Exact Mass: 243.117369
Exact Mass Matches: 243.117369
Found 500 metabolites which its exact mass value is equals to given mass value 243.117369
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Cytidine
Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as a substrate for the salvage pathway of pyrimidine nucleotide synthesis. It is a precursor of cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathways. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transport of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in the brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP:phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. APOBEC is a family of enzymes that has been discovered with the ability to deaminate cytidines on RNA or DNA. The human apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G protein (APOBEC3G, or hA3G), provides cells with an intracellular antiretroviral activity that is associated with the hypermutation of viral DNA through cytidine deamination. Indeed, hA3G belongs to a family of vertebrate proteins that contains one or two copies of a signature sequence motif unique to cytidine deaminases (CTDAs) (PMID: 16769123, 15780864, 16720547). Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as substrate for the salvage pathway of pyrimidine nucleotide synthesis; as precursor of the cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathway. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transports of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide, which is involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP: phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. Cytidine is a white crystalline powder. (NTP, 1992) Cytidine is a pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a cytosine. Cytidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cytidine is a natural product found in Fritillaria thunbergii, Castanopsis fissa, and other organisms with data available. Cytidine is a pyrimidine nucleoside comprised of a cytosine bound to ribose via a beta-N1-glycosidic bond. Cytidine is a precursor for uridine. Both cytidine and uridine are utilized in RNA synthesis. Cytidine is a metabolite found in or produced by Saccharomyces cerevisiae. A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE. A pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].
3-Hydroxy-N-(2-oxotetrahydrofuran-3-yl)octanamide
Biotin amide
The enzyme biotinidase (EC-Number 3.5.1.12 ) is involved in the recycling of the vitamin biotin, cleaving D-biotinylamides and esters, in a reaction including biotin amide and water. (PMID 1719240, 171927). Late-onset multiple carboxylase deficiency (MCD) with biotinidase deficiency is caused by mutation in the biotinidase gene. MCD is an autosomal recessive metabolic disorder characterized primarily by cutaneous and neurologic abnormalities. Symptoms result from the patients inability to reutilize biotin, a necessary nutrient. (OMIM 253260). The enzyme biotinidase (EC-Number 3.5.1.12 ) is involved in the recycling of the vitamin biotin, cleaving D-biotinylamides and esters, in a reaction including biotin amide and water. (PMID 1719240, 171927)
gamma-Glutamyl-beta-cyanoalanine
This compound belongs to the family of N-acyl-Alpha Amino Acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon).
Ipazine
C10H18ClN5 (243.12506580000002)
2-amino-5-[1-(1H-indol-3-yl)ethyl]-1,3-oxazol-4-one
C13H13N3O2 (243.10077180000002)
Cytarabine
Cytarabine, or cytosine arabinoside, a pyrimidine nucleoside analog, is found in mushrooms. Cytarabine is isolated from the mushroom Xerocomus nigromaculatus of unknown palatability. Cytarabine is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute myelogenous leukemia and meningeal leukemia. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. Its actions are specific for the S phase of the cell cycle to stop normal cell development and division. Cytarabine is metabolized intracellularly into its active triphosphate form (cytosine arabinoside triphosphate). This metabolite then damages DNA by multiple mechanisms, including the inhibition of alpha-DNA polymerase, inhibition of DNA repair through an effect on beta-DNA polymerase, and incorporation into DNA. The latter mechanism is probably the most important. Cytotoxicity is highly specific for the S phase of the cell cycle. Cytarabine is a chemotherapy agent used mainly in the treatment of hematological malignancies such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It is also known as ara C. Cytosine arabinoside is an antimetabolic agent with the chemical name of 1 -arabinofuranosylcytosine. Its mode of action is due to its rapid conversion into cytosine arabinoside triphosphate, which damages DNA when the cell cycle holds in the S phase (synthesis of DNA). Rapidly dividing cells, which require DNA replication for mitosis, are therefore most affected. Cytosine arabinoside also inhibits both DNA and RNA polymerases and nucleotide reductase enzymes needed for DNA synthesis L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map D000970 - Antineoplastic Agents KEIO_ID C119; [MS2] KO008896 KEIO_ID C119 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity. Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity.
Agomelatine
C15H17NO2 (243.12592220000002)
Agomelatine is structurally closely related to melatonin. Agomelatine is a potent agonist at melatonin receptors and an antagonist at serotonin-2C (5-HT2C) receptors, tested in an animal model of depression. Agomelatine was discovered and developed by the European pharmaceutical company Servier Laboratories Ltd. Servier continue to develop the drug and conduct phase III trials in the European Union. In 2005 Servier submitted Agomelatine to the European Medicines Agency (EMEA). On 27 July 2006 the Committee for Medical Products for Human Use (CHMP) of the EMEA recommended a refusal of the marketing authorisation of Valdoxan/Thymanax. The major concern was that efficacy had not been sufficiently shown. In 2006 Servier sold the rights to develop Agomelatine in the US to Novartis. The development for the US market was discontinued in October 2011. It is currently sold in Australia under the Valdoxan trade name. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants Agomelatine (S-20098) is a specific agonist of MT1 and MT2 receptors with Kis of 0.1, 0.06, 0.12, and 0.27 nM for CHO-hMT1, HEK-hMT1, CHO-hMT2, and HEK-hMT2, respectively[1]. Agomelatine is a selective 5-HT2C receptor antagonist with pKis of 6.4 and 6.2 at native (porcine) and cloned, human 5-HT2C receptors, respectively[2].
Prolyl-Glutamine
Prolyl-Glutamine is a dipeptide composed of proline and glutamine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite.
