Testosterone (BioDeep_00000001450)
Secondary id: BioDeep_00000398239, BioDeep_00000860372
human metabolite Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C19H28O2 (288.2089188)
中文名称: 睾酮
谱图信息:
最多检出来源 Viridiplantae(plant) 0.43%
Last reviewed on 2024-08-14.
Cite this Page
Testosterone. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/testosterone (retrieved
2024-11-23) (BioDeep RN: BioDeep_00000001450). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC12CCC(=O)C=C1CCC1C2CCC2(C)C(O)CCC12
InChI: InChI=1S/C19H28O2/c1-18-9-7-13(20)11-12(18)3-4-14-15-5-6-17(21)19(15,2)10-8-16(14)18/h11,14-17,21H,3-10H2,1-2H3/t14-,15-,16-,17-,18-,19-/m0/s1
描述信息
Testosterone is the primary male sex hormone and anabolic steroid from the androstane class of steroids. It is the most important androgen in potency and quantity for vertebrates. In humans, testosterone plays a key role in the development of male reproductive tissues such as testes and prostate, as well as promoting secondary sexual characteristics such as increased muscle and bone mass, and the growth of body hair. In addition, testosterone is involved in health and well-being, and the prevention of osteoporosis. Testosterone exerts its action through binding to and activation of the androgen receptor. In mammals, testosterone is metabolized mainly in the liver. Approximately 50\\% of testosterone is metabolized via conjugation into testosterone glucuronide and to a lesser extent testosterone sulfate by glucuronosyltransferases and sulfotransferases. An additional 40\\% of testosterone is metabolized in equal proportions into the 17-ketosteroids androsterone and etiocholanolone via the combined actions of 5alpha- and 5beta-reductases, 3alpha-hydroxysteroid dehydrogenase, and 17beta-HSD. Like other steroid hormones, testosterone is derived from cholesterol. The first step in the biosynthesis of testosterone involves the oxidative cleavage of the side-chain of cholesterol by the cholesterol side-chain cleavage enzyme (P450scc, CYP11A1) to give pregnenolone. In the next step, two additional carbon atoms are removed by the CYP17A1 (17alpha-hydroxylase/17,20-lyase) enzyme to yield a variety of C19 steroids. In addition, the 3beta-hydroxyl group is oxidized by 3beta-hydroxysteroid dehydrogenase to produce androstenedione. In the final and rate limiting step, the C17 keto group androstenedione is reduced by 17beta-hydroxysteroid hydrogenase to yield testosterone. Testosterone is synthesized and released by the Leydig cells in the testes that lie between the tubules and comprise less than 5\\% of the total testicular volume. Testosterone diffuses into the seminiferous tubules where it is essential for maintaining spermatogenesis. Some testosterone binds to an androgen-binding protein (ABP) that is produced by the Sertoli cells and is homologous to the sex-hormone binding globulin that transports testosterone in the general circulation. The ABP carries testosterone in the testicular fluid where it maintains the activity of the accessory sex glands and may also help to retain testosterone within the tubule and bind excess free hormone. Some testosterone is converted to estradiol by Sertoli cell-derived aromatase enzyme. Leydig cell steroidogenesis is controlled primarily by luteinizing hormone with negative feedback of testosterone on the hypothalamic-pituitary axis. The requirement of spermatogenesis for high local concentrations of testosterone means that loss of androgen production is likely to be accompanied by loss of spermatogenesis. Indeed, if testicular androgen production is inhibited by the administration of exogenous androgens then spermatogenesis ceases. This is the basis of using exogenous testosterone as a male contraceptive. The largest amounts of testosterone (>95\\%) are produced by the testes in men, while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta. Testosterone levels fall by about 1\\% each year in men. Therefore, with increasing longevity and the aging of the population, the number of older men with testosterone deficiency will increase substantially over the next several decades. Serum testosterone levels decrease progressively in aging men, but the rate and magnitude of decrease vary considerably. Approximately 1\\% of healthy young men have total serum testosterone levels below normal; in contrast, approximately 20\\% of healthy men over age 60 years have serum testosterone levels below normal. (PMID: 17904450, 17875487).
