S)-5,15-dihydroxyicosa-7,9,11,13-tetraenoic acid

(5S,7E,9E,11Z,13E,15S)-5,15-dihydroxyicosa-7,9,11,13-tetraenoic acid

C20H32O4 (336.23)


   

7-[(1R)-2-[(E)-3-hydroxyoct-1-enyl]-5-oxocyclopent-2-en-1-yl]heptanoic acid

7-[(1R)-2-[(E)-3-hydroxyoct-1-enyl]-5-oxocyclopent-2-en-1-yl]heptanoic acid

C20H32O4 (336.23)


   

(S-(E,Z,Z,Z))-15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid

(S-(E,Z,Z,Z))-15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid

C20H32O4 (336.23)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

8,20-DiHETE

8,20-DiHETE

C20H32O4 (336.23)


A DiHETE that is 8-HETE carrying an additional hydroxy substituent at position 20.

   

5-Hydroperoxyeicosatetraenoic acid

5-Hydroperoxyeicosatetraenoic acid

C20H32O4 (336.23)


   

Prostaglandin A-1

Prostaglandin A-1

C20H32O4 (336.23)


   

5-Hydroperoxy-6,8,11,14-eicosatetraenoic acid

5-Hydroperoxy-6,8,11,14-eicosatetraenoic acid

C20H32O4 (336.23)


   

12(S)-HPETE

12-Hydroperoxy-5,8,10,14-eicosatetraenoic acid

C20H32O4 (336.23)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents The (S)-enantiomer of 12-HPETE.

   
   

(2E,4E,6E,8E)-2,3-dihydroxyicosa-2,4,6,8-tetraenoic acid

(2E,4E,6E,8E)-2,3-dihydroxyicosa-2,4,6,8-tetraenoic acid

C20H32O4 (336.23)


   

(2E,4E,6E,8E)-12-hydroperoxyicosa-2,4,6,8-tetraenoic acid

(2E,4E,6E,8E)-12-hydroperoxyicosa-2,4,6,8-tetraenoic acid

C20H32O4 (336.23)


   

(5S,15R)-Dihydroxy-(6E,8Z,11Z,13E)-eicosatetraenoate

(5S,15R)-Dihydroxy-(6E,8Z,11Z,13E)-eicosatetraenoate

C20H32O4 (336.23)


   

prostaglandin C1 anion

prostaglandin C1 anion

C20H32O4 (336.23)


   

Prostaglandin B-1

Prostaglandin B-1

C20H32O4 (336.23)


   

(3E,7E,11R,12E)-11-Hydroxy-3,7,11,15-tetramethyl-14-oxohexadeca-3,7,12-trienoic acid

(3E,7E,11R,12E)-11-Hydroxy-3,7,11,15-tetramethyl-14-oxohexadeca-3,7,12-trienoic acid

C20H32O4 (336.23)


   

(5E,8E,14E,17E)-11,12-dihydroxyicosa-5,8,14,17-tetraenoic acid

(5E,8E,14E,17E)-11,12-dihydroxyicosa-5,8,14,17-tetraenoic acid

C20H32O4 (336.23)


   

Pilosanone B

Pilosanone B

C20H32O4 (336.23)


   

Sphaeropsidin F

Sphaeropsidin F

C20H32O4 (336.23)


A natural product found in Smardaea species.

   

Bicyclo-prostaglandin E1

Bicyclo-prostaglandin E1

C20H32O4 (336.23)


   

(5Z,8Z,10E,12E,14R,15S)-14,15-dihydroxyicosa-5,8,10,12-tetraenoic acid

(5Z,8Z,10E,12E,14R,15S)-14,15-dihydroxyicosa-5,8,10,12-tetraenoic acid

C20H32O4 (336.23)


   

12S,13R-dihydroxylabda-8(17),14-dien-19-oic acid

12S,13R-dihydroxylabda-8(17),14-dien-19-oic acid

C20H32O4 (336.23)


A natural product found in Metasequoia glyptostroboides.

   

15,16-Dihydroxy-8(17),13-labdadien-18-oic acid

15,16-Dihydroxy-8(17),13-labdadien-18-oic acid

C20H32O4 (336.23)


   

(6E,8Z,11Z,14Z)-5,20-dihydroxyicosa-6,8,11,14-tetraenoic acid

(6E,8Z,11Z,14Z)-5,20-dihydroxyicosa-6,8,11,14-tetraenoic acid

C20H32O4 (336.23)


   

4-Hydroxy-6-(13-methyl-2-oxotetradecyl)pyran-2-one

4-Hydroxy-6-(13-methyl-2-oxotetradecyl)pyran-2-one

C20H32O4 (336.23)


   

12S,13S-dihydroxylabda-8(17),14-dien-19-oic acid

12S,13S-dihydroxylabda-8(17),14-dien-19-oic acid

C20H32O4 (336.23)


A natural product found in Metasequoia glyptostroboides.