Tiglylcarnitine
Tiglylcarnitine is an acylcarnitine. More specifically, it is an tiglic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tiglylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine Tiglylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. In particular Tiglylcarnitine is elevated in the blood or plasma of individuals with beta ketothiolase deficiency/acat1 gene mutation (PMID: 27264805, PMID: 14518824, PMID: 3435793), and ECHS1 deficiency (PMID: 31908952). It is also decreased in the blood or plasma of individuals with familial mediterranean fever (PMID: 29900937), carcinoma, lewis lung (PMID: 30839735), metabolic syndrome, type 2 diabetes mellitus, and cardiovascular diseases (PMID: 24710945). Tiglylcarnitine is also detected in the urinary organic acid and blood spot acylcarnitine profiles in patients with mitochondrial acetoacetyl-CoA thiolase (T2) deficiency, an inborn error of metabolism affecting isoleucine and ketone bodies in the catabolic process (PMID: 14518824 ). Tiglylcarnitine is found to be associated with celiac disease, which is also an inborn error of metabolism. Tiglylcarnitine has been identified in the human placenta (PMID: 32033212 ). Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. Tiglylcarnitine is detected in the urinary organic acid and blood spot acylcarnitine profiles in patients with
Frovatriptan
Frovatriptan, also known as Frova (trade name), belongs to a class of medications known as 5-hydroxytryptamine agonists (triptan) (PMID: 18001261). It is widely indicated for the treatment of migraine headaches with or without aura in adults (PMID: 22900951, 27103792). It works in the brain to relieve migraine symptoms including headache, pain, nausea, vomiting, sensitivity to light/sound. However, it is not used to treat patients with hemiplegic, ophthalmoplegic or basilar migraine. Frovatriptan binds with high affinity for serotonin 5-HT1B and 5-HT1D receptors, thereby relieving pain by narrowing blood vessels (PMID: 11735616, 12517245). Patient’s may experience some side effects, especially who have heart or blood vessel disease. Frovatriptan is only found in individuals who have consumed or used this drug. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist
Glutaminylproline
Glutaminylproline is a dipeptide composed of glutamine and proline. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.
Prolyl-Gamma-glutamate
Prolyl-Gamma-glutamate is a dipeptide composed of proline and gamma-glutamate. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite.
2-Ethylacryloylcarnitine
2-Ethylacryloylcarnitine is an acylcarnitine. More specifically, it is an ethacrylic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Ethylacryloylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine 2-Ethylacryloylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
4-Tiglylcarnitine
4-Tiglylcarnitine is an acylcarnitine. More specifically, it is an pent-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Tiglylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine 4-Tiglylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. In particular 4-Tiglylcarnitine is elevated in the blood or plasma of individuals with beta ketothiolase deficiency/acat1 gene mutation (PMID: 27264805, PMID: 14518824, PMID: 3435793), and ECHS1 deficiency (PMID: 31908952). It is also decreased in the blood or plasma of individuals with familial mediterranean fever (PMID: 29900937), carcinoma, lewis lung (PMID: 30839735), metabolic syndrome, type 2 diabetes mellitus, and cardiovascular diseases (PMID: 24710945). Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(3E)-Tiglylcarnitine
(3E)-Tiglylcarnitine is an acylcarnitine. More specifically, it is an (3E)-pent-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (3E)-Tiglylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine (3E)-Tiglylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. In particular (3E)-Tiglylcarnitine is elevated in the blood or plasma of individuals with beta ketothiolase deficiency/acat1 gene mutation (PMID: 27264805, PMID: 14518824, PMID: 3435793), and ECHS1 deficiency (PMID: 31908952). It is also decreased in the blood or plasma of individuals with familial mediterranean fever (PMID: 29900937), carcinoma, lewis lung (PMID: 30839735), metabolic syndrome, type 2 diabetes mellitus, and cardiovascular diseases (PMID: 24710945). Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
2-Tiglylcarnitine
2-Tiglylcarnitine is an acylcarnitine. More specifically, it is an pent-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Tiglylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine 2-Tiglylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. In particular 2-Tiglylcarnitine is elevated in the blood or plasma of individuals with beta ketothiolase deficiency/acat1 gene mutation (PMID: 27264805, PMID: 14518824, PMID: 3435793), and ECHS1 deficiency (PMID: 31908952). It is also decreased in the blood or plasma of individuals with familial mediterranean fever (PMID: 29900937), carcinoma, lewis lung (PMID: 30839735), metabolic syndrome, type 2 diabetes mellitus, and cardiovascular diseases (PMID: 24710945). Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3-Methylbut-2-enoylcarnitine
3-methylbut-2-enoylcarnitine is an acylcarnitine. More specifically, it is an 3-methylbut-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-methylbut-2-enoylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine 3-methylbut-2-enoylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Arabinofuranosylcytosine
Isolated from the mushroom Xerocomus nigromaculatus of unknown palatability This compound has been identified in human blood as reported by (PMID: 31557052 ). Arabinofuranosylcytosine is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Arabinofuranosylcytosine is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources. Arabinofuranosylcytosine (Ara-C), also known as cytarabine, is a chemotherapeutic agent that is widely used in the treatment of various types of cancer, particularly hematological malignancies such as acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). The biological functions of Ara-C are primarily related to its antineoplastic properties, which are derived from its mechanism of action within the cell. Here is a detailed description of its biological functions: 1. **Inhibition of DNA Synthesis**: Ara-C functions as a nucleoside analog, which means it resembles the natural building blocks of DNA. Once inside the cell, Ara-C is converted to its active metabolite, araCTP (arabinofuranosylcytosine triphosphate). AraCTP competes with the natural deoxycytidine triphosphate (dCTP) for incorporation into the growing DNA chain during the S phase of the cell cycle. Because Ara-C lacks a 3'-hydroxyl group, its incorporation into DNA leads to chain termination, effectively stopping DNA synthesis. 2. **Cell Cycle Specificity**: Ara-C is most effective against cells that are actively dividing. Since it targets cells in the S phase of the cell cycle, it is particularly harmful to rapidly dividing cancer cells, which often spend a significant portion of their cycle in this phase. 3. **Inhibition of DNA Repair**: Beyond its direct effect on DNA synthesis, Ara-C can also interfere with DNA repair mechanisms. This is because the incorporation of Ara-C into DNA can cause mispairing and induce DNA damage, which the cell may be unable to repair properly. 4. **Cell Death Induction**: The inhibition of DNA synthesis and the induction of DNA damage can lead to cell death through apoptosis or necrosis. Cells that cannot replicate their DNA or repair the damage caused by Ara-C activation are programmed to die, which is a desirable outcome in the context of cancer treatment. 5. **Immune System Modulation**: In some cases, Ara-C can also modulate the immune system, although this is not its primary function. It can affect the function and proliferation of immune cells, which can have implications for both its therapeutic effects and side effects. 6. **Enzymatic Conversion**: Ara-C must be activated within the cell by the enzyme deoxycytidine kinase (dCK), which phosphorylates it to Ara-CMP (monophosphate), then to Ara-CDP (diphosphate), and finally to Ara-CTP. The efficiency of this conversion can vary between different types of cancer cells and normal cells, contributing to the selectivity of Ara-C's action. 7. **Cross-Linking Potential**: Although less common, Ara-C can also form cross-links with DNA, further complicating DNA structure and function, which can contribute to its cytotoxic effects. The biological functions of Ara-C are complex and can vary depending on the dose, the specific cancer type, and the individual patient's metabolism. Its use is carefully monitored in clinical settings due to its potential for significant side effects, including myelosuppression (decreased production of blood cells), gastrointestinal toxicity, and central nervous system toxicity.
