Exact Mass: 178.0259792
Exact Mass Matches: 178.0259792
Found 500 metabolites which its exact mass value is equals to given mass value 178.0259792
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
5,7-Dihydroxy-4H-1-benzopyran-4-one
5,7-Dihydroxychromone is a member of chromones. 5,7-Dihydroxychromone is a natural product found in Calluna vulgaris, Leucosidea sericea, and other organisms with data available. 5,7-Dihydroxy-4H-1-benzopyran-4-one is found in nuts. 5,7-Dihydroxy-4H-1-benzopyran-4-one is isolated from peanut shells. Isolated from peanut shells. 5,7-Dihydroxy-4H-1-benzopyran-4-one is found in peanut and nuts. 5,7-Dihydroxychromone, the extract of Cudrania tricuspidata, activates Nrf2/ARE signal and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis. 5,7-Dihydroxychromone inhibits the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells[1]. 5,7-Dihydroxychromone, the extract of Cudrania tricuspidata, activates Nrf2/ARE signal and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis. 5,7-Dihydroxychromone inhibits the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells[1].
Aesculetin
Aesculetin, also known as cichorigenin or cichoriin aglucon, belongs to the class of organic compounds known as 6,7-dihydroxycoumarins. These are coumarins bearing two hydroxyl groups at positions 6 and 7 of the coumarin skeleton, respectively. Aesculetin is found, on average, in the highest concentration within sherries. Aesculetin has also been detected, but not quantified, in several different foods, such as horseradish, carrots, dandelions, grape wines, and highbush blueberries. This could make aesculetin a potential biomarker for the consumption of these foods. Esculetin is a hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. It has a role as an antioxidant, an ultraviolet filter and a plant metabolite. Esculetin is a natural product found in Artemisia eriopoda, Euphorbia decipiens, and other organisms with data available. A hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. Metabolite of infected sweet potato. Aesculetin is found in many foods, some of which are root vegetables, wild carrot, sweet basil, and carrot. D020011 - Protective Agents > D000975 - Antioxidants Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB031_Aesculetin_pos_20eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_10eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_40eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_50eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_30eV_CB000017.txt [Raw Data] CB031_Aesculetin_neg_10eV_000010.txt [Raw Data] CB031_Aesculetin_neg_20eV_000010.txt [Raw Data] CB031_Aesculetin_neg_30eV_000010.txt CONFIDENCE standard compound; ML_ID 39 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].
Daphnetol
7,8-dihydroxycoumarin is a hydroxycoumarin. Daphnetin is a natural product found in Euphorbia dracunculoides, Rhododendron lepidotum, and other organisms with data available. Acquisition and generation of the data is financially supported in part by CREST/JST. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research Daphnetin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=486-35-1 (retrieved 2024-09-04) (CAS RN: 486-35-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Cysteinylglycine
Cysteinylglycine is a naturally occurring dipeptide. It is derived from the breakdown of glutathione (a tripeptide). In plasma, cysteinylglycine is in a reduced, oxidized and protein-bound form (aminothiol) and interact via redox and disulphide exchange reactions, in a dynamic system referred to as redox thiol status. (PMID 8642471) Spermatozoa of sub fertile men contain significantly higher thiol concentrations as compared with those of fertile men. The detrimental effect on embryo quality of a high homocysteine (Hcy, another member of the thiol group) concentration in the ejaculate and in follicular fluid is intriguing and may suggest that Hcy is inversely associated with fertility outcome. (PMID 16556671) Rheumatoid arthritis (RA) is a chronic inflammatory disease which involves the synovial membrane of multiple diarthroidal joints causing damage to cartilage and bones. The damage process seems to be related to an overproduction of oxygen reactive species inducing an oxidative perturbation with an increase in some oxidized forms (disulfides and protein mixed disulfides) and a decrease in free thiols. (PMID 