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03B - Androgens > G03BA - 3-oxoandrosten (4) derivatives
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
同义名列表
131 个代谢物同义名
17-Hydroxy-10,13-dimethyl-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-cyclopenta[a]phenanthren-3-one; (1S,2R,10R,11S,14S,15S)-14-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one; Auxilium pharmaceuticals inc. brand OF testosterone; rac-17b-Hydroxy-(9b,10a)androst-4-en-3-one; 17-beta-Hydroxy-8 alpha-4-androsten-3-one; 17 beta Hydroxy 8 alpha 4 androsten 3 one; SmithKline beecham brand OF testosterone; 17b-Hydroxy-(8a,10a)-androst-4-en-3-one; rac-17b-Hydroxy-(8a)-androst-4-en-3-one; rac-17b-Hydroxy-(13a)androst-4-en-3-one; 17b-Hydroxy-(9b,10a)-androst-4-en-3-one; GlaxoSmithKline brand OF testosterone; 17b-Hydroxy-(13a)-androst-4-en-3-one; 17b-Hydroxy-(10a)-androst-4-en-3-one; 17a-Hydroxy-(13a)-androst-4-en-3-one; 17b-Hydroxy-(8a)-androst-4-en-3-one; (17b)-17-Hydroxy-androst-4-en-3-one; 17b-Hydroxy-(9b)-androst-4-en-3-one; 17a-Hydroxy-14b-androst-4-en-3-one; 17b-Hydroxy-13a-androst-4-en-3-one; 17β-hydroxyandrost-4-en-3-one; rac-17b-Hydroxy-androst-4-en-3-one; 17a-Hydroxy-13a-androst-4-en-3-one; 17b-Hydroxy-8a-androst-4-en-3-one; 17 beta Hydroxy 4 androsten 3 one; AstraZeneca brand OF testosterone; 17-beta-Hydroxy-4-androsten-3-one; 17beta-Hydroxy-4-androsten-3-one; Schering brand OF testosterone; Faulding brand OF testosterone; 17b-Hydroxy-androst-4-en-3-one; 17b-Hydroxy-D4-androsten-3-one; 17a-Hydroxy-androst-4-en-3-one; 17b-Hydroxyandrost-4-ene-3-one; Pasadena brand OF testosterone; Dr. kade brand OF testosterone; 17-Hydroxy-androst-4-en-3-one; 17b-Hydroxy-androst-4-en-3-ON; Paladin brand OF testosterone; Ferring brand OF testosterone; 17b-Hydroxy-4-androsten-3-one; 17b-Hydroxyandrost-4-en-3-one; 17-Hydroxy-D4-androsten-3-one; 17Β-hydroxy-4-androsten-3-one; Unimed brand OF testosterone; Bartor brand OF testosterone; Solvay brand OF testosterone; Watson brand OF testosterone; 4-Androsten-17beta-ol-3-one; Ortho brand OF testosterone; Hauck brand OF testosterone; Ulmer brand OF testosterone; CEPA brand OF testosterone; Androst-4-ene-17b-ol-3-one; Androst-4-en-17b-ol-3-one; Percutacrine androgenique; D4-Androsten-17b-ol-3-one; 4-Androsten-17b-ol-3-one; 4-Androsten-17β-ol-3-one; 4-Androsten-3-one-17b-ol; (+-)-8-Iso-testosterone; (+-)-Retrotestosterone; Testosterone sulfate; 9b,10a-Testosterone; Testoviron schering; 13-Iso-testosterone; Geno-cristaux gremy; 8-Iso-testosterone; 8 Isotestosterone; Retrotestosterone; 8-Isotestosterone; (+-)-Testosterone; 17b-Testosterone; Testiculosterone; (+)-Testosterone; 9b-Testosterone; Lumitestosteron; Epitestosteron; Testosteronum; Sustason 250; Cristerona T; Testosterona; Testosteroid; Testoviron T; Testosterone; Testopropon; Homosterone; Testosteron; Virosterone; Primoteston; Testandrone; Synandrol F; Orquisteron; Andropatch; Mertestate; Homosteron; Androderm; Neotestis; Sustanone; Testobase; Histerone; Tostrelle; Testoderm; Testolent; Perandren; Primotest; Virormone; Sterotate; Testro aq; Oreton F; Sustanon; Testopel; Testrone; Testolin; Andrusol; Testogel; Andronaq; Androlin; Androtop; Androgel; Tostrex; Relibra; Viatrel; Testryl; Striant; Axiron; Teslen; Oreton; Testim; Testosterone; Testosterone
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:17347
- KEGG: C00535
- KEGGdrug: D00075
- PubChem: 6013
- HMDB: HMDB0000234
- Metlin: METLIN390
- DrugBank: DB00624
- ChEMBL: CHEMBL386630
- Wikipedia: Testosterone
- MeSH: Testosterone
- KNApSAcK: C00003675
- chemspider: 5791
- CAS: 1050678-68-6