Benzonaphthazepine
N-Methyl-2-[3-(trifluoromethyl)phenyl]-3,4-dihydropyrazol-5-amine
C11H12F3N3 (243.09832679999997)
N-((1R,2S,4S)-Bicyclo[2.2.1]heptan-2-yl)-9-methyl-9H-purin-6-amine
Meluadrine
HOKU-81 (4-Hydroxytulobuterol) is one of the metabolites of Tulobuterol (HY-B1810). HOKU-81 is a potent and selective β2-adrenoceptor stimulant. HOKU-81 has bronchodilating effect[1][2].
4-Amino-5-hydroxy-1-[(2R,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one
Atanine
C15H17NO2 (243.12592220000002)
Atanine is a natural product found in Ravenia spectabilis, Zanthoxylum zanthoxyloides, and Zanthoxylum wutaiense with data available.
1-Azabicyclo[2.2.2]octan-3-one, 2-[(4-methoxyphenyl)methylene]-
C15H17NO2 (243.12592220000002)
2(1H)-quinolinone, 4-hydroxy-1-methyl-3-(3-methyl-2-butenyl)-
C15H17NO2 (243.12592220000002)
5-Methoxy-2,2-dimethyl-4H-pyrano[2,3-b]chinolin
C15H17NO2 (243.12592220000002)
(E)-3-(5-acetoxy-3-methylpent-2-enamido)propanoic acid|pestalotiopamide E
C11H17NO5 (243.11066720000002)
caerulomycin J
C13H13N3O2 (243.10077180000002)
A pyridine alkaloid that is 2,2-bipyridine substituted by a hydroxy group at position 4 and an (acetylamino)methyl group at position 6. Isolated from the marine-derived actinomycete Actinoalloteichus cyanogriseus, it exhibits antineoplastic activity.
3-(1H-indol-3-ylmethyl)piperazine-2,5-dione
C13H13N3O2 (243.10077180000002)
2-Amino-4,5-methylendioxy-2-hydroxymethyl-biphenyl|2-<2-Amino-phenyl>-4,5-methylendioxy-benzylalkohol|norismine|[6-(2-amino-phenyl)-benzo[1,3]dioxol-5-yl]-methanol
2,2,10-trimethyl-2,3,4,10-tetrahydro-5H-pyrano[2,3-b]quinolin-5-one
C15H17NO2 (243.12592220000002)
2-{[1-(2-Amino-acetyl)-pyrrolidine-2-carbonyl]-amino}-propionic acid
Cytidine
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; UHDGCWIWMRVCDJ_STSL_0155_Cytidine_8000fmol_180506_S2_LC02_MS02_107; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].
Agomelatine
C15H17NO2 (243.12592220000002)
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants Agomelatine (S-20098) is a specific agonist of MT1 and MT2 receptors with Kis of 0.1, 0.06, 0.12, and 0.27 nM for CHO-hMT1, HEK-hMT1, CHO-hMT2, and HEK-hMT2, respectively[1]. Agomelatine is a selective 5-HT2C receptor antagonist with pKis of 6.4 and 6.2 at native (porcine) and cloned, human 5-HT2C receptors, respectively[2].
cytarabine
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity. Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity.
3-hydroxy-C8-homoserine lactone
CONFIDENCE standard compound; INTERNAL_ID 215
1-((4-amino-2-propylpyrimidin-5-yl)methyl)-2-methylpyridinium
Frovatriptan
N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist
Pro-GLN
A dipeptide formed from L-proline and L-glutamine residues.
1-O-tert-butyl 3-O-methyl (3R)-piperidine-1,3-dicarboxylate
Penthyl(5-fluro-2-oxo-1, 2-dihydropyriMidin-4-yl) carbaMate
5-(2-methoxy-5-methylphenyl)pyridine-3-carboxylic acid
tert-butyl N-(4,4,4-trifluoro-3-hydroxybutyl)carbamate
Cyclo(-Gly-Trp)
C13H13N3O2 (243.10077180000002)
A natural product found in Talaromyces thermophilus.
