Exact Mass: 313.1654
Exact Mass Matches: 313.1654
Found 500 metabolites which its exact mass value is equals to given mass value 313.1654
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Laurolitsine
Laurolistine is an aporphine alkaloid that is noraporphine substituted by hydroxy groups at positions 2 and 9 and methoxy groups at positions 1 and 10. Isolated from Litsea glutinosa and Lindera chunii, exhibits inhibitory activity against HIV-1 integrase. It has a role as a metabolite and a HIV-1 integrase inhibitor. It is a member of phenols, an aromatic ether and an aporphine alkaloid. It is functionally related to an aporphine. Laurolitsine is a natural product found in Damburneya salicifolia, Neolitsea sericea, and other organisms with data available. Laurolitsine is an alkaloid from Sassafras and the leaves of Peumus boldus (boldo). Laurolitsine is a flavouring ingredient. Alkaloid from Sassafras and the leaves of Peumus boldus (boldo). Flavouring ingredient
Moupinamide
N-feruloyltyramine is a member of tyramines. It has a role as a metabolite. Moupinamide is a natural product found in Zanthoxylum beecheyanum, Polyalthia suberosa, and other organisms with data available. See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Alkaloid from Piper nigrum. Moupinamide is found in many foods, some of which are nutmeg, amaranth, sapodilla, and orange bell pepper. Moupinamide is found in eggplant. Moupinamide is an alkaloid from Piper nigru CASMI2013 Challenge_1 MS2 data; [MS1] MSJ00001 CASMI2013 Challenge_1 MS1 data; [MS2] MSJ00002 N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1]. N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1].
Armepavine
Armepavine is a member of isoquinolines. (-)-Armepavine is a natural product found in Berberis integerrima, Aconitum variegatum, and other organisms with data available. Armepavine, an active compound from Nelumbo nucifera, exerts not only anti-inflammatory effects on human peripheral blood mononuclear cells, but also immunosuppressive effects on T lymphocytes and on lupus nephritic mice. Armepavine inhibits TNF-α-induced MAPK and NF-κB signaling cascades[1]. Armepavine, an active compound from Nelumbo nucifera, exerts not only anti-inflammatory effects on human peripheral blood mononuclear cells, but also immunosuppressive effects on T lymphocytes and on lupus nephritic mice. Armepavine inhibits TNF-α-induced MAPK and NF-κB signaling cascades[1].
BAS 490 F
D010575 - Pesticides > D005659 - Fungicides, Industrial > D000073739 - Strobilurins D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 154 Kresoxim-methyl (BAS 490 F), a Strobilurin-based fungicide, inhibits the respiration at the complex III (cytochrome bc1 complex). Kresoxim-methyl binds to complex III from yeast with an apparent Kd of 0.07 μM proving a high affinity for this enzyme[1][2].
Ethylmorphine
A narcotic analgesic and antitussive. It is metabolized in the liver by ethylmorphine-N-demethylase and used as an indicator of liver function. It is not marketed in the US but is approved for use in various countries around the world. In the US it is a schedule II drug (single-entity) and schedule III drug (in combination products). R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics S - Sensory organs > S01 - Ophthalmologicals
Heliotrine
Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2319 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 120 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 140 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 160 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 170 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 130 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 110 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 100 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 150
(+)-Erysotrine
(+)-Erysotrine is found in green vegetables. (+)-Erysotrine is an alkaloid from a wide range of Erythrina species including Erythrina abyssinica, Erythrina arborescens, Erythrina atitlanensis, Erythrina blakei, Erythrina caffra, Erythrina coralloides, Erythrina crista-galli, Erythrina flabelliformis, Erythrina folkersii, Erythrina fusca (gallito), Erythrina goldmanii, Erythrina guatemalensis, Erythrina herbacea, Erythrina lithosperma, Erythrina livingstoniana, Erythrina macrophylla, Erythrina mulungu, Erythrina oliviae, Erythrina poeppigiana, Erythrina senegalensis, Erythrina steyermarkii, Erythrina suberosa, Erythrina tajumulcensis, Erythrina variegata and Erythrina zeher
3-Methoxyestra-1,3,5(10)-trien-16-oximino-17-one
6-O-Methylcodeine
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids 6-O-Methylcodeine is a minor alkaloid of Papaver somniferum (opium poppy
Muricinine
Alkaloid from Annona muricata (soursop). Muricinine is found in custard apple, fruits, and soursop. Muricinine is found in custard apple. Muricinine is an alkaloid from Annona muricata (soursop
Laurelliptine
Laurelliptine is found in fruits. Laurelliptine is an alkaloid from Zizyphus jujuba (Chinese date). Alkaloid from Zizyphus jujuba (Chinese date). Laurelliptine is found in fruits. Norisoboldine is an orally active natural aryl hydrocarbon receptor (AhR) agonist. Norisoboldine, as a major isoquinoline alkaloid present in Radix Linderae, can be used for the research of Rheumatoid arthritis and Ulcerative colitis[1][2]. Norisoboldine is an orally active natural aryl hydrocarbon receptor (AhR) agonist. Norisoboldine, as a major isoquinoline alkaloid present in Radix Linderae, can be used for the research of Rheumatoid arthritis and Ulcerative colitis[1][2]. Norisoboldine is an orally active natural aryl hydrocarbon receptor (AhR) agonist. Norisoboldine, as a major isoquinoline alkaloid present in Radix Linderae, can be used for the research of Rheumatoid arthritis and Ulcerative colitis[1][2].