- CAS: 58-22-0
- PMhub: MS000000554
- LipidMAPS: LMST02020002
- PDB-CCD: TES
- 3DMET: B01283
- NIKKAJI: J4.590J
- RefMet: Testosterone
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-970
- PubChem: 3817
- KNApSAcK: 17347
- LOTUS: LTS0101063
- wikidata: Q27166309
- LOTUS: LTS0081086
分类词条
相关代谢途径
Reactome(10)
BioCyc(3)
PlantCyc(0)
代谢反应
195 个相关的代谢反应过程信息。
Reactome(163)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Miscellaneous substrates:
H+ + Oxygen + TPNH + atRA ⟶ 4OH-atRA + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroid hormones:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Androgen biosynthesis:
ANDST + H+ + TPNH ⟶ TEST + TPN
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Androgen biosynthesis:
ANDST + H+ + TPNH ⟶ TEST + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Metabolism of steroid hormones:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Androgen biosynthesis:
ANDST + H+ + TPNH ⟶ TEST + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
11-deoxycortisol ⟶ 11DCORT
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroid hormones:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Androgen biosynthesis:
ANDST + H+ + TPNH ⟶ TEST + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Metabolism of steroids:
H+ + TEST + TPNH ⟶ DHTEST + TPN
- Metabolism of steroid hormones:
H+ + TEST + TPNH ⟶ DHTEST + TPN
- Androgen biosynthesis:
H+ + TEST + TPNH ⟶ DHTEST + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
H+ + Oxygen + TPNH + progesterone ⟶ 17aHPROG + H2O + TPN
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
H+ + Oxygen + TPNH + progesterone ⟶ 17aHPROG + H2O + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Estrogen biosynthesis:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Estrogen biosynthesis:
EST17b + TPN ⟶ H+ + TPNH + estrone
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroid hormones:
EST17b + TPN ⟶ H+ + TPNH + estrone
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroid hormones:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Androgen biosynthesis:
H+ + Oxygen + TPNH + progesterone ⟶ 17aHPROG + H2O + TPN
BioCyc(9)
- androgen biosynthesis:
17-α-hydroxypregnenolone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-β-hydroxyandrost-5-en-17-one + H+ + H2O + acetate + an oxidized [NADPH-hemoprotein reductase]
- androgen biosynthesis:
NADP+ + testosterone ⟶ H+ + NADPH + androst-4-ene-3,17-dione
- testosterone and androsterone degradation to androstendione:
5α-androstane-3,17-dione + A ⟶ A(H2) + androst-4-ene-3,17-dione
- superpathway of testosterone and androsterone degradation:
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- testosterone and androsterone degradation to androstendione:
NAD(P)+ + androsterone ⟶ 5α-androstane-3,17-dione + H+ + NAD(P)H
- superpathway of testosterone and androsterone degradation:
NAD+ + coenzyme A + propanal ⟶ H+ + NADH + propanoyl-CoA
- androgen biosynthesis:
NAD+ + dehydroepiandrosterone ⟶ 5-androstene-3,17-dione + H+ + NADH
- estradiol biosynthesis II:
19-oxo-testosterone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 17β-estradiol + H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + formate
- estradiol biosynthesis II:
19-oxo-testosterone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 17β-estradiol + H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + formate
WikiPathways(5)
- Classical pathway of steroidogenesis with glucocorticoid and mineralocorticoid metabolism:
11-Deoxycortisol ⟶ Cortisol
- Alternative pathway of fetal androgen synthesis:
17-Hydroxyallopregnanolone ⟶ Androsterone
- Estrogen metabolism:
2-Methoxyestradiol ⟶ 2-methoxy-17beta-estradiol 3-glucuronide
- Male steroid hormones in cardiomyocyte energy metabolism:
3 -Androstane-diol ⟶ Epiandrosterone
- Sulfatase and aromatase pathway:
DHEA ⟶ Androstenedione
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(18)
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
PharmGKB(0)
53 个相关的物种来源信息
- 7002 - Acrididae: LTS0081086
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 6656 - Arthropoda: LTS0081086
- 4890 - Ascomycota: LTS0081086
- 33196 - Botrytis: LTS0081086
- 40559 - Botrytis cinerea: 10.1021/NP990520B
- 40559 - Botrytis cinerea: LTS0081086
- 6658 - Branchiopoda: LTS0081086
- 7711 - Chordata: LTS0081086
- 5502 - Curvularia: LTS0081086
- 5503 - Curvularia lunata: 10.1016/0039-128X(94)90002-7
- 5503 - Curvularia lunata: LTS0081086
- 6668 - Daphnia: LTS0081086
- 35525 - Daphnia magna: 10.1006/EESA.1999.1859
- 35525 - Daphnia magna: LTS0081086
- 77658 - Daphniidae: LTS0081086
- 147541 - Dothideomycetes: LTS0081086
- 50515 - Dytiscidae: LTS0081086
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 2759 - Eukaryota: LTS0081086
- 4751 - Fungi: LTS0081086
- 9604 - Hominidae: LTS0081086
- 9605 - Homo: LTS0081086
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0081086
- 156912 - Ilybius: LTS0081086
- 156954 - Ilybius fenestratus: 10.1002/CBER.19691020610
- 156954 - Ilybius fenestratus: LTS0081086
- 50557 - Insecta: LTS0081086
- 4136 - Lamiaceae: LTS0081086
- 147548 - Leotiomycetes: LTS0081086
- 7003 - Locusta: LTS0081086
- 7004 - Locusta migratoria: 10.1016/0305-0491(92)90052-S
- 7004 - Locusta migratoria: LTS0081086
- 3398 - Magnoliopsida: LTS0081086
- 40674 - Mammalia: LTS0081086
- 33208 - Metazoa: LTS0081086
- 10066 - Muridae: LTS0081086
- 10088 - Mus: LTS0081086
- 10090 - Mus musculus: LTS0081086
- 10090 - Mus musculus: NA
- 28556 - Pleosporaceae: LTS0081086
- 22663 - Punica granatum: 10.1016/J.JEP.2006.09.006
- 28983 - Sclerotiniaceae: LTS0081086
- 35493 - Streptophyta: LTS0081086
- 58023 - Tracheophyta: LTS0081086
- 21910 - Verbenaceae: LTS0081086
- 33090 - Viridiplantae: LTS0081086
- 54476 - Vitex: LTS0081086
- 54477 - Vitex agnus-castus: 10.1055/S-2006-961123
- 54477 - Vitex agnus-castus: LTS0081086
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- V V Sathibabu Uddandrao, Seshathri Eraniappan, Asokan Balakrishnan Ramajayam, Sengottuvelu Singaravel, Anitha Roy, Brahma Naidu Parim, Chandrasekaran Ponnusamy, Saravanan Ganapathy, Ponmurugan Ponnusamy, Vadivukkarasi Sasikumar. Hydroxycitric acid and capsaicin combination alleviates obesity-induced testicular apoptosis, oxidative stress and inflammation.
Systems biology in reproductive medicine.
2024 Dec; 70(1):20-37. doi:
10.1080/19396368.2024.2306403
. [PMID: 38323592] - Shedrach C Kanu, Fidelis E Ejezie, Chioma S Ejezie, Chinedum O Eleazu. Effect of methanol extract of Plectranthus esculentus N.E.Br tuber and its fractions on indices of benign prostatic hyperplasia in Wistar rats.
Journal of ethnopharmacology.
2024 Sep; 331(?):118301. doi:
10.1016/j.jep.2024.118301
. [PMID: 38735419] - Ahmed M E Shipa, Khaled A Kahilo, Samir A Elshazly, Ehab S Taher, Nasr E Nasr, Badriyah S Alotaibi, Essam A Almadaly, Mona Assas, Walied Abdo, Tarek K Abouzed, Abdulati Elsanusi Salem, Damla Kirci, Hesham R El-Seedi, Mohamed S Refaey, Nermin I Rizk, Mustafa Shukry, Doaa A Dorghamm. Protective effect of Petroselinum crispum methanolic extract against acrylamide-induced reproductive toxicity in male rats through NF-ĸB, kinesin, steroidogenesis pathways.