15895891) Imipenem (thienamycin formamidine), is a broad-spectrum beta-lactam antibiotic, always used in combination with cilastatin in order to avoid the premature breakdown of imipenem by renal tubular dipeptidase. As this dipeptidase also hydrolyzes the glutathione metabolite cysteinylglycine, the therapeutic association of imipenem and cilastatin causes plasma levels of cysteinylglycine to increase significantly, while cysteine levels are decreased and homocysteine levels are unaffected. Therefore, antibiotic treatment using imipenem-cilastatin induces important metabolic changes that should not remain unrecognized. (PMID 15843241) [HMDB]. Cysteinylglycine is found in many foods, some of which are chinese cabbage, wax apple, garden tomato (variety), and japanese pumpkin. Cysteinylglycine is a naturally occurring dipeptide composed of cysteine and glycine. It is derived from the breakdown of glutathione (a tripeptide). In plasma, cysteinylglycine is in a reduced, oxidized, and protein-bound form (aminothiol) and interacts via redox and disulphide exchange reactions in a dynamic system referred to as redox thiol status (PMID: 8642471). Spermatozoa of sub-fertile men contain significantly higher thiol concentrations as compared with those of fertile men. The detrimental effect on embryo quality of a high homocysteine (Hcy) concentration in the ejaculate and in the follicular fluid is intriguing and may suggest that Hcy is inversely associated with fertility outcome (PMID: 16556671). Rheumatoid arthritis (RA) is a chronic inflammatory disease which involves the synovial membrane of multiple diarthroidal joints causing damage to cartilage and bones. The damage process seems to be related to an overproduction of oxygen reactive species inducing an oxidative perturbation with an increase in some oxidized forms (disulfides and protein mixed disulfides) and a decrease in free thiols (PMID: 15895891). Imipenem (thienamycin formamidine) is a broad-spectrum beta-lactam antibiotic, always used in combination with cilastatin in order to avoid the premature breakdown of imipenem by renal tubular dipeptidase. As this dipeptidase also hydrolyzes the glutathione metabolite cysteinylglycine, the therapeutic association of imipenem and cilastatin causes plasma levels of cysteinylglycine to increase significantly, while cysteine levels are decreased and homocysteine levels are unaffected. Therefore, antibiotic treatment using imipenem-cilastatin induces important metabolic changes that should not remain unrecognized (PMID: 15843241). L-Cysteinylglycine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=19246-18-5 (retrieved 2024-07-02) (CAS RN: 19246-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Gluconolactone
Gluconolactone, also known as glucono-delta-lactone or GDL (gluconate), belongs to the class of organic compounds known as gluconolactones. These are polyhydroxy acids (PHAs) containing a gluconolactone molecule, which is characterized by a tetrahydropyran substituted by three hydroxyl groups, one ketone group, and one hydroxymethyl group. Gluconolactone is a lactone of D-gluconic acid. Gluconolactone can be produced by enzymatic oxidation of D-glucose via the enzyme glucose oxidase. It is a fundamental metabolite found in all organisms ranging from bacteria to plants to animals. Gluconolactone has metal chelating, moisturizing and antioxidant activities. Its ability in free radicals scavenging accounts for its antioxidant properties. Gluconolactone, is also used as a food additive with the E-number E575. In foods it is used as a sequestrant, an acidifier or a curing, pickling, or leavening agent. Gluconolactone is also used as a coagulant in tofu processing. Gluconolactone is widely used as a skin exfoliant in cosmetic products, where it is noted for its mild exfoliating and hydrating properties. Pure gluconolactone is a white odorless crystalline powder. It is pH-neutral, but hydrolyses in water to gluconic acid which is acidic, adding a tangy taste to foods. Gluconic acid has roughly a third of the sourness of citric acid. One gram of gluconolactone yields roughly the same amount of metabolic energy as one gram of sugar. Food additive; uses include acidifier, pH control agent, sequestrant C26170 - Protective Agent > C275 - Antioxidant D-(+)-Glucono-1,5-lactone is a polyhydroxy (PHA) that is capable of metal chelating, moisturizing and antioxidant activity.