   

(5S,6Z,8E,14Z)-5-hydroxy-12-oxoicosa-6,8,14-trienoic acid

(5S,6Z,8E,14Z)-5-hydroxy-12-oxoicosa-6,8,14-trienoic acid

C20H32O4 (336.23)


   

7-[(1R,2S)-2-[(3S)-3-hydroxyoct-1-enyl]-5-oxo-1-cyclopent-3-enyl]heptanoic acid

7-[(1R,2S)-2-[(3S)-3-hydroxyoct-1-enyl]-5-oxo-1-cyclopent-3-enyl]heptanoic acid

C20H32O4 (336.23)


   

(5Z,8Z,11Z,13S)-13-hydroxy-13-[(2S,3S)-3-pentyloxiran-2-yl]trideca-5,8,11-trienoic acid

(5Z,8Z,11Z,13S)-13-hydroxy-13-[(2S,3S)-3-pentyloxiran-2-yl]trideca-5,8,11-trienoic acid

C20H32O4 (336.23)


   

(5Z,8Z,11Z)-13-Hydroxy-14,15-epoxy-5,8,11-icosatrienoic acid

(5Z,8Z,11Z)-13-Hydroxy-14,15-epoxy-5,8,11-icosatrienoic acid

C20H32O4 (336.23)


   

(5Z,9E,11Z,14Z)-8-hydroperoxyicosa-5,9,11,14-tetraenoic acid

(5Z,9E,11Z,14Z)-8-hydroperoxyicosa-5,9,11,14-tetraenoic acid

C20H32O4 (336.23)


   

(5Z,8Z,12E)-11-hydroxy-13-[(2R,3S)-3-pentyloxiran-2-yl]trideca-5,8,12-trienoic acid

(5Z,8Z,12E)-11-hydroxy-13-[(2R,3S)-3-pentyloxiran-2-yl]trideca-5,8,12-trienoic acid

C20H32O4 (336.23)


   

9(R)-Hpete

9(R)-Hpete

C20H32O4 (336.23)


A 9-HPETE in which the 9-hydroxy group has R stereochemistry.

   

(8S,9S)-epoxy-(10R)-hydroxyicosa-(5Z,11Z,14Z)-trienoic acid

(8S,9S)-epoxy-(10R)-hydroxyicosa-(5Z,11Z,14Z)-trienoic acid

C20H32O4 (336.23)


A polyunsaturated fatty acid that is the (8S,9S)-epoxy-(10R)-hydroxy derivative of icosa-(5Z,11Z,14Z)-trienoic acid.

   

(7R)-hydroxy-(5S,6S)-epoxy-(8Z,11Z,14Z)-icosatrienoic acid

(7R)-hydroxy-(5S,6S)-epoxy-(8Z,11Z,14Z)-icosatrienoic acid

C20H32O4 (336.23)


A trienoic fatty acid consisting of (8Z,11Z,14Z)-icosa-8,11,14-trienoic acid having additional (7R)-hydroxy- and (5S,6S)-epoxy groups.

   

(5Z,8Z,11Z)-13-hydroxy-13-[(2R,3S)-3-pentyloxiran-2-yl]trideca-5,8,11-trienoic acid

(5Z,8Z,11Z)-13-hydroxy-13-[(2R,3S)-3-pentyloxiran-2-yl]trideca-5,8,11-trienoic acid

C20H32O4 (336.23)


   

(5Z)-7-{3-[(2Z,5Z)-11-hydroxyundeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoic acid

(5Z)-7-{3-[(2Z,5Z)-11-hydroxyundeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoic acid

C20H32O4 (336.23)


   

4-{3-[(2Z,5Z,8Z)-14-hydroxytetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoic acid

4-{3-[(2Z,5Z,8Z)-14-hydroxytetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoic acid

C20H32O4 (336.23)


   

(5Z,8Z)-10-{3-[(2Z)-8-hydroxyoct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoic acid

(5Z,8Z)-10-{3-[(2Z)-8-hydroxyoct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoic acid