Reboxetine
Reboxetine is an antidepressant drug used in the treatment of clinical depression, panic disorder and ADD/ADHD. Its mesylate (i.e. methanesulfonate) salt is sold under tradenames including Edronax, Norebox, Prolift, Solvex, Davedax or Vestra. Reboxetine has two chiral centers, but it only exists as two enantiomers, (R,R)-(-)- and (S,S)-(+)-reboxetine.
N-cis-Feruloyltyramine
Isolated from bell pepper. N-cis-Feruloyltyramine is found in many foods, some of which are cherimoya, yellow bell pepper, green bell pepper, and pepper (c. annuum). N-cis-Feruloyltyramine is found in cherimoya. N-cis-Feruloyltyramine is isolated from bell pepper.
3,4-dimethylidenehexanedioylcarnitine
3,4-dimethylidenehexanedioylcarnitine is an acylcarnitine. More specifically, it is an 3,4-dimethylidenehexanedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,4-dimethylidenehexanedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,4-dimethylidenehexanedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Octa-3,5-dienedioylcarnitine
Octa-3,5-dienedioylcarnitine is an acylcarnitine. More specifically, it is an octa-3,5-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. octa-3,5-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine octa-3,5-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Octa-2,6-dienedioylcarnitine
Octa-2,6-dienedioylcarnitine is an acylcarnitine. More specifically, it is an octa-2,6-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. octa-2,6-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine octa-2,6-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2Z,4Z)-Octa-2,4-dienedioylcarnitine
(2Z,4Z)-octa-2,4-dienedioylcarnitine is an acylcarnitine. More specifically, it is an (2Z,4Z)-octa-2,4-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2Z,4Z)-octa-2,4-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2Z,4Z)-octa-2,4-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Octa-3,6-dienedioylcarnitine
Octa-3,6-dienedioylcarnitine is an acylcarnitine. More specifically, it is an octa-3,6-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. octa-3,6-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine octa-3,6-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3-Hydroxynona-4,7-dienoylcarnitine
3-hydroxynona-4,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxynona-4,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-hydroxynona-4,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-hydroxynona-4,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3-Hydroxynona-5,7-dienoylcarnitine
3-hydroxynona-5,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxynona-5,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-hydroxynona-5,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-hydroxynona-5,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3-Hydroxynona-4,6-dienoylcarnitine
3-hydroxynona-4,6-dienoylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxynona-4,6-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-hydroxynona-4,6-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-hydroxynona-4,6-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
alpha-(Dimethylaminomethyl)-2-(3-ethyl-5-methyl-4-isoxazolyl)-1H-indole-3-methanol
10-(2-(Diethylamino)propyl)-10H-pyrido(3,2-b)(1,4)benzothiazine
Mavoglurant
Myofedrin
D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents
63J46T4EQ3
Norisoboldine is a natural product found in Cassytha pubescens, Cocculus laurifolius, and other organisms with data available. Norisoboldine is an orally active natural aryl hydrocarbon receptor (AhR) agonist. Norisoboldine, as a major isoquinoline alkaloid present in Radix Linderae, can be used for the research of Rheumatoid arthritis and Ulcerative colitis[1][2]. Norisoboldine is an orally active natural aryl hydrocarbon receptor (AhR) agonist. Norisoboldine, as a major isoquinoline alkaloid present in Radix Linderae, can be used for the research of Rheumatoid arthritis and Ulcerative colitis[1][2]. Norisoboldine is an orally active natural aryl hydrocarbon receptor (AhR) agonist. Norisoboldine, as a major isoquinoline alkaloid present in Radix Linderae, can be used for the research of Rheumatoid arthritis and Ulcerative colitis[1][2].