(1-Furan-2-yl-but-3-enyl)-(4-methoxy-phenyl)-amine
C15H17NO2 (243.12592220000002)
n-(4-fluorobenzoyl)-phenyl-ethylamine
C15H14FNO (243.10593659999998)
1-(tert-butoxycarbonyl)-3-methylpiperidine-3-carboxylic acid
2-METHYL-6,7-DIMETHOXY-1,2,3,4-TETRAHYDROISOQUINOLINE HYDROCHLORIDE
4-METHYL-5-[3-(3-METHYLPHENYL)-1,2,4-OXADIAZOL-5-YL]-1,3-THIAZOL-2-AMINE
1-tert-Butyl 2-methyl 2-methylpyrrolidine-1,2-dicarboxylate
5-Nitro-N-(1-phenylethyl)-2-pyridinamine
C13H13N3O2 (243.10077180000002)
5-amino-2-(pyridin-3-ylmethylamino)benzoic acid
C13H13N3O2 (243.10077180000002)
3-Butynoic acid, 2-[(methoxycarbonyl)amino]-4-(trimethylsilyl)-, methyl ester
C10H17NO4Si (243.09268020000002)
4-OXO-PIPERIDINE-1,3-DICARBOXYLIC ACID 1-TERT-BUTYL ESTER
C11H17NO5 (243.11066720000002)
tert-Butyl 4-acetyl-2,2-dimethyloxazolidine-3-carboxylate
4-(3-methylbutoxy)pyridine-2-carboximidamide,hydrochloride
C11H18ClN3O (243.11383279999998)
4-(Pentyloxy)picolinimidamide hydrochloride
C11H18ClN3O (243.11383279999998)
2-[(2S)-1-[(2-methylpropan-2-yl)oxycarbonyl]-5-oxopyrrolidin-2-yl]acetic acid
C11H17NO5 (243.11066720000002)
2-Naphthalenol,1-(4-morpholinylmethyl)-
C15H17NO2 (243.12592220000002)
3-(3-PHENOXYPHENYL)-DL-BETA-ALANINOL
C15H17NO2 (243.12592220000002)
1,2,3,5-Tetrahydro-spiro[4H-1-benzazepine-4,1-[2]cyclopentene]-3-carboxylic acid
C15H17NO2 (243.12592220000002)
4-morpholin-4-ylquinazoline-6-carbaldehyde
C13H13N3O2 (243.10077180000002)
4-((4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)benzonitrile
C14H18BNO2 (243.14305180000002)
2-((4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)METHYL)BENZONITRILE
C14H18BNO2 (243.14305180000002)
3-(1,2,3,4-tetrahydrocarbazol-9-yl)propanoic acid
C15H17NO2 (243.12592220000002)
Indole-7-boronic acid pinacol ester
C14H18BNO2 (243.14305180000002)
Indole-6-boronic acid pinacol ester
C14H18BNO2 (243.14305180000002)
Urea,N-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-N-(2-chloroethyl)-
C9H14ClN5O (243.08868239999998)
Cyclopentaneacetic acid, 1-[[(1,1-dimethylethoxy)carbonyl]amino]- (9CI)
N-Boc-4-oxo-L-proline methyl ester
C11H17NO5 (243.11066720000002)
Indole-4-boronic acid pinacol ester
C14H18BNO2 (243.14305180000002)
Methyl 5-cyclopropyl-1-(pyridin-2-yl)-1H-pyrazole-4-carboxylate
C13H13N3O2 (243.10077180000002)
Methyl 2-amino-4-(p-tolyl)pyrimidine-5-carboxylate
C13H13N3O2 (243.10077180000002)
5-NITRO-8-(PYRROLIDIN-1-YL)QUINOLINE
C13H13N3O2 (243.10077180000002)
1-(4-DIMETHYLAMINO-2-FLUORO-PHENYL)-3-(4-DIMETHYLIMMONIUM-2-FLUORO-CYCLOHEXA-2,5-DIEN-1-YLIDENE)-2-OXO-CYCLOBUTEN-4-OLATE
C15H17NO2 (243.12592220000002)
7-METHYL-8-(TRIFLUOROMETHYL)-3,4-DIHYDRO-1H-BENZO[B]AZEPIN-5(2H)-ONE
C12H12F3NO (243.08709379999996)
4-[(2-Fluorophenyl)azo]-N,N-dimethylbenzenamine
C14H14FN3 (243.11716959999998)
5-Indoleboronic acid pinacol ester
C14H18BNO2 (243.14305180000002)
3-methyl-1-[(2-methylpropan-2-yl)oxycarbonyl]piperidine-2-carboxylic acid
4-[bis(prop-2-enyl)amino]-3-nitrobenzonitrile
C13H13N3O2 (243.10077180000002)
ethyl 2,5-dimethyl-1-phenylpyrrole-3-carboxylate
C15H17NO2 (243.12592220000002)
3-Pyridazinecarboxylic acid, 6-[(phenylmethyl)amino]-, methyl ester
C13H13N3O2 (243.10077180000002)
3-(3-Formyl-2,5-dimethyl-pyrrol-1-yl)-benzoic acid
Benzoic acid,4-(3-formyl-2,5-dimethyl-1H-pyrrol-1-yl)-
(1S,3R)-3-((TERT-BUTOXYCARBONYL)AMINO)CYCLOHEXANECARBOXYLIC ACID
(R)-4-(6-Hydroxynaphthalen-2-yl)-4-methyloxazolidin-2-one
4-Cyano-4-phenylcyclohexanone ethylene ketal
C15H17NO2 (243.12592220000002)
2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile
C14H18BNO2 (243.14305180000002)
1-Tert-Butoxycarbonylamino-Cyclohexanecarboxylic Acid
Benzoic acid, 3-[(6-amino-3-pyridazinyl)methyl]-, methyl ester
C13H13N3O2 (243.10077180000002)
2-METHYL-5-CYANOPHENYL BORONIC ACID PINACOL ESTER