Reproductive toxicology (Elmsford, N.Y.).
2024 Jun; 126(?):108586. doi:
10.1016/j.reprotox.2024.108586
. [PMID: 38614435] - Waseem Ali, Uzma Khatyan, Jian Sun, Abdulrahman Alasmari, Mohammad Y Alshahrani, Izhar Hyder Qazi, Tao Wang, Zongping Liu, Hui Zou. Mitigating effect of pomegranate peel extract against the furan induced testicular injury by apoptosis, steroidogenic enzymes and oxidative stress.
Chemosphere.
2024 Jun; 358(?):142086. doi:
10.1016/j.chemosphere.2024.142086
. [PMID: 38670510] - Yu Hao, Xuan'en Tian, Fengmei Yan, Xiuqin Wang, Jing Huang, Ling Li. Effect of MEHP on testosterone synthesis via Sirt1/Foxo1/Rab7 signaling pathway inhibition of lipophagy in TM3 cells.
Ecotoxicology and environmental safety.
2024 Jun; 277(?):116394. doi:
10.1016/j.ecoenv.2024.116394
. [PMID: 38663197] - Mengyu Zhang, Jiankang Zhang, Yunzhi Cui, Zengshu Xing. Predictive power of lipid-related indicators for testosterone deficiency: a comparative analysis, NHANES 2011-2016.
International urology and nephrology.
2024 Jun; 56(6):1825-1833. doi:
10.1007/s11255-023-03935-0
. [PMID: 38280934] - Ogechukwu E Ezim, Joy Nyeche, Chisom E Nebeolisa, Chuka D Belonwu, Sunny O Abarikwu. Ascorbic acid attenuates gasoline-induced testicular toxicity, sperm quality deterioration, and testosterone imbalance in rats.
Toxicology and industrial health.
2024 Jun; 40(6):323-336. doi:
10.1177/07482337241245154
. [PMID: 38597120] - Thomas M Campbell, Erin K Campbell, Eva Culakova, Lisa M Blanchard, Nellie Wixom, Joseph J Guido, James Fetten, Alissa Huston, Michelle Shayne, Michelle C Janelsins, Karen M Mustian, Richard G Moore, Luke J Peppone. A whole-food, plant-based randomized controlled trial in metastatic breast cancer: weight, cardiometabolic, and hormonal outcomes.
Breast cancer research and treatment.
2024 Jun; 205(2):257-266. doi:
10.1007/s10549-024-07266-1
. [PMID: 38446316] - Young-Jin Choi, Nishala Erandi Wedamulla, Seok-Hee Kim, Mirae Oh, Kang Sik Seo, Jeong Su Han, Eun Joo Lee, Young Ho Park, Young Jin Park, Eun-Kyung Kim. Salvia miltiorrhiza Bunge Ameliorates Benign Prostatic Hyperplasia through Regulation of Oxidative Stress via Nrf-2/HO-1 Activation.
Journal of microbiology and biotechnology.
2024 May; 34(5):1059-1072. doi:
10.4014/jmb.2308.08053
. [PMID: 37994101] - Ivana Regina da Costa, Débora Hipólito Quadreli, Lucas Marcelo Meira da Silva, Fábio Goulart de Andrade, Glaura Scantamburlo Alves Fernandes. Chlorpyrifos impairs sperm parameters and number of Sertoli and Leydig cells in rats after exposure during the peripubertal period.
Toxicology.
2024 May; 504(?):153789. doi:
10.1016/j.tox.2024.153789
. [PMID: 38522820] - Wijden Niama, Samia Ben Saïd, Mohamed Aroua, Sihem Amiri, Hnia Chograni, Christelle Ramé, Kahena Bouzid, Ahlem Bartakiz, Pascal Froment, Joelle Dupont, Mokhtar Mahouachi. Oral supplementation with Scabiosa artropurperea L. aqueous extract improves the in vivo sexual behaviour, sperm quality and androgen level in rams.
Reproduction in domestic animals = Zuchthygiene.