Laetanine
Laetanine is a natural product found in Ocotea teleiandra, Lindera glauca, and Hazomalania voyronii with data available. Laetanine, a noraporphine alkaloid from Litsea laeta, exhibits antiplasmodial activity[1].
(1S)-2,3,12,12a-Tetrahydro-10-methoxy-1-methyl-1H-[1]benzoxepino[2,3,4-ij]isoquinoline-6,9-diol
N-trans-Caffeoyl-O-methyltyramine
N-Caffeoyl O-methyltyramine is a class of alkaloid isolated from Cuscuta reflexa with strong inhibitory activity against α-glucosidase (IC50 of 103.58 μM)[1]. N-Caffeoyl O-methyltyramine is a class of alkaloid isolated from Cuscuta reflexa with strong inhibitory activity against α-glucosidase (IC50 of 103.58 μM)[1].
5,6,8,9-tetrahydro-3,12-dimethoxy-7-methyl-dibenzazonin-2-ol|5,6,8,9-tetrahydro-3,12-dimethoxy-7-methyl-dibenz[d,f]azonin-2-ol|Laurifinin|laurifinine
7,8-Dimethoxy-2-methyl-1-(4-hydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline
retronecine (S)-2-hydroxy-2-((S)-1-hydroxyethyl)-4-methyl-pentanoyl ester|Retronecine 2S-hydroxy-2S-(1S-hydroxyethyl)-4-methylpentanoyl ester
15,16-methanediyldioxy-3beta-methoxy-11a-homo-erythrin-1(6)-ene|3-epi-epischellhammericine|3-epi-schelhammereicine|3-epi-Schelhammericin|3-epi-schelhammericine|3-Epischelhammericine
(+-)Petalinjodid|1-(4-Methoxy-benzyl)-1,2,3,4-tetrahydro-7-methoxy-2-methyl-8-isochinolinol|1-(4-Methoxy-benzyl)-8-hydroxy-7-methoxy-2-methyl-1,2,3,4-tetrahydro-isochinolin|1-(4-Methoxybenzyl)-7-methoxy-2-methyl-1,2,3,4-tetrahydro-8-isochinolinol|7-methoxy-1-(4-methoxy-benzyl)-2-methyl-1,2,3,4-tetrahydro-isoquinolin-8-ol|Gorchacoine|Gortschakoin|Petalinjodid
(E)-4-(4,6-dimethoxyfuro[2,3-b]quinolin-5-yl)-2-methyl-3-buten-2-ol
(2E)-N-[2-(4-hydroxy-2-methoxy-phenyl)ethyl]-3-(4-hydroxy-phenyl)-acrylamide
7?-(3?,4?-dihydroxyphenyl)-N-[(4-methoxyphenyl)ethyl]propenamide
(7E)-N-(3-hydroxyl-4-methoxy)phenylethyl-4-hydroxyl-cinnamamide
7-(1,3-benzodioxol-5-yl)-1-piperidin-1-ylhepta-2,4-dien-1-one
15,16-methanediyldioxy-3beta-methoxy-erythrin-1(6)-en-2-one|Erythratinon|erythratinone
cassiarin B
An isoquinoline alkaloid that is pyrano[2,3,4-ij]isoquinolin-8(4H)-one substituted by methyl groups at positions 2 and 5 and a 4-methoxy-4-oxobutyl group at position 4. It is isolated from the leaves of Cassia siamea and exhibits antiplasmodial activity against Plasmodium falciparum.
(??)-Isocephalotaxinone|Isocephalotaxinone|Natural-Isocephalotaxinone
(2E,6E)-7-(benzo[d][1,3]dioxol-5-yl)-1-(piperidin-1-yl)hepta-2,6-dien-1-one|4,5-dihydropiperettine|pipersintenamide
N,N-Dimethyl-glycin-(6-phenyl-benzo[1,3]dioxol-5-ylmethylester)|N,N-Dimethyl-glycin-<4,5-methylendioxy-2-phenyl-benzylester>|N,N-dimethyl-glycine-(6-phenyl-benzo[1,3]dioxol-5-ylmethyl ester)
2,9,10-trihydroxy-3-methoxytetrahydro-protoberberine
7-DP-MPE-P
Cuscuta propenamide 1 is an enamide obtained by the formal condensation of 4-methoxyphenylethylamine with trans-caffeic acid. It is isolated from Cuscuta reflexa and displays strong inhibitory activity against alpha-glucosidase (EC 3.2.1.20). It has a role as a metabolite and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is an enamide, a member of catechols, a monomethoxybenzene and a secondary carboxamide. It is functionally related to a trans-caffeic acid and a 4-methoxyphenylethylamine. Cuscuta propenamide 1 is a natural product found in Microcos paniculata, Cuscuta reflexa, and Fissistigma oldhamii with data available. An enamide obtained by the formal condensation of 4-methoxyphenylethylamine with trans-caffeic acid. It is isolated from Cuscuta reflexa and displays strong inhibitory activity against alpha-glucosidase (EC 3.2.1.20). N-Caffeoyl O-methyltyramine is a class of alkaloid isolated from Cuscuta reflexa with strong inhibitory activity against α-glucosidase (IC50 of 103.58 μM)[1]. N-Caffeoyl O-methyltyramine is a class of alkaloid isolated from Cuscuta reflexa with strong inhibitory activity against α-glucosidase (IC50 of 103.58 μM)[1].