C14H18BNO2 (243.14305180000002)
tetraethylammonium trifluoroacetate
C10H20F3NO2 (243.14460560000003)
4-(Cyanomethyl)benzeneboronic acid pinacol ester
C14H18BNO2 (243.14305180000002)
(R)-TERT-BUTYL 2,2-DIMETHYL-4-(2-OXOETHYL)OXAZOLIDINE-3-CARBOXYLATE
(3S,4R,5R,6S)-4-OXO-PENTANOICACID4,5-BIS-BENZYLOXY-6-BENZYLOXYMETHYL-2-P-TOLYLSULFAN
1-(TERT-BUTOXYCARBONYL)-3-OXOPIPERIDINE-4-CARBOXYLIC ACID
C11H17NO5 (243.11066720000002)
6-ETHYL-2-METHYLQUINOLINE-3-CARBOXYLIC ACID ETHYL ESTER
C15H17NO2 (243.12592220000002)
(S)-1-(tert-Butoxycarbonyl)-4,4-dimethylpyrrolidine-2-carboxylic acid
tert-butyl 3-(2-methoxy-2-oxoethyl)pyrrolidine-1-carboxylate
2-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile
C14H18BNO2 (243.14305180000002)
(3R,4R)-1-[(tert-butoxy)carbonyl]-4-ethylpyrrolidine-3-carboxyli
3-[[(2-methylpropan-2-yl)oxycarbonylamino]methyl]-1,2,4-oxadiazole-5-carboxylic acid
4-OXO-PIPERIDINE-1-CARBOXYLIC ACID 2-TRIMETHYLSILANYL-ETHYL ESTER
ETHYL 3-(4-(AMINOMETHYL)PHENYL)PROPANOATE HYDROCHLORIDE
6-BENZYL-6,7-DIHYDRO-1H-PYRROLO[3,4-D]PYRIMIDINE-2,4(3H,5H)-DIONE
C13H13N3O2 (243.10077180000002)
(R)-2-(1-(tert-Butoxycarbonyl)piperidin-3-yl)acetic acid
(S)-ETHYL 1-(2-METHOXY-2-OXOACETYL)PIPERIDINE-2-CARBOXYLATE
C11H17NO5 (243.11066720000002)
1-(TERT-BUTOXYCARBONYL)-4-METHYLPIPERIDINE-3-CARBOXYLIC ACID
2-{[(tert-butoxy)carbonyl]amino}-3-cyclobutylpropanoic acid
2-AMINO-1-(4-BENZYLOXYPHENYL)ETHANOL
C15H17NO2 (243.12592220000002)
3-(1,1-dimethylethyl)-5-(ethoxycarboxy)-methylthio-1,2,4-triazole
5-(BENZYLAMINOMETHYL)-2-METHOXYPHENOL
C15H17NO2 (243.12592220000002)
1,1-Bis(4-methoxyphenyl)methanamine
C15H17NO2 (243.12592220000002)
meluadrine
C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist
3-(dimethylamino)-1-(4-methoxyphenyl)propan-1-one hydrochloride
2-(3-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PHENYL)ACETONITRILE
C14H18BNO2 (243.14305180000002)
tert-butyl N-[2-(2-amino-1,3-thiazol-4-yl)ethyl]carbamate
3-(1-(TERT-BUTOXYCARBONYL)PYRROLIDIN-3-YL)PROPANOIC ACID
1-M-TOLYL-5-TRIFLUOROMETHYL-PYRROLIDIN-2-ONE
C12H12F3NO (243.08709379999996)
1-[2-(trifluoromethyl)phenyl]piperidin-4-one
C12H12F3NO (243.08709379999996)
6-AMINO-2-METHOXY-6,7,8,9-TETRAHYDRO-5H-BENZOCYCLOHEPTEN-5-OL HYDROCHLORIDE
4-(BENZYLAMINOMETHYL)-2-METHOXYPHENOL
C15H17NO2 (243.12592220000002)
4-PHENYL-1-PIPERIDIN-4-YL-1,3-DIHYDRO-2H-IMIDAZOL-2-ONE
1H-INDOLE-2-BORONIC ACID PINACOL ESTER
C14H18BNO2 (243.14305180000002)
6,7-Dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline hydrochloride
4-(4-Aminophenoxy)-N-methylpicolinamide
C13H13N3O2 (243.10077180000002)
3-amino-4-(pyridin-3-ylmethylamino)benzoic acid
C13H13N3O2 (243.10077180000002)
2-amino-4-(3,4-dimethoxyphenyl)-1H-pyrrole-3-carbonitrile
C13H13N3O2 (243.10077180000002)
2-tert-butyl-5-nitro-1H-indole-7-carbonitrile
C13H13N3O2 (243.10077180000002)
5-Pyrimidinecarboxylicacid, 2-amino-4-phenyl-, ethyl ester
C13H13N3O2 (243.10077180000002)
tert-butyl 2-(2-methoxy-2-oxoethyl)pyrrolidine-1-carboxylate
1H-Indole,2-(1,1-dimethylethyl)-2,3-dihydro-5-(trifluoromethyl)-(9CI)
4H-Pyrido[1,2-a]pyrimidine-3-carboxaldehyde, 4-oxo-2-(1-pyrrolidinyl)-
C13H13N3O2 (243.10077180000002)
N-(6-AMINO-2-PYRIDINYL)-CARBAMICACIDPHENYLMETHYLESTER
C13H13N3O2 (243.10077180000002)
tert-butyl 4-(2-oxoethoxy)piperidine-1-carboxylate
4-(3-aminophenoxy)-N-methylpyridine-2-carboxamide
C13H13N3O2 (243.10077180000002)
(1S,3S)-N-BOC-1-AMINOCYCLOPENTANE-3-CARBOXYLIC ACID METHYL ESTER
1-HYDROXY-2-PHENYL-4,5,6,7-TETRAHYDRO-1H-BENZO[D]IMIDAZOL-4-ONE OXIME
C13H13N3O2 (243.10077180000002)
3-Amino-1-(4-methyl-piperazin-1-yl)-1-propanone 2HCl
Piperazine, 1-methyl-4-[(methylamino)acetyl]- (9CI)
(2S)-2-HYDROXY-3-METHYL-N-[(2S)-1-{[(1S)-3-METHYL-2-OXO-2,3,4,5-TETRAHYDRO-1H-3-BENZAZEPIN-1-YL]AMINO}-1-OXOPROPAN-2-YL]BUTANAMIDE