C20H32O4 (336.23)


   

(5Z,8Z,11Z)-13-[3-(5-hydroxypentyl)oxiran-2-yl]trideca-5,8,11-trienoic acid

(5Z,8Z,11Z)-13-[3-(5-hydroxypentyl)oxiran-2-yl]trideca-5,8,11-trienoic acid

C20H32O4 (336.23)


   

(5R,6E,8Z,11Z,14Z)-5-hydroperoxyicosa-6,8,11,14-tetraenoic acid

(5R,6E,8Z,11Z,14Z)-5-hydroperoxyicosa-6,8,11,14-tetraenoic acid

C20H32O4 (336.23)


   

2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxyacetic acid

2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxyacetic acid

C20H32O4 (336.23)


   

Fahfa 2:0/18:3

Fahfa 2:0/18:3

C20H32O4 (336.23)


   

Fahfa 4:0/16:3

Fahfa 4:0/16:3

C20H32O4 (336.23)


   

Fahfa 16:3/4:0

Fahfa 16:3/4:0

C20H32O4 (336.23)


   

3-Ethoxy-6-[1-(tetrahydro-2H-pyran-2-yl)oxy-5-methyl-4-hexenyl]-2-cyclohexen-1-one

3-Ethoxy-6-[1-(tetrahydro-2H-pyran-2-yl)oxy-5-methyl-4-hexenyl]-2-cyclohexen-1-one

C20H32O4 (336.23)


   

8(R)-HPETE

8(R)-HPETE

C20H32O4 (336.23)


The (R)-enantiomer of 8-HPETE.

   

12R-HpETE

(5Z,8Z,10E,14Z)-(12R)-12-Hydroperoxyeicosa-5,8,10,14-tetraenoic acid

C20H32O4 (336.23)


A HPETE that is (5Z,8Z,10E,12R,14Z)-icosa-5,8,10,14-tetraenoic acid with the hydroperoxy group located at position 12 (the R-enantiomer).

   

8(S)-HPETE

(5Z,9E,11Z,14Z)-(8S)-8-Hydroperoxyeicosa-5,9,11,14-tetraenoic acid

C20H32O4 (336.23)


A HPETE in which the hydroperoxy group is located at position 8S and the four double bonds at position 5, 9, 11 and 14 (the 5Z,9E,11Z,14Z-geoisomer).

   

(5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid

(5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid

C20H32O4 (336.23)


A C20 trienoic hydroxy fatty acid consisting of 8-hydroxyicosa-5,9,14-trienoic acid having an epoxy group at the 11,12-position.

   

5(S),15(S)-DIHETE

5(S),15(S)-DIHETE

C20H32O4 (336.23)


A DiHETE that is (6E,8Z,11Z,13E)-icosatetraenoic acid in which the two hydroxy substituents are placed at the 5S- and 15S-positions.

   

6-trans-12-epi-Leukotriene B4

6-trans-12-epi-Leukotriene B4

C20H32O4 (336.23)


   

15H-11,12-EETA

(5Z,8Z,13E)-(15S)-11,12-Epoxy-15-hydroxyeicosa-5,8,13-trienoic acid

C20H32O4 (336.23)


   

11H-14,15-EETA

(5Z,8Z,12E)-14,15-Epoxy-11-hydroxyeicosa-5,8,12-trienoic acid

C20H32O4 (336.23)


   

11(R)-HPETE

(5Z,8Z,12E,14Z)-(11R)-Hydroperoxyeicosa-5,8,12,14-tetraenoic acid

C20H32O4 (336.23)


   

12,20-DiHETE

12,20-DiHETE

C20H32O4 (336.23)


A DiHETE that is 12-HETE carrying an additional hydroxy substituent at position 20.

   

10,11-dihydro-12-oxo-LTB4

10,11-dihydro-12-oxo-LTB4

C20H32O4 (336.23)


   

6,7-dihydro-5-oxo-12-epi-LTB4

6,7-dihydro-5-oxo-12-epi-LTB4

C20H32O4 (336.23)


   

1-(3,4-dimethoxyphenyl)-5-hydroxydodecan-3-one

1-(3,4-dimethoxyphenyl)-5-hydroxydodecan-3-one

C20H32O4 (336.23)


   

5(S),15(R)-DiHETE

5(S),15(R)-DiHETE

C20H32O4 (336.23)


A DiHETE that is (6E,8Z,11Z,13E)-icosatetraenoic acid in which the two hydroxy substituents are placed at the 5S- and 15R-positions.