alpha-Codeimethine
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.481 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.478
Maprotiline Hydrochloride
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators
(E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide
ethylmorphine
R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics S - Sensory organs > S01 - Ophthalmologicals
kresoxim-methyl
CONFIDENCE standard compound; INTERNAL_ID 2639 Kresoxim-methyl (BAS 490 F), a Strobilurin-based fungicide, inhibits the respiration at the complex III (cytochrome bc1 complex). Kresoxim-methyl binds to complex III from yeast with an apparent Kd of 0.07 μM proving a high affinity for this enzyme[1][2].
(E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide [IIN-based: Match]
(E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide [IIN-based on: CCMSLIB00000845924]
2-[4-(Diethylamino)-2-hydroxybenzoyl]benzoic acid
CONFIDENCE standard compound; INTERNAL_ID 303; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4276; ORIGINAL_PRECURSOR_SCAN_NO 4274 CONFIDENCE standard compound; INTERNAL_ID 303; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4758; ORIGINAL_PRECURSOR_SCAN_NO 4757 CONFIDENCE standard compound; INTERNAL_ID 303; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4784; ORIGINAL_PRECURSOR_SCAN_NO 4783 CONFIDENCE standard compound; INTERNAL_ID 303; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4768; ORIGINAL_PRECURSOR_SCAN_NO 4766 CONFIDENCE standard compound; INTERNAL_ID 303; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4857; ORIGINAL_PRECURSOR_SCAN_NO 4855 CONFIDENCE standard compound; INTERNAL_ID 303; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4767; ORIGINAL_PRECURSOR_SCAN_NO 4766 CONFIDENCE standard compound; INTERNAL_ID 303; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9105; ORIGINAL_PRECURSOR_SCAN_NO 9103 CONFIDENCE standard compound; INTERNAL_ID 303; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9180; ORIGINAL_PRECURSOR_SCAN_NO 9178 CONFIDENCE standard compound; INTERNAL_ID 303; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9206; ORIGINAL_PRECURSOR_SCAN_NO 9201 CONFIDENCE standard compound; INTERNAL_ID 303; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9159; ORIGINAL_PRECURSOR_SCAN_NO 9157 CONFIDENCE standard compound; INTERNAL_ID 303; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9172; ORIGINAL_PRECURSOR_SCAN_NO 9171 CONFIDENCE standard compound; INTERNAL_ID 303; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9164; ORIGINAL_PRECURSOR_SCAN_NO 9163
PC(O-2:0/O-2:0)
PC(O-4:0/0:0)[U]
15-Lipoxygenase Inhibitor 1
4-MMPB is a selective inhibitor of 15-lipoxygenase, with an IC50 of 18 μM. 4-MMPB has IC50s of 19.5 μM and 19.1 μM for soybean 15-lipoxygenase (SLO) and human 15-lipoxygenase-1 (15-LOX-1), respectively. 4-MMPB has potential for the research of prostate cancer[1][2][3][4].
Reboxetine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C185721 - Norepinephrine Reuptake Inhibitor C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators
Codeine methyl ether
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
Muricinine
Laurelliptine
Norisoboldine is an orally active natural aryl hydrocarbon receptor (AhR) agonist. Norisoboldine, as a major isoquinoline alkaloid present in Radix Linderae, can be used for the research of Rheumatoid arthritis and Ulcerative colitis[1][2]. Norisoboldine is an orally active natural aryl hydrocarbon receptor (AhR) agonist. Norisoboldine, as a major isoquinoline alkaloid present in Radix Linderae, can be used for the research of Rheumatoid arthritis and Ulcerative colitis[1][2]. Norisoboldine is an orally active natural aryl hydrocarbon receptor (AhR) agonist. Norisoboldine, as a major isoquinoline alkaloid present in Radix Linderae, can be used for the research of Rheumatoid arthritis and Ulcerative colitis[1][2].