3-cyclobutyl-3-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid
5-Nitro-N-[(1R)-1-phenylethyl]-2-pyridinamine
C13H13N3O2 (243.10077180000002)
cis-3-{[(tert-butoxy)carbonyl]amino}cyclohexane-1-carboxylic acid
ethyl 4-(pyrimidin-2-ylamino)benzoate
C13H13N3O2 (243.10077180000002)
ethyl 2,5,7-trimethylquinoline-3-carboxylate
C15H17NO2 (243.12592220000002)
2,5,8-TRIMETHYLQUINOLINE-3-CARBOXYLIC ACID ETHYL ESTER
C15H17NO2 (243.12592220000002)
ethyl 2,6,8-trimethylquinoline-3-carboxylate
C15H17NO2 (243.12592220000002)
3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole
C14H18BNO2 (243.14305180000002)
tert-butyl 6-cyanopyrrolo[2,3-b]pyridine-1-carboxylate
C13H13N3O2 (243.10077180000002)
4,4-dimethoxy-n-methyldiphenylamine
C15H17NO2 (243.12592220000002)
methyl (E)-3-phenyl-2-(1,2,4-triazol-1-ylmethyl)prop-2-enoate
C13H13N3O2 (243.10077180000002)
tert-butyl 3-(2-ethoxy-2-oxoethyl)azetidine-1-carboxylate
(1S)-4,5-Dimethoxy-1-[(methylamino)methyl]benzocyclobutane hydrochloride
Quinoline, 6-(triethylsilyl)- (9CI)
C15H21NSi (243.14431860000002)
Ethyl 1-[ethoxy(oxo)acetyl]-L-prolinate
C11H17NO5 (243.11066720000002)
(S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate
1-(4-TRIFLUOROMETHYL-PHENYL)-PIPERIDIN-2-ONE
C12H12F3NO (243.08709379999996)
1-(3-TRIFLUOROBENZENE)PIPERAZINEHYDROBROMIDE
C12H12F3NO (243.08709379999996)
Isoquinoline,1,2,3,4-tetrahydro-6,7-dimethoxy-3-methyl-, hydrochloride (1:1)
N-(1-(2-HYDROXY-NAPHTHALEN-1-YL)-PROPYL)-ACETAMIDE
C15H17NO2 (243.12592220000002)
5-[4-(Trifluoromethyl)phenyl]-2-piperidinone
C12H12F3NO (243.08709379999996)
Arabinan
Arabinans devoid of other sugars have been isolated from mustard seeds. Heteroarabinans have been found in sugar beet and apples.
(3,4-DIMETHOXY-BENZYL)-PHENYL-AMINE
C15H17NO2 (243.12592220000002)
1-(2-Deoxy-beta-D-erythro-pentofuranosyl)-4-methoxy-1,3,5-triazin-2(1H)-one
(2S,4R)-4-amino-2-methyl-5-phenylpentanoic acid hydrochloride
6-((2R,6S)-2,6-dimethylmorpholino)pyridin-3-amine hydrochloride
C11H18ClN3O (243.11383279999998)
METHYL (2S)-2-AMINO-3-(2,4-DIMETHYLPHENYL)PROPANOATE HYDROCHLORIDE
3-Cyclohexyl-1H-indole-6-carboxylic acid
C15H17NO2 (243.12592220000002)
5-NITRO-6-(PYRROLIDIN-1-YL)QUINOLINE
C13H13N3O2 (243.10077180000002)
1-(2-HYDROXYMETHYLPHENYL)PIPERIDIN-4-OL HYDROCHLORIDE
ethyl 4-amino-2-phenylpyrimidine-5-carboxylate
C13H13N3O2 (243.10077180000002)
2-((4,6-DIMETHYLPYRIMIDIN-2-YL)AMINO)BENZOIC ACID
C13H13N3O2 (243.10077180000002)
N~1~-benzyl-4-nitro-1,2-benzenediamine
C13H13N3O2 (243.10077180000002)
1-(1,3-benzodioxol-5-yl)-2,5-dimethylpyrrole-3-carbaldehyde
N-METHYL-1-(1,3,5-TRIMETHYL-1H-PYRAZOL-4-YL)METHANAMINE
TRANS-2-((TERT-BUTOXYCARBONYL)AMINO)CYCLOHEXANECARBOXYLIC ACID
(S)-2-(tert-butoxycarbonylamino)-3-cyclobutylpropanoic acid
(R)-2-(tert-butoxycarbonylamino)-3-cyclobutylpropanoic acid
1-(2,5-Dimethoxy-4-i-propylthiophenyl)-2-aminopropane
2-(5,5-Dimethyl-1,3,2-dioxaborinan-2-yl)-1-methyl-1H-indole
C14H18BNO2 (243.14305180000002)
Boc-L-Pyroglutamic acid methyl ester
C11H17NO5 (243.11066720000002)
2-amino-5-(4-aminophenoxy)benzamide
C13H13N3O2 (243.10077180000002)
(1-OXOPROPOXY)-,S-(FLUOROMETHYL)ESTER,(6A,11A,16A,17A)-
6-METHOXY-7,8,9,10-TETRAHYDRO-6H-[1,2,5]OXADIAZOLO[3,4-C]CARBAZOLE
C13H13N3O2 (243.10077180000002)
Ammonium citrate
Emulsifier and acidity regulator used in the food industry Citric acid triammonium (Triammonium citrate) is formed by Citric acid (HY-N1428) reacting with ammonia in a molar ratio of 1:3. Citric acid triammonium can be used as the carbon source to prepare carbon quantum dots (CDs). Citric acid triammonium with higher nitrogen components might promote the nitrogen-based functional groups in CDs, leading to a more efficient emission-color tunability[1][2].