2024 May; 59(5):e14569. doi:
10.1111/rda.14569
. [PMID: 38715435] - Seong Min Lee, Sang Mok Lee, Jungbin Song. Effects of Taraxaci Herba (Dandelion) on Testosterone Propionate-Induced Benign Prostatic Hyperplasia in Rats.
Nutrients.
2024 Apr; 16(8):. doi:
10.3390/nu16081189
. [PMID: 38674879] - Hang Ge, Hui Chang, Yu Wang, Jing Cong, Yang Liu, Bei Zhang, Xiaoke Wu. Establishment and validation of a nomogram model for predicting ovulation in the PCOS women.
Medicine.
2024 Apr; 103(14):e37733. doi:
10.1097/md.0000000000037733
. [PMID: 38579058] - Mohamed H Elashal, Aida A Abd El-Wahed, Mostafa Abdelgaber Mohamed, Rania Hamad, Mabrouk Attia Abd Eldaim, Shaden A M Khalifa, Badr Aldahmash, Hesham R El-Seedi, Bishoy El-Aarag. Apilarnil ameliorates Bisphenol A-induced testicular toxicity in adult male rats via improving antioxidant potency and PCNA expression.
Reproductive toxicology (Elmsford, N.Y.).
2024 Apr; 125(?):108570. doi:
10.1016/j.reprotox.2024.108570
. [PMID: 38484946] - Yahya S Alqahtani, Vijay R Chidrawar, Shruti Shiromwar, Sudarshan Singh, Rahul Maheshwari, Havagiray Chitme, Naresh Babu Chilamakuru, Popat Mohite, Ahmed M Aljameeli, Masood Medleri Khateeb. A multi-modal approach to investigate Desmodium gangeticum's influence on stress-induced male infertility: In vivo, in vitro, and in silico assessments.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 Apr; 173(?):116358. doi:
10.1016/j.biopha.2024.116358
. [PMID: 38430634] - Jan Gebauer, Nikola Hodkovicova, Kristina Tosnerova, Kristyna Skoupa, Andrej Batik, Iva Bartejsova, Michaela Charvatova, Lenka Leva, Rea Jarosova, Zbysek Sladek, Martin Faldyna, Kamil Stastny. Anabolic steroids induced changes at the level of protein expression: Effects of prolonged administration of testosterone and nandrolone to pigs.
Environmental toxicology and pharmacology.
2024 Apr; 107(?):104422. doi:
10.1016/j.etap.2024.104422
. [PMID: 38521435] - Samet Tekin, Emin Sengul, Serkan Yildirim, Emrah Hicazi Aksu, İsmail Bolat, Burak Çınar, Azizeh Shadidizaji, Fikret Çelebi, Mohamad Warda. Molecular insights into the antioxidative and anti-inflammatory effects of P-coumaric acid against bisphenol A-induced testicular injury: In vivo and in silico studies.
Reproductive toxicology (Elmsford, N.Y.).
2024 Apr; 125(?):108579. doi:
10.1016/j.reprotox.2024.108579
. [PMID: 38513920] - Yisheng Zhang, Liu Yang, Shan Xue, Yichang Zhang, Zihan Li, Min Zhang, Guoyin Kai, Juan Li. Effect of Curcuma longa extract on reproduction function in mice and testosterone production in Leydig cells.
Journal of cellular and molecular medicine.
2024 Apr; 28(8):e18303. doi:
10.1111/jcmm.18303
. [PMID: 38613362] - Ségolène Delaitre, Marcel E Visser, Kees van Oers, Samuel P Caro. Odours of caterpillar-infested trees increase testosterone concentrations in male great tits.
Hormones and behavior.
2024 Apr; 160(?):105491. doi:
10.1016/j.yhbeh.2024.105491
. [PMID: 38340412] - Feilan Xuan, Yuefang Ren, Jiali Lu, Weimei Zhou, Ruiying Jin, Aixue Chen, Yongju Ye. CPEB1 induces autophagy and promotes apoptosis in ovarian granulosa cells of polycystic ovary syndrome.
Molecular reproduction and development.
2024 Apr; 91(4):e23741. doi:
10.1002/mrd.23741
. [PMID: 38616716] - Qian Xu, Hong Shen, Yifan Zhu, Junlei Zhang, Zhongmei Shen, Jianming Jiang, Jie Zhou. Causal effects of genetically predicted testosterone on Alzheimer's disease: a two-sample mendelian randomization study.