N-cis-Feruloyltyramine
tert-Butyl 4-(isoquinolin-3-yl)piperazine-1-carboxylate
3-[[2-(4-propan-2-ylphenoxy)acetyl]amino]benzoic acid
N,N,N-[(Vinylsilanetriyl)tris(oxy)]tri(2-butanimine)
Sematilide
C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
3-Quinolinecarboxylic acid, 1-cyclopropyl-1,4-dihydro-4-oxo-7-(1-piperazinyl)
3-AMINO-N,N-DIETHYL-4-MORPHOLIN-4-YL-BENZENESULFONAMIDE
tert-butyl 4-(4-amino-2,6-difluorophenyl)piperazine-1-carboxylate
ethyl 1-(6-formylquinazolin-4-yl)piperidine-3-carboxylate
3-[[2-(2-propan-2-ylphenoxy)acetyl]amino]benzoic acid
2H-Pyrrol-2-one, 4-acetyl-5-cyclohexyl-1,5-dihydro-3-hydroxy-1-(4-methylphenyl)-
2H-Pyrrol-2-one, 4-acetyl-5-cyclohexyl-1,5-dihydro-3-hydroxy-1-(4-methylphenyl)-, (5R)-
ethyl 1-(6-formylquinazolin-4-yl)piperidine-4-carboxylate
5-METHYL-N2-(4-(2-(PYRROLIDIN-1-YL)ETHOXY)PHENYL)PYRIMIDINE-2,4-DIAMINE
Xenysalate
D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AC - Medicated shampoos C78284 - Agent Affecting Integumentary System > C29700 - Astringent
4-((TERT-BUTOXYCARBONYL)AMINO)-[1,1-BIPHENYL]-2-CARBOXYLIC ACID
Benzenemethanaminium,N,N,N-tripropyl-, bromide (1:1)
1-(4-methoxyphenyl)-2-[2-(4-methoxyphenyl)ethylamino]propan-1-one
N-[2-Isopropylthiazol-4-ylmethyl(methyl)carbamoyl]-L-valine
Methanone, (3-ethyl-5-methyl-4-isoxazolyl)[4-(2-methylphenyl)-1-piperazinyl]
Methanone, (3,5-dimethyl-4-isoxazolyl)[4-(2,3-dimethylphenyl)-1-piperazinyl]-
TERT-BUTYL 4-(ISOQUINOLIN-5-YL)PIPERAZINE-1-CARBOXYLATE
2,2-dimethyl-N-[(4-propan-2-yloxyphenyl)methyl]oxan-4-amine,hydrochloride
tert-Butyl 3-(2-(tert-butoxy)-2-oxoethyl)-4-oxopiperidine-1-carboxylate
(4R)-2-Methyl-4,5,5-triphenyl-1,3,2-oxazaborolidine
Methanone, (3-ethyl-5-methyl-4-isoxazolyl)[4-(3-methylphenyl)-1-piperazinyl]
2H,4H-[1,3]Dioxolo[4,5-h]indolo[7a,1-a][2]benzazepine,1,5,6,12,13,14-hexahydro-13-methoxy-, (11bS,13S)-
6-(2-(PYRIDIN-2-YL)-5,6-DIHYDRO-4H-PYRROLO[1,2-B]PYRAZOL-3-YL)QUINOXALINE
(S)-ethyl 2-(tert-butoxycarbonylamino)-5-oxonon-8-enoate
3-(Dimethylamino)-1-(6-(3-methoxyphenyl)-7,7a-dihydroimidazo[2,1-b]oxazol-5-yl)prop-2-en-1-one
N-(2,3,5,6-TetraMethylphenylsulfonyl)valine Monohydrate
Venlafaxine hydrochloride
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D000068760 - Serotonin and Noradrenaline Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators
3-((TERT-BUTOXYCARBONYL)AMINO)-[1,1-BIPHENYL]-3-CARBOXYLIC ACID
Acecainide hydrochloride
C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C93038 - Cation Channel Blocker
tert-butyl N-(benzenesulfonyl)-N-(2-methylpropyl)carbamate
BenzeneMethanol, 3-[5-[(1-Methyl-4-piperidinyl)Methoxy]-2-pyrimidinyl]-
mavoglurant
C78272 - Agent Affecting Nervous System Mavoglurant (AFQ056) is a potent, selective, non-competitive and orally active mGluR5 antagonist, with an IC50 of 30 nM. Mavoglurant shows a >300 fold selectivity for the mGluR5 over all targets (238) tested. Mavoglurant can be used for the research of Fragile X syndrome (FXS), and L-dopa induced dyskinesias in Parkinson's disease[1][1][2]. Mavoglurant is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
BENZYL (BENZO[D][1,3]DIOXOL-5-YLMETHYL)(ETHYL)CARBAMATE
4-Benzyloxy-2-piperidine-1-yl-pyrimidine-5-boronic acid
1-[1-(3,4-dichlorophenyl)cyclobutyl]-N,N,3-trimethylbutan-1-amine
Amitriptyline Hydrochloride
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D049990 - Membrane Transport Modulators Amitriptyline hydrochloride is an inhibitor of serotonin reuptake transporter (SERT) and noradrenaline reuptake transporter (NET), with Kis of 3.45 nM and 13.3 nM for human SERT and NET, respectively. Amitriptyline hydrochloride also weakly binds to dopamine reuptake transporter (DAT) with a Ki of 2.58 μM. Amitriptyline hydrochloride also inhibits adrenergic, muscarinic, histamine and 5-HT receptors. Amitriptyline hydrochloride is a TrkA and TrkB receptors agonist with potent neurotrophic activity. Amitriptyline hydrochloride has antidepressant activity[1][2][3].