(R)-1-tert-Butyl 2-methyl 5-oxopyrrolidine-1,2-dicarboxylate
C11H17NO5 (243.11066720000002)
3-Methyl-5-(4,4,5,5-tetramethyl[1,3,2]dioxaborolan-2-yl)benzonitrile
C14H18BNO2 (243.14305180000002)
Taribavirin
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent
Tepilamide fumarate
C11H17NO5 (243.11066720000002)
C308 - Immunotherapeutic Agent
1,3,5-Triazine-2,4-diamine, N-ethyl-N-(1-methylethyl)-6-(methylsulfinyl)-
Urea, N-(2-methoxy-4-pyridinyl)-N-phenyl-
C13H13N3O2 (243.10077180000002)
Ethanamine, N,N-diethyl-2-(4-methylphenoxy)-, hydrochloride
C13H22ClNO (243.13898319999998)
N-Methyl-2-[3-(trifluoromethyl)phenyl]-3,4-dihydropyrazol-5-amine
C11H12F3N3 (243.09832679999997)
3-nitro-N-(2-phenylethyl)-2-Pyridinamine
C13H13N3O2 (243.10077180000002)
(2E)-2-[(4-methoxyphenyl)methylidene]-1-azabicyclo[2.2.2]octan-3-one
C15H17NO2 (243.12592220000002)
N-(2-fluorophenyl)-3-phenylpropanamide
C15H14FNO (243.10593659999998)
Methanone, (3-amino-4,5-dihydroxyphenyl)(4-methylphenyl)-
6-Methyl-3-[(3-methylanilino)methylidene]pyran-2,4-dione
N-(Aminothioxomethyl)-5-oxo-1-propyl-2-pyrrolidineacetamide
2,3-Dihydroxypropyl 2-(dimethylamino)ethyl hydrogen phosphate
3-Methylbut-2-enoylcarnitine
3-methylbut-2-enoylcarnitine is an acylcarnitine. More specifically, it is an 3-methylbut-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-methylbut-2-enoylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine 3-methylbut-2-enoylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
2-amino-5-[(1R)-1-(1H-indol-3-yl)ethyl]-1,3-oxazol-4-ol
C13H13N3O2 (243.10077180000002)
1-(beta-D-xylopyranosyl)cytosine
An N-glycosyl compound that is cytosine in which the proton at position 1 is replaced by a beta-D-xylosyl residue.
2-[(8,9-dihydro-7H-purin-6-ylamino)methyl]phenol
C12H13N5O (243.11200480000002)
4-[(8,9-dihydro-7H-purin-6-ylamino)methyl]phenol
C12H13N5O (243.11200480000002)
3-[(8,9-dihydro-7H-purin-6-ylamino)methyl]phenol
C12H13N5O (243.11200480000002)
(2S)-2-amino-5-oxo-5-[[(3S)-2-oxopiperidin-3-yl]amino]pentanoic acid
S-methyl-L-ergothioneine
An amino acid betaine that is ergothioneine in which the hydrogen attached to the sulfur is replaced by a methyl group. It has been isolated from the deepwater (500-1,600 m) marine sponge Macandrewia azorica.
2-methyl-N-(2,4,6-trimethylphenyl)-3-furancarboxamide
C15H17NO2 (243.12592220000002)
2-methyl-N-[(E)-1-pyridin-3-ylethylideneamino]furan-3-carboxamide
C13H13N3O2 (243.10077180000002)
2-Cyano-N,N-diethyl-2-(phenyl-hydrazono)-acetamidine
(2S)-2-[[2-[[(2S)-pyrrolidine-2-carbonyl]amino]acetyl]amino]propanoic Acid
2-Hydroxy-3-methoxybenzaldehyde 2-pyridylhydrazone
C13H13N3O2 (243.10077180000002)
4-(ethoxymethylidene)-2-[(E)-2-phenylethenyl]-1,3-oxazol-5-one
Benzyl 3-ethyl-4-methyl-1H-pyrrole-2-carboxylate
C15H17NO2 (243.12592220000002)
1,2,3,4-Tetrahydrocarbazole, TMS derivative
C15H21NSi (243.14431860000002)
2-Aminoethyl (3-ethoxy-2-hydroxypropyl) hydrogen phosphate
(E)-3-(2-Oxopropylene)-1-para-tolyl-2,5-pyrrolidinedione
N-demethylindolmycin
C13H13N3O2 (243.10077180000002)
A member of the class of 1,3-oxazoles that is 1,3-oxazol-4(5H)-one which is substituted at the 2 and 5-pro-S positions by amino and [(1R)-1-(1H-indol-3-yl)ethyl] groups, respectively.
gamma-Glutamyl-beta-cyanoalanine
A dipeptide composed of 3-cyano-L-alanine and L-glutamine joined by a peptide linkage formed from the side-chain of glutamine.
3-Hydroxy-N-[(3S)-tetrahydro-2-oxo-3-furanyl]-octanamide
O-Tiglyl-L-carnitine
An O-acyl-L-carnitine compound having trans-2-methyl-2-butenoyl (tiglyl) as the acyl substituent.
2-ethylacryloylcarnitine
An O-acylcarnitine compound having 2-ethylacryloyl as the acyl substituent.
Triammonium citrate
Citric acid triammonium (Triammonium citrate) is formed by Citric acid (HY-N1428) reacting with ammonia in a molar ratio of 1:3. Citric acid triammonium can be used as the carbon source to prepare carbon quantum dots (CDs). Citric acid triammonium with higher nitrogen components might promote the nitrogen-based functional groups in CDs, leading to a more efficient emission-color tunability[1][2].
Ala-Gly-Pro
A tripeptide composed of L-alanine, glycine, and L-proline joined in sequence by peptide linkages.
O-Tiglylcarnitine
An O-acylcarnitine compound having trans-2-methyl-2-butenoyl (tiglyl) as the acyl substituent.
YM348
YM348 is a potent and orally active 5-HT2C receptor agonist, which shows a high affinity for cloned human 5-HT2C receptor (Ki: 0.89 nM).
α-Cytidine
α-Cytidine is a purine nucleoside analog. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1].