L-Gulonolactone
L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID: 16956367, 16494601) [HMDB] L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID:16956367, 16494601). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Gulono-1,4-lactone is a substrate of L-gulono-1,4-lactone oxidoreductase, which catalyzes the last step of the biosynthesis of L-ascorbic (Vatamin) C. In other words, L-Gulono-1,4-lactone is a direct precursor of vitamin C in animals, in plants and in some protists.
3-Keto-b-D-galactose
3-Keto-b-D-galactose is an intermediate in Galactose metabolism, N-Glycan degradation, Glycosaminoglycan degradation, glycerolipid metabolism, Sphingolipid metabolism, Glycosphingolipid biosynthesis - ganglioseries and Glycan structures - degradation through the enzyme galactosidase, beta 1 [EC:3.2.1.23], and an intermediate of Fructose and mannose metabolism, Galactose metabolism, Ascorbate and aldarate metabolism, Bile acid biosynthesis, Glycine, serine and threonine metabolism, Lysine degradation, Bisphenol A degradation, Nucleotide sugars metabolism, Linoleic acid metabolism, Tetrachloroethene degradation, and Butanoate metabolism through th enzyme retinol dehydrogenase 13 (all-trans/9-cis) [EC:1.1.1.-] (KEGG). 3-keto-β-d-galactose, also known as 3-dehydro-β-D-galactose, is a member of the class of compounds known as hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. 3-keto-β-d-galactose is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-keto-β-d-galactose can be found in a number of food items such as pecan nut, common wheat, nopal, and grass pea, which makes 3-keto-β-d-galactose a potential biomarker for the consumption of these food products.
2-deoxy-D-gluc-5-ulosonic acid
5-Deoxy glucuronic acid
Caffeoquinone
An alpha,beta-unsaturated monocarboxylic acid that is acrylic acid in which one of the olefinic hydrogens at position 3 has been replaced by a 3,4-dioxocyclohexa-1,5-dien-1-yl group.
D-Arabino-hexos-2-ulose
D-Arabino-hexos-2-ulose is formed during sterilisation of foods by irradiation
2-Keto-3-deoxy-D-gluconic acid
2-Keto-3-deoxy-D-gluconic acid is a substrate for Fructose-bisphosphate aldolase A. [HMDB] 2-Keto-3-deoxy-D-gluconic acid is a substrate for Fructose-bisphosphate aldolase A.
Galactonolactone
Galactonolactone has been determined in human urine by reversed-phase HPLC for the specific evaluation of metabolic by-products in the urine of galactosemic patients and based on the simultaneous determination of gluconolactone, galactonolactone and galactitol. (PMID: 1797843). Patients with galactose-1-phosphate uridyltransferase (GALT) deficiency, given a load of galactose have been shown to excrete six times as much galactonate in their urine as normal subjects exposed to the same experimental conditions. The production of galactonate occurs through the activity of a soluble NAD+-dependent galactose dehydrogenase, catalyzing the conversion of galactose to D-galactonolactone (D-galactose: NAD+ oxidoreductase, EC 1.1.1.48). (OMMBID). Galactonolactone has been determined in human urine by reversed-phase HPLC for the specific evaluation of metabolic by-products in the urine of galactosemic patients and based on the simultaneous determination of gluconolactone, galactonolactone and galactitol. (PMID: 1797843)
(3R,4R,5R)-5-(1,2-dihydroxyethyl)-3,4-dihydroxyoxolan-2-one
D-Gulono-1,4-lactone
Acquisition and generation of the data is financially supported in part by CREST/JST. 1,4-D-Gulonolactone is an endogenous metabolite.