(1-NAPHTHYLAMINOMETHYLENE)MALONIC ACID DIETHYL ESTER
N-cyclopentyl-5-(3,4-dimethoxyphenyl)-2-methylpyrimidin-4-amine
tert-Butyl 3-(piperazin-1-yl)azetidine-1-carboxylate dihydrochloride
tert-butyl 4-(3-(ethoxycarbonyl)-2-oxopropyl)piperidine-1-carboxylate
3-((TERT-BUTOXYCARBONYL)AMINO)-[1,1-BIPHENYL]-4-CARBOXYLIC ACID
TERT-BUTYL 4-(ISOQUINOLIN-1-YL)PIPERAZINE-1-CARBOXYLATE
6,7-dimethoxy-1-[(4-methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline
4-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazol-1-yl]piperidine,hydrochloride
oxyfedrine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents
Irdabisant
C254 - Anti-Infective Agent Irdabisant (CEP-26401) is a selective, orally active and blood-brain barrier (BBB) penetrant histamine H3 receptor (H3R) inverse agonist/inverse agonist with Ki values of 7.2 nM and 2.0 nM for rat H3R and human H3R, respectively. Irdabisant has relatively low inhibitory activity against hERG current with an IC50 of 13.8 μM. Irdabisant has cognition-enhancing and wake-promoting activities in the rat social recognition model. Irdabisant can be used to research schizophrenia or cognitive impairment[1][2].
2-(6-methylpyridin-2-yl)-N-pyridin-4-ylquinazolin-4-amine
7,8-Dihydro-6-hydroxymethyl-7-methyl-7-[2-phenylethyl]-pterin
erythro-9-(2-Hydroxy-3-nonyl)adenine hydrochloride
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors
Indisetron
C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist > C94726 - 5-HT3 Receptor Antagonist
[2-(2-Methoxyphenyl)-2-oxoethyl] 4-(dimethylamino)benzoate
7-Isoquinolinol, 1,2,3,4-tetrahydro-6-methoxy-1-((4-methoxyphenyl)methyl)-2-methyl-, (S)-
5-(Dodecylthio)-1h-1,2,3-Triazole-4-Carboxylic Acid
Norboldine
5-tert-butyl-N-(2,3-dihydro-1-benzouran-5-ylmethyl)-2-methylpyrazole-3-carboxamide
14-[2-(Dimethylamino)ethyl]-11-methoxy-15-oxatetracyclo[10.2.1.05,14.08,13]pentadeca-3,6,8(13),9,11-pentaen-2-ol
1-isopropyl-3-(3,4-dimethoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine
19-Methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.01,16.02,10.04,8]icosa-2,4(8),9,15,17-pentaen-11-ol
[(8R)-7-hydroxy-5,6,7,8-tetrahydro-3H-pyrrolizin-1-yl]methyl 2-hydroxy-2-(1-methoxyethyl)-3-methylbutanoate
(1R,2R,5R,8R,9S,10R,11S)-11-methyl-6-methylidene-16-oxo-15-oxapentacyclo[9.3.2.15,8.01,10.02,8]heptadec-13-ene-9-carboxylate
(2S)-2-[(E)-[(2S)-2-amino-3-(4-hydroxyphenyl)propylidene]amino]-3-(4-hydroxyphenyl)propanal
(2S)-2-[[(2E,6E)-7-carboxy-3-methylocta-2,6-dienyl]amino]pentanedioic acid
N-[(1-ethylpyrrolidin-2-yl)methyl]-8-fluoro-5H-pyrimido[5,4-b]indol-4-amine
3-[2-(1-piperidinyl)ethylthio]-5H-[1,2,4]triazino[5,6-b]indole
(4-Phenoxyphenyl) 4-hydroxypiperidine-1-carboxylate
N-(2,4-dimethylphenyl)-4-[2-(2-furylmethylene)hydrazino]-4-oxobutanamide
4-(2,3-dihydro-1H-indol-1-yl)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine
Norajmaline(1+)
An organic cation obtained by protonation of the tertiary amino group of norajmaline; major structure at pH 7.3.