   

9-Deoxy-delta12-PGD2

9-Deoxy-delta12-PGD2

C20H32O4 (336.23)


   

hepoxilin B3

(5Z,8Z,14Z)-(11S,12S)-11,12-Epoxy-10-hydroxyeicosa-5,8,14-trienoic acid

C20H32O4 (336.23)


A hepoxilin having (5Z,9E,14Z) double bond stereochemistry, a 10-hydroxy substituent and an (11S,12S)-epoxy group.

   

5S,6S-DiHETE

(5R,6S)-3-[(DIPHENOXYPHOSPHINYL)OXY]-6-[(1R)-1-HYDROXYETHYL]-7-OXO-1-AZABICYCLO[3.2.0]HEPT-2-ENE-2-CARBOXYLICACID(4-NITROPHENYL)METHYLESTER

C20H32O4 (336.23)


   

5S,6R-dihydroxy-7E,9E,11Z,14Z-eicosatetraenoic acid

(5R,6S)-3-[(DIPHENOXYPHOSPHINYL)OXY]-6-[(1R)-1-HYDROXYETHYL]-7-OXO-1-AZABICYCLO[3.2.0]HEPT-2-ENE-2-CARBOXYLICACID(4-NITROPHENYL)METHYLESTER

C20H32O4 (336.23)


   

Delta(6)-trans,Delta(8)-cis-leukotriene B4

Delta(6)-trans,Delta(8)-cis-leukotriene B4

C20H32O4 (336.23)


A leukotriene composed of (6E,8Z,10E,14Z)-icosatetraenoic acid having 5S- and 12R-hydroxy substituents.

   

PGF2alpha-1,15-lactone

PGF2alpha-1,15-lactone

C20H32O4 (336.23)


   

5,15-Dihete

5,15-Dihete

C20H32O4 (336.23)


A DiHETE that consists of 6E,8Z,11Z,13E-icosatetraenoic acid having the two hydroxy groups located at positions 5 and 15.

   

16,17-Dihydroxykauran-18-oic acid

16,17-Dihydroxykauran-18-oic acid

C20H32O4 (336.23)


   

9(S)-Hpete

(5Z,7E,11Z,14Z)-(9S)-9-Hydroperoxyeicosa-5,7,11,14-tetraenoic acid

C20H32O4 (336.23)


A 9-HPETE in which the 9-hydroxy group has S stereochemistry.

   

(+/-)-11,12-dihydroxy-5Z,8Z,14Z,17Z-eicosatetraenoic acid

(+/-)-11,12-dihydroxy-5Z,8Z,14Z,17Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

11(S)-hydroxy-14(S),15(S)-hepoxilin A3

11(S)-hydroxy-14(S),15(S)-hepoxilin A3

C20H32O4 (336.23)


A hepoxilin having (5Z,9E,14Z) double bond stereochemistry, an (11S)-hydroxy substituent and a 14S,15S-epoxy group.

   

(+/-)-8,9-dihydroxy-5Z,11Z,14Z,17Z-eicosatetraenoic acid

(+/-)-8,9-dihydroxy-5Z,11Z,14Z,17Z-eicosatetraenoic acid

C20H32O4 (336.23)


   

Prostaglandin F2alpha-1,11-lactone

Prostaglandin F2alpha-1,11-lactone

C20H32O4 (336.23)


   

12-epi-Leukotriene B4

12-epi-Leukotriene B4

C20H32O4 (336.23)


A leukotriene that is the 12S-isomer of leukotriene B4.

   

5,20-DiHETE

5,20-DiHETE

C20H32O4 (336.23)


A DiHETE that is 5-HETE carrying an additional hydroxy substituent at position 20.

   

5(S),11(R)-DiHETE

5(S),11(R)-DiHETE

C20H32O4 (336.23)


A DiHETE that is (6E,8Z,12E,14Z)-icosatetraenoic acid in which the two hydroxy substituents are placed at the 5S- and 11R-positions.

   

(5S,6S)-dihydroxy-(7E,9E,11Z,14Z)-icosatetraenoic acid

(5S,6S)-dihydroxy-(7E,9E,11Z,14Z)-icosatetraenoic acid

C20H32O4 (336.23)


A leukotriene compound having double bonds in the 7-, 9-, 11- and 14-positions and 5(S)- and 6(S)-hydroxy substituents.

   

heptadecyloxysulfonic acid

heptadecyloxysulfonic acid

C17H36O4S (336.2334)