L-galactono-1,4-lactone
L-galactono-1,4-lactone, also known as L-galactonate-γ-lactone, is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. L-galactono-1,4-lactone is soluble (in water) and a very weakly acidic compound (based on its pKa). L-galactono-1,4-lactone can be found in a number of food items such as abalone, pear, black-eyed pea, and borage, which makes L-galactono-1,4-lactone a potential biomarker for the consumption of these food products. L-galactono-1,4-lactone may be a unique S.cerevisiae (yeast) metabolite.
3,3'-Thiobispropanoic acid
3,3-Thiobispropanoic acid is an antioxidant used in food packaging material Antioxidant used in food packaging materials.
Bissulfine
Constituent of onion (Allium cepa). Bissulfine is found in garden onion and onion-family vegetables. Bissulfine is found in onion-family vegetables. Bissulfine is a constituent of onion (Allium cepa)
S-2-Propenyl 2-propene-1-sulfonothioate
S-2-Propenyl 2-propene-1-sulfonothioate is found in onion-family vegetables. S-2-Propenyl 2-propene-1-sulfonothioate is a constituent of garlic (Allium sativum). Constituent of garlic (Allium sativum). S-2-Propenyl 2-propene-1-sulfonothioate is found in garlic and onion-family vegetables.
Glycyl-Cysteine
Glycyl-Cysteine is a dipeptide composed of glycine and cysteine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite.
4,7-Dihydroxy-2H-1-benzopyran-2-one
4,7-Dihydroxy-2H-1-benzopyran-2-one is found in green vegetables. 4,7-Dihydroxy-2H-1-benzopyran-2-one is a constituent of the seeds of Corchorus olitorius (Jews mallow). Constituent of the seeds of Corchorus olitorius (Jews mallow). 4,7-Dihydroxy-2H-1-benzopyran-2-one is found in tea, herbs and spices, and green vegetables.
S,S'-Ethylidene dithioacetate
S,S-Ethylidene dithioacetate is found in citrus. S,S-Ethylidene dithioacetate is isolated from orange juice. Isolated from orange juice. S,S-Ethylidene dithioacetate is found in citrus.
2,3-Dihydroxy-5-methylthio-4-pentenoic acid
2,3-Dihydroxy-5-methylthio-4-pentenoic acid (DMTPA) is a hydroxy fatty acid with a thioenolether group. DMTPA was previously an unknown potential plasma biomarker for glomerular filtration rate (GFR) but its structure has since been elucidated (PMID: 29578721). DMTPA is possibly involved in the methionine salvage pathway (MSP) and may potentially be synthesized from methylthioadenosine (MTA). MTA is a byproduct of S-adenosylmethionine (SAM) during polyamine biosynthesis.
Ninhydrin
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D011838 - Radiation-Sensitizing Agents
2-[[(2S)-2-Amino-3-sulfanylpropanoyl]amino]acetic acid
(3R,4R,5S,6R)-3,4,5,6-Tetrahydroxyoxepan-2-one
5,7-Dihydroxycoumarin
5,7-Dihydroxycoumarin is a coumarin isolated from the inflorescences of Macaranga triloba. 5,7-Dihydroxycoumarin has antibacterial activities[1][2]. 5,7-Dihydroxycoumarin is a coumarin isolated from the inflorescences of Macaranga triloba. 5,7-Dihydroxycoumarin has antibacterial activities[1][2].
Gluconolactone
C26170 - Protective Agent > C275 - Antioxidant D-(+)-Glucono-1,5-lactone is a polyhydroxy (PHA) that is capable of metal chelating, moisturizing and antioxidant activity.
3-C-carboxy-5-deoxy-alpha,beta-L-xylose|3-C-carboxy-5-deoxy-L-xylose|aceric acid|alpha,beta-L-aceric acid
alpha-Amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid
(S)-12,13-epoxy-2,4,6,8,10-tridecapentayne|1,2S-Epoxide-1-Tridencene-3,5,7,9,11-pentayne
3,7-dihydroxychromen-4-one
A natural product found in Caesalpinia sappan.