N-[(2-methoxyphenyl)methyl]-N-methyl-2,3-dihydro-1,4-benzodioxin-3-carboxamide
3-Butyl-5-(4-morpholinylmethyl)-2-oxo-3-oxolanecarboxylic acid ethyl ester
N,N-dimethyl-3-[(2-phenyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)thio]-1-propanamine
N-(6-Butyrylamino-pyridin-3-yl)-2-methoxy-benzamide
2-Phenoxybenzoic acid [2-oxo-2-(propan-2-ylamino)ethyl] ester
3-[5-(4-Methylphenyl)-1-(2-oxolanylmethyl)-2-pyrrolyl]propanoic acid
[2-[(2,6-dimethyl-4-morpholinyl)-oxomethyl]phenyl]-(1H-imidazol-2-yl)methanone
7-methyl-3-(4-morpholinyl)-1-(prop-2-enylamino)-6,8-dihydro-5H-2,7-naphthyridine-4-carbonitrile
1-(2-Fluorophenyl)-3-[2-(1-piperidinyl)phenyl]urea
(2R)-2-[(S)-(2-ethoxyphenoxy)-phenylmethyl]morpholine
6-(3-pyridinyl)-N-(3-pyridinylmethyl)-4-quinazolinamine
1-(4-Fluorophenyl)-3-(4-morpholinyl)-2-phenyl-1-propanone
2-hydroxy-2-[(1R)-1-methoxyethyl]-3-methylbutanoic acid [(7S,8R)-7-hydroxy-5,6,7,8-tetrahydro-3H-pyrrolizin-1-yl]methyl ester
5,5-Diethyl-2-(2-hydroxyethylamino)-1,6-dihydrobenzo[h]quinazolin-4-one
3-Methoxyestra-1,3,5(10)-triene-16,17-dione 16-oxime
1-[2-(Dimethylamino)-1-(4-methoxyphenyl)ethyl]cyclohexan-1-ol;hydron;chloride
3-[3-(4-tert-butylphenyl)-1,2,4-oxadiazol-5-yl]-N-cyclopropylpropanamide
9-cis-4-Oxoretinoate
A retinoid anion that is the conjugate base of 9-cis-4-oxoretinoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
15-deoxy-Delta(12,14)-prostaglandin J3(1-)
A prostaglandin carboxylic acid anion that is the conjugate base of 15-deoxy-Delta(12,14)-prostaglandin J3. obtained by deprotonation of the carboxy group; major species at pH 7.3.
1-(3-Fluorophenyl)-3-(4-morpholinyl)-2-phenyl-1-propanone
1-(2-Fluorophenyl)-3-(4-morpholinyl)-2-phenyl-1-propanone
3,5,6-Trihydroxy-1-methyl-4,5-diphenylpiperidin-2-one
(3-Butoxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
2-Aminoethyl (3-heptoxy-2-hydroxypropyl) hydrogen phosphate
3-Cyano-4,8-bis(methoxymethyl)azulene-1-carboxylic acid ethyl ester
Norboldine
Laurolistine is an aporphine alkaloid that is noraporphine substituted by hydroxy groups at positions 2 and 9 and methoxy groups at positions 1 and 10. Isolated from Litsea glutinosa and Lindera chunii, exhibits inhibitory activity against HIV-1 integrase. It has a role as a metabolite and a HIV-1 integrase inhibitor. It is a member of phenols, an aromatic ether and an aporphine alkaloid. It is functionally related to an aporphine. Laurolitsine is a natural product found in Damburneya salicifolia, Neolitsea sericea, and other organisms with data available. An aporphine alkaloid that is noraporphine substituted by hydroxy groups at positions 2 and 9 and methoxy groups at positions 1 and 10. Isolated from Litsea glutinosa and Lindera chunii, exhibits inhibitory activity against HIV-1 integrase.
Acetylcaranine
An organic heteropentacyclic compound that is caranine in which the hydroxy group is acetylated.
6-O-METHYLCODEINE
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
Zenidolol (hydrochloride)
Zenidolol (ICI-118551) hydrochloride is a highly selective β2 adrenergic receptor antagonist, with Kis of 0.7, 49.5 and 611 nM for β2, β1 and β3 receptors, respectively.