Acta neurologica Belgica.
2024 Apr; 124(2):591-601. doi:
10.1007/s13760-023-02426-4
. [PMID: 38007406] - Jing-Yi Jia, Guang-Hui Chen, Ting-Ting Shu, Qi-Yong Lou, Xia Jin, Jiang-Yan He, Wu-Han Xiao, Gang Zhai, Zhan Yin. Androgen signaling inhibits de novo lipogenesis to alleviate lipid deposition in zebrafish.
Zoological research.
2024 Mar; 45(2):355-366. doi:
10.24272/j.issn.2095-8137.2023.324
. [PMID: 38485505] - Nadia Saadat, Brooke Pallas, Joseph Ciarelli, Arpita Kalla Vyas, Vasantha Padmanabhan. Gestational testosterone excess early to mid-pregnancy disrupts maternal lipid homeostasis and activates biosynthesis of phosphoinositides and phosphatidylethanolamines in sheep.
Scientific reports.
2024 03; 14(1):6230. doi:
10.1038/s41598-024-56886-6
. [PMID: 38486090] - Cheng-Qi Zhang, Shuang-Shuang Li, Bo Hu, Li-Wen Xu, Jia-Jia Liu, Ya-Jie Sun, Xue Bai. Effect of GnRH Active Immunisation on Reproductive Performance of Male Sprague Dawley Rats.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063193
. [PMID: 38542167] - Lu Lu, Cai-Yu Lian, Yan-Ting Lv, Shu-Hui Zhang, Long Wang, Lin Wang. Glyphosate drives autophagy-dependent ferroptosis to inhibit testosterone synthesis in mouse Leydig cells.
The Science of the total environment.
2024 Mar; 914(?):169927. doi:
10.1016/j.scitotenv.2024.169927
. [PMID: 38199345] - Mai Takehara, Mitsuki Kyakuno, Kazuko Okamoto, Ichiro Tazawa, Nobuaki Furuno, Megumi Furumitsu, Kazuyoshi Ukena, Takuya Imamura, Takashi Takeuchi, Toshinori Hayashi. Amphibian newts as experimental models for studying weight gain after castration.
Endocrine journal.
2024 Feb; 71(2):181-191. doi:
10.1507/endocrj.ej23-0207
. [PMID: 38220202] - Kaiyue Zhang, Chunnan Li, Xueqin Feng, Nanxi Zhang, Xiaochen Gao, Guangfu Lv, Jiaming Shen, Peitong Wu, Jingwei Lv, Jiaming Sun. Integrated cell metabolomics and network pharmacology approach deciphers the anti-testosterone deficiency mechanisms of Bushen Zhuanggu Tang.
Journal of pharmaceutical and biomedical analysis.
2024 Feb; 239(?):115919. doi:
10.1016/j.jpba.2023.115919
. [PMID: 38134707] - Nanhui Chen, Zengjun Wang, Ming Chen, Qi Ma, Yi He, Yujie Wang, Xin Li, Mingxing Qiu, Lei Shi, Shaoxing Zhu, Qun Xie, Xiuheng Liu, Benkang Shi, Guowen Lin, Weizhong Yang, Yongbin Liao, Haibin Zhang, Shusheng Wang, Jiexian Li, Shaogang Wang, Lijun Dong, Hui Chen, Jiaju Lu, Yongyi Cheng, Xiaoping Zhang, Lulin Ma, Liqun Zhou, He Wang, Shen Li, Dingwei Ye. Real-world effectiveness and safety of goserelin 10.8-mg depot in Chinese patients with localized or locally advanced prostate cancer.
Cancer biology & medicine.
2024 02; 20(12):. doi:
10.20892/j.issn.2095-3941.2023.0335
. [PMID: 38318809] - Zihan Li, Chengshan Zhu, Cong Yin, Heyu Li, Yimei Liu, Juan Li. Multi-omics reveals the testosterone promotion effect mechanism of Cordyceps Sobolifera on leydig cells.
Journal of ethnopharmacology.
2024 Feb; ?(?):117817. doi:
10.1016/j.jep.2024.117817
. [PMID: 38316217] - Xianglin Chen, Shangyue Yang, Biran Zhu, Mengyuan Zhang, Na Zheng, Jianghuan Hua, Ruiwen Li, Jian Han, Lihua Yang, Bingsheng Zhou. Effects of environmentally relevant concentrations of niclosamide on lipid metabolism and steroid hormone synthesis in adult female zebrafish.