L-erythro-2-hydroxy-3-methoxy-glutaric acid|L-erythro-2-Hydroxy-3-methoxy-glutarsaeure
Coumarin derivative, 1a
5,7-Dihydroxycoumarin is a natural product found in Fagopyrum megacarpum, Murraya siamensis, and other organisms with data available. 5,7-Dihydroxycoumarin is a coumarin isolated from the inflorescences of Macaranga triloba. 5,7-Dihydroxycoumarin has antibacterial activities[1][2]. 5,7-Dihydroxycoumarin is a coumarin isolated from the inflorescences of Macaranga triloba. 5,7-Dihydroxycoumarin has antibacterial activities[1][2].
Esculetin
D020011 - Protective Agents > D000975 - Antioxidants relative retention time with respect to 9-anthracene Carboxylic Acid is 0.434 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.428 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.430 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].
Daphnetin
7,8-dihydroxy-2h-chromen-2-one, also known as daphnetin or 7,8-dihydroxycoumarin, is a member of the class of compounds known as 7,8-dihydroxycoumarins. 7,8-dihydroxycoumarins are coumarins bearing two hydroxyl groups at the C7- and C8-positions of the coumarin skeleton, respectively. 7,8-dihydroxy-2h-chromen-2-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 7,8-dihydroxy-2h-chromen-2-one can be found in chickpea and watermelon, which makes 7,8-dihydroxy-2h-chromen-2-one a potential biomarker for the consumption of these food products. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 15 INTERNAL_ID 15; CONFIDENCE Reference Standard (Level 1) Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4].
6,7-dihydroxychromen-2-one [IIN-based: Match]
6,7-dihydroxychromen-2-one [IIN-based on: CCMSLIB00000845335]
THIODIPROPIONIC ACID
CONFIDENCE standard compound; INTERNAL_ID 413; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2583; ORIGINAL_PRECURSOR_SCAN_NO 2581 CONFIDENCE standard compound; INTERNAL_ID 413; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2568; ORIGINAL_PRECURSOR_SCAN_NO 2565 CONFIDENCE standard compound; INTERNAL_ID 413; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2642; ORIGINAL_PRECURSOR_SCAN_NO 2639 CONFIDENCE standard compound; INTERNAL_ID 413; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2583; ORIGINAL_PRECURSOR_SCAN_NO 2580
L-Gulonolactone
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Gulono-1,4-lactone is a substrate of L-gulono-1,4-lactone oxidoreductase, which catalyzes the last step of the biosynthesis of L-ascorbic (Vatamin) C. In other words, L-Gulono-1,4-lactone is a direct precursor of vitamin C in animals, in plants and in some protists.
Delta-Gluconolactone
D-(+)-Glucono-1,5-lactone is a polyhydroxy (PHA) that is capable of metal chelating, moisturizing and antioxidant activity.
Gly-cys
A dipeptide formed from glycine and L-cysteine residues.