(10s)-5-methoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene-6,17-diol
(9s)-5,15-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene-4,16-diol
(3s,6r)-5-hydroxy-3-(1h-indol-3-ylmethyl)-1-methyl-6-(2-methylpropyl)-3,6-dihydropyrazin-2-one
(10s)-5-methoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaene-4,17-diol
(2z)-3-(4-hydroxy-3-methoxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid
(7as)-1-({[(2r)-2-hydroxy-2-[(1r)-1-methoxyethyl]-3-methylbutanoyl]oxy}methyl)-5,6,7,7a-tetrahydro-3h-pyrrolizin-4-ium-4-olate
(1s,9r)-3-hydroxy-4,13-dimethoxy-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,10,13-pentaen-12-one
(9s)-4,15-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(17),2(7),3,5,13,15-hexaene-5,16-diol
4,15-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(17),2(7),3,5,13,15-hexaene-5,16-diol
12,13-dihydroxy-13-(3-methylimidazol-4-yl)-1-azatricyclo[6.4.2.0²,⁷]tetradeca-2,4,6-trien-9-one
(2e)-3-(3,4-dihydroxyphenyl)-n-[2-(4-methoxyphenyl)ethyl]prop-2-enimidic acid
(9s)-15,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene-5,14-diol
(12br)-11-methoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-2,3,10-triol
3-(3,4-dihydroxyphenyl)-n-[2-(4-methoxyphenyl)ethyl]prop-2-enimidic acid
(8s,12r,13s)-12,13-dihydroxy-13-(1-methylimidazol-4-yl)-1-azatricyclo[6.4.2.0²,⁷]tetradeca-2,4,6-trien-9-one
(9s)-4,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene-3,15-diol
(1s,11r,19r)-19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,15,17-pentaen-11-ol
(2e,4e)-7-(2h-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)hepta-2,4-dien-1-one
(1s,9s)-5-hydroxy-4,13-dimethoxy-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,10,13-pentaen-12-one
(2e,6e)-7-(2h-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)hepta-2,6-dien-1-one
[(7r,7ar)-7-hydroxy-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-yl]methyl (2s,3s)-2-hydroxy-2-[(1s)-1-hydroxyethyl]-3-methylpentanoate
10,11-dihydroxy-1,2-dimethoxynoraporphine
{"Ingredient_id": "HBIN000009","Ingredient_name": "10,11-dihydroxy-1,2-dimethoxynoraporphine","Alias": "NA","Ingredient_formula": "C18H19NO4","Ingredient_Smile": "COC1=C(C2=C3C(CC4=C2C(=C(C=C4)O)O)NCCC3=C1)OC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "41164","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
1- [α-(1- adamantyl)]- phenyl thiosemicarbazide
{"Ingredient_id": "HBIN002265","Ingredient_name": "1- [\u03b1-(1- adamantyl)]- phenyl thiosemicarbazide","Alias": "NA","Ingredient_formula": "C18H23N3S","Ingredient_Smile": "C1C2CC3CC1CC(C2)(C3)C(=NNC(=S)N)C4=CC=CC=C4","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "35120","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3-epischelhammericine
{"Ingredient_id": "HBIN008501","Ingredient_name": "3-epischelhammericine","Alias": "NA","Ingredient_formula": "C19H23NO3","Ingredient_Smile": "COC1CC=C2CCN3C2(C1)C4=CC5=C(C=C4CCC3)OCO5","Ingredient_weight": "313.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "7013","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "296196","DrugBank_id": "NA"}
3-epishelhammericine
{"Ingredient_id": "HBIN008502","Ingredient_name": "3-epishelhammericine","Alias": "NA","Ingredient_formula": "C19H23NO3","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "25791","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
amuronine
{"Ingredient_id": "HBIN015931","Ingredient_name": "amuronine","Alias": "NA","Ingredient_formula": "C19H23NO3","Ingredient_Smile": "CN1CCC2=CC(=C(C3=C2C1CC34CCC(=O)C=C4)OC)OC","Ingredient_weight": "313.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1101","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "12306126","DrugBank_id": "NA"}
(-)-attavenustine
{"Ingredient_id": "HBIN017338","Ingredient_name": "(-)-attavenustine","Alias": "NA","Ingredient_formula": "C18H19NO4","Ingredient_Smile": "COC1=C(C=C2CCN3CC4=CC(=C(C=C4CC3C2=C1)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "35628","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
bellamarine
{"Ingredient_id": "HBIN017726","Ingredient_name": "bellamarine","Alias": "NA","Ingredient_formula": "C18H19NO4","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2219","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}