(3s)-3-(1h-indol-3-ylmethyl)-3,6-dihydropyrazine-2,5-diol
C13H13N3O2 (243.10077180000002)
2-[(2s)-7-methyl-2h,3h-furo[3,2-h]isoquinolin-2-yl]propan-2-ol
C15H17NO2 (243.12592220000002)
(2r)-2,3,3,9-tetramethyl-2h-furo[2,3-b]quinolin-4-one
C15H17NO2 (243.12592220000002)
(3s)-2,2,3,9-tetramethyl-3h-furo[2,3-b]quinolin-4-one
C15H17NO2 (243.12592220000002)
2-{7-methyl-2h,3h-furo[3,2-h]isoquinolin-2-yl}propan-2-ol
C15H17NO2 (243.12592220000002)
14-imino-6-oxa-2,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(15),9,12(16)-trien-13-one
C13H13N3O2 (243.10077180000002)
3-Phenyl-4-azafluorene
{"Ingredient_id": "HBIN009460","Ingredient_name": "3-Phenyl-4-azafluorene","Alias": "2-Phenyl-5H-indeno[1,2-b]pyridine; 2-phenyl-5H-indeno[3,2-b]pyridine","Ingredient_formula": "C18H13N","Ingredient_Smile": "C1C2=C(C3=CC=CC=C31)N=C(C=C2)C4=CC=CC=C4","Ingredient_weight": "243.3 g/mol","OB_score": "32.9025835","CAS_id": "NA","SymMap_id": "SMIT04204","TCMID_id": "NA","TCMSP_id": "MOL001851","TCM_ID_id": "NA","PubChem_id": "618317","DrugBank_id": "NA"}
4,8-dihydroxyfuro[2,3-b]quinoline; o4-et,o8-me
{"Ingredient_id": "HBIN010139","Ingredient_name": "4,8-dihydroxyfuro[2,3-b]quinoline; o4-et,o8-me","Alias": "NA","Ingredient_formula": "C14H13NO3","Ingredient_Smile": "NA","Ingredient_weight": "243.26","OB_score": "NA","CAS_id": "105988-99-6","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "7877","PubChem_id": "NA","DrugBank_id": "NA"}
methyl 4-(1h-indol-3-yl)-2-methyl-4-oxobut-2-enoate
2,3,3,5-tetramethyl-2h-furo[3,2-c]quinolin-4-one
C15H17NO2 (243.12592220000002)
4-methoxy-3-(3-methylbut-2-en-1-yl)quinolin-2-ol
C15H17NO2 (243.12592220000002)
(3s)-3-hydroxy-n-[(3s)-2-oxooxolan-3-yl]octanimidic acid
5-[(3as,4s,6ar)-2-hydroxy-3h,3ah,4h,6h,6ah-thieno[3,4-d]imidazol-4-yl]pentanimidic acid
2,2,10-trimethyl-3h,4h-pyrano[2,3-b]quinolin-5-one
C15H17NO2 (243.12592220000002)
(2r)-2,3,3,5-tetramethyl-2h-furo[3,2-c]quinolin-4-one
C15H17NO2 (243.12592220000002)
3-(1h-indol-3-ylmethyl)-3,6-dihydropyrazine-2,5-diol
C13H13N3O2 (243.10077180000002)
(1z)-2-hydroxy-1-(1h-indol-3-yl)-5-methylhex-1-en-3-one
C15H17NO2 (243.12592220000002)
(3s,7r)-7-hexyl-5-hydroxy-3-(hydroxymethyl)-6,7-dihydro-3h-1,4-oxazepin-2-one
2,3,3,9-tetramethyl-2h-furo[2,3-b]quinolin-4-one
C15H17NO2 (243.12592220000002)
4-hydroxy-1-methyl-3-(3-methylbut-3-en-2-yl)quinolin-2-one
C15H17NO2 (243.12592220000002)
7-hexyl-5-hydroxy-3-(hydroxymethyl)-6,7-dihydro-3h-1,4-oxazepin-2-one
methyl 1-(2-methylbut-3-en-2-yl)indole-3-carboxylate
C15H17NO2 (243.12592220000002)
8-methoxy-4-methyl-5h-indeno[1,2-b]pyridine-5,9-diol
3-{[5-(acetyloxy)-1-hydroxy-3-methylpent-2-en-1-ylidene]amino}propanoic acid
C11H17NO5 (243.11066720000002)
(5s)-5-hydroxy-5,7,7-trimethyl-6h,8h-cyclopenta[g]isoquinolin-9-one
C15H17NO2 (243.12592220000002)
(2s,3s,4r,5s)-2-(2-hydroxy-4-iminopyrimidin-1-yl)-5-(hydroxymethyl)oxolane-3,4-diol
10-amino-7-(3-hydroxypropyl)-2,7-diazatricyclo[6.3.1.0⁴,¹²]dodeca-1,3,5,8(12),9-pentaen-11-one
C13H13N3O2 (243.10077180000002)
3-{[(2z)-5-(acetyloxy)-1-hydroxy-3-methylpent-2-en-1-ylidene]amino}propanoic acid
C11H17NO5 (243.11066720000002)
6,10-dihydroxy-3-methyl-6h,7h,8h-cyclohexa[g]isoquinolin-9-one
2-(2-hydroxy-4-iminopyrimidin-1-yl)-5-(hydroxymethyl)oxolane-3,4-diol
methyl 5-[hydroxy(phenyl)methyl]pyridine-2-carboxylate
n-({4-hydroxy-[2,2'-bipyridin]-6-yl}methyl)ethanimidic acid
C13H13N3O2 (243.10077180000002)
5-hydroxy-5,7,7-trimethyl-6h,8h-cyclopenta[g]isoquinolin-9-one
C15H17NO2 (243.12592220000002)
(5r)-8-methoxy-4-methyl-5h-indeno[1,2-b]pyridine-5,9-diol
(5r,5as)-5-hydroxy-5,7,7-trimethyl-5ah,6h-cyclopenta[g]isoquinolin-9-one
C15H17NO2 (243.12592220000002)
(2s)-1-(2-{[(2s)-2-amino-1-hydroxypropylidene]amino}acetyl)pyrrolidine-2-carboxylic acid
methyl 5-[(r)-hydroxy(phenyl)methyl]pyridine-2-carboxylate
methyl (2e)-4-(1h-indol-3-yl)-2-methyl-4-oxobut-2-enoate
4'-hydroxy-6-methoxy-[1,1'-biphenyl]-3-carboximidic acid
(e)-methoxy({4-methoxy-[2,2'-bipyridin]-6-yl}methylidene)amine
C13H13N3O2 (243.10077180000002)
5-hydroxy-5,7,7-trimethyl-5ah,6h-cyclopenta[g]isoquinolin-9-one
C15H17NO2 (243.12592220000002)