2-OXO-2,3-DIHYDRO-1H-BENZO[D]IMIDAZOLE-5-CARBOXYLIC ACID
4-Chlorophenylhydrazine hydrochloride
C6H8Cl2N2 (178.00645079999998)
3-Chloro Phenyl Hydrazine Hydrochloride
C6H8Cl2N2 (178.00645079999998)
Acivicin
An L-alpha-amino acid that is L-alanine in which the methyl group is replaced by a (5S)-3-chloro-4,5-dihydro-1,2-oxazol-5-yl group. A glutamine analogue antimetabolite, it interferes with glutamate metabolism and several glutamate-dependent synthetic enzymes. It is obtained as a fermentation product of Streptomyces sviceus bacteria. C471 - Enzyme Inhibitor > C2158 - Glutamine Amidotransferase Inhibitor D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors
2-Chlorophenylhydrazine hydrochloride
C6H8Cl2N2 (178.00645079999998)
methyl 3-amino-1H-1,2,4-triazole-5-carboxylate,hydrochloride
2-OXO-2,3-DIHYDRO-1H-PYRIDO[2,3-B][1,4]OXAZINE-7-CARBALDEHYDE
Imidazo[1,2-b]pyridazine-3-carbonitrile, 6-chloro-
sodium 4-chloro-3,5-dimethylphenolate
C8H8ClNaO (178.01613479999997)
1-Methyl-5-(trifluoromethyl)-1H-pyrazole-4-carboxaldehyde
2-OXO-2,3-DIHYDRO-1H-BENZO[D]IMIDAZOLE-4-CARBOXYLIC ACID
Pyrrolo[1,2-a]pyrazine-1,3,4(2H)-trione, 2-methyl- (9CI)
1-Benzothiophen-2-ylboronic acid
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D065093 - beta-Lactamase Inhibitors D004791 - Enzyme Inhibitors
5-cyano-2-methyl-6-oxo-1H-pyridine-3-carboxylic acid
2-Chloro-1,4-benzenediamine hydrochloride
C6H8Cl2N2 (178.00645079999998)
O,Oμ-Diaminopropane-1,3-diol dihydrochloride
C3H12Cl2N2O2 (178.02757920000002)
Tetrahydro-2H-thiopyran-4-carboxylic acid-1,1-dioxide
(5-Chloropyridin-2-yl)methanamine hydrochloride
C6H8Cl2N2 (178.00645079999998)
2-Chlorocarbonyl-2-methyl-propionic acid ethylester
4-Chloro-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile
(2-Chloropyridin-4-yl)methanamine hydrochloride
C6H8Cl2N2 (178.00645079999998)
1H-Pyrrolo[2,3-b]pyridine-2-carboxylic acid, 3-hydroxy-
1H-Pyrrolo[2,3-b]pyridine-2-carboxylic acid, 4-hydroxy-
1H-Pyrrolo[2,3-b]pyridine-3-carboxylic acid 7-oxide
3-OXO-3,4-DIHYDRO-2H-PYRIDO[3,2-B][1,4]OXAZINE-6-CARBALDEHYDE
(4-CHLOROPYRIDIN-2-YL)METHANAMINE DIHYDROCHLORIDE
C6H8Cl2N2 (178.00645079999998)
1,2-dihydro-5-(3-pyridinyl)-3h-1,2,4-triazole-3-thione
2-PYRIDINAMINE, 4-CHLORO-N-METHYL-, MONOHYDROCHLORIDE
C6H8Cl2N2 (178.00645079999998)
Pyrrolo[1,2-b]pyridazine-3-carboxylic acid, 1,4-dihydro-4-oxo-
2-chloro-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile
1 3-DIAMINOACETONE DIHYDROCHLORIDE
C3H12Cl2N2O2 (178.02757920000002)
1H-Benzimidazole-4,7-dione,2-(hydroxymethyl)-(9CI)
4-(CHLOROMETHYL)PYRIDIN-2-AMINE HYDROCHLORIDE
C6H8Cl2N2 (178.00645079999998)
Carbonic acid,C,C-1,2-ethanediyl C,C-dimethyl ester
5-Isoxazoleacetic acid, alpha-amino-3-chloro-4,5-dihydro-
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors
Daphnetol
7,8-dihydroxycoumarin is a hydroxycoumarin. Daphnetin is a natural product found in Euphorbia dracunculoides, Rhododendron lepidotum, and other organisms with data available. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4].
31721-94-5
5,7-Dihydroxychromone, the extract of Cudrania tricuspidata, activates Nrf2/ARE signal and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis. 5,7-Dihydroxychromone inhibits the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells[1]. 5,7-Dihydroxychromone, the extract of Cudrania tricuspidata, activates Nrf2/ARE signal and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis. 5,7-Dihydroxychromone inhibits the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells[1].
2732-18-5
5,7-Dihydroxycoumarin is a coumarin isolated from the inflorescences of Macaranga triloba. 5,7-Dihydroxycoumarin has antibacterial activities[1][2]. 5,7-Dihydroxycoumarin is a coumarin isolated from the inflorescences of Macaranga triloba. 5,7-Dihydroxycoumarin has antibacterial activities[1][2].
5,6-Dihydro-2,4,5-trihydroxy-6-(hydroxymethyl)-2H-pyran-3(4H)-one
L-cysteinylglycine zwitterion
The zwitterion of L-cysteinylglycine resulting from the transfer of a proton from the hydroxy group of glycine to the amino group of cysteine. Major microspecies at pH 7.3. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
6-Hydroxy-2,3-dihydro-1,3-benzothiazole-2-carbonitrile
2-Azaniumyl-2-(3-chloro-4,5-dihydro-1,2-oxazol-5-yl)acetate
S-carboxylatomethyl-L-cysteine(1-)
C5H8NO4S- (178.01740279999999)
The conjugate base of S-carboxymethyl-L-cysteine having anionic carboxy groups and a protonated amino group; major species at pH 7.3.
(Z)-3-(3,4-dioxocyclohexa-1,5-dien-1-yl)prop-2-enoic acid
(4R,5R)-5-(1,2-dihydroxyethyl)-3,4-dihydroxy-2-oxolanone
3-Methylthioaspartate(1-)
C5H8NO4S- (178.01740279999999)
An alpha-amino-acid anion obtained by deprotonation of the two carboxy groups and protonation of the amino group of 3-methylthioaspartic acid.
(5E)-5-(furan-2-ylmethylidene)imidazolidine-2,4-dione
L-Galactono-1,4-lactone
A galactonolactone that is 3,4-dihydroxydihydrofuran-2(3H)-one substituted by a 1,2-dihydroxyethyl group at position 5 (the 3S,4S,5R-isomer).
D-Gulono-1,4-lactone
1,4-D-Gulonolactone is an endogenous metabolite.
3,6-anhydro-L-galactonic acid
An anhydrohexose obtained by formation of a ring across the 3 and 6 positions of L-galactonic acid
(2S,3R,4S,5R)-3,4,5,6-tetrahydroxyoxane-2-carbaldehyde
Ninhydrin
A member of the class of indanones that is indane-1,3-dione bearing two additional hydroxy substituents at position 2. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D011838 - Radiation-Sensitizing Agents
2-Dehydro-3-deoxy-D-galactonic acid
The 2-dehydro-3-deoxy derivative of D-galactonic acid.
2-dehydro-3-deoxy-D-gluconic acid
The 2-dehydro-3-deoxy derivative of D-gluconic acid.
L-Cysteinylglycine
A dipeptide consisting of glycine having an L-cysteinyl attached to its alpha-amino group. It is an intermediate metabolite in glutathione metabolism.
L-Gulono-1,4-lactone
The furanose form of gulonolactone having L-configuration.
Etbicyphat
Etbicyphat (Trimethylopropane phosphate) is a potent GABA(A) receptors competitive antagonist. Etbicyphat induces epileptiform activities in hippocampal CA1 neurons, and binds to the GABA(A)-benzodiazepine receptors[1].
(1r,4r,7s,8s)-2,5-dioxabicyclo[2.2.2]octane-1,4,7,8-tetrol
1-propenylallylthiosulfinate
{"Ingredient_id": "HBIN003001","Ingredient_name": "1-propenylallylthiosulfinate","Alias": "NA","Ingredient_formula": "C6H10O2S2","Ingredient_Smile": "CC=COS(=O)SCC=C","Ingredient_weight": "178.3 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT17324","TCMID_id": "17905","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "129704166","DrugBank_id": "NA"}