The Science of the total environment.
2024 Feb; 910(?):168737. doi:
10.1016/j.scitotenv.2023.168737
. [PMID: 37992841] - Özge Besci, Yağmur Damla Akçura, Kübra Yüksek Acinikli, Gözde Akın Kağızmanlı, Korcan Demir, Ece Böber, Mustafa Kır, Ayhan Abacı. Aromatase Inhibitors May Increase the Risk of Cardiometabolic Complications in Adolescent Boys.
Pediatric cardiology.
2024 Feb; 45(2):228-239. doi:
10.1007/s00246-023-03260-4
. [PMID: 37544952] - Supakorn Authaida, Vibuntita Chankitisakul, Ruthaiporn Ratchamak, Jutarat Pimpa, Thirawat Koedkanmark, Wuttigrai Boonkum, Jaruwan Khonmee, Sarunya Tuntiyasawasdikul. The effect of Thai ginger (Kaempferia parviflora) extract orally administration on sperm production, semen preservation, and fertility in Thai native chickens under heat stress.
Poultry science.
2024 Feb; 103(2):103372. doi:
10.1016/j.psj.2023.103372
. [PMID: 38160614] - Amina Essawy, Shreen Matar, Nema Mohamed, Wessam Abdel-Wahab, Heba Abdou. Ginkgo biloba extract protects against tartrazine-induced testicular toxicity in rats: involvement of antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.
Environmental science and pollution research international.
2024 Feb; 31(10):15065-15077. doi:
10.1007/s11356-024-32047-0
. [PMID: 38286926] - Ali Akbar, Muhammad Umar Ijaz. Pharmacotherapeutic potential of ginkgetin against polystyrene microplastics-instigated testicular toxicity in rats: A biochemical, spermatological, and histopathological assessment.
Environmental science and pollution research international.
2024 Feb; 31(6):9031-9044. doi:
10.1007/s11356-023-31662-7
. [PMID: 38182957] - Rui-Rong Zheng, Qian-Xi Ouyang, Zi-Yao Liu, Lin-Nan Li, Li Yang, Zheng-Tao Wang. [Natural 5α-reductase inhibitors in treatment of benign prostatic hyperplasia].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2024 Feb; 49(4):858-867. doi:
10.19540/j.cnki.cjcmm.20231113.601
. [PMID: 38621893] - Shashank Tripathi, Shweta Maurya, Ajit Singh. Adropin, a novel hepatokine: localization and expression during postnatal development and its impact on testicular functions of pre-pubertal mice.
Cell and tissue research.
2024 Feb; 395(2):171-187. doi:
10.1007/s00441-023-03852-9
. [PMID: 38087073] - Syeda Samira Azim, Zeba Haque, Sadaf Khan, Jahan Ara Hasan, Sidra Zaheer, Sajida Parveen. Oxidative stress in polycystic ovary syndrome: a case-control study.
JPMA. The Journal of the Pakistan Medical Association.
2024 Feb; 74(1 (Supple-2)):S2-S7. doi:
10.47391/jpma-duhs-s02
. [PMID: 38385463] - Xinguang Sun, Yingfei Li, Juan Li, Haizhen Liang, Jie Zhang, Xiaojuan Chen, Qi Li, Xu Pang, Qianzhi Ding, Juan Song, Baolin Guo, Baiping Ma. Bioactive metabolites reveal the therapeutic consistency of epimedii folium from multi-plant sources for the treatment of kidney-yang deficiency.
Journal of ethnopharmacology.
2024 Jan; 319(Pt 2):117215. doi:
10.1016/j.jep.2023.117215
. [PMID: 37774896] - Sha Ye, Yepei Huang, Yi Lu, Xiaoyan Li, Meiling Ye, Hongyu Lu, Junhua Shi, Jian Huang, Hong Cai. A more accurate relationship between serum androgen and metabolism among healthy, nonobese, reproductive-age women based on liquid chromatography-tandem mass spectrometry.
Endocrine journal.
2024 Jan; 71(1):45-54. doi:
10.1507/endocrj.ej23-0451
. [PMID: 37981325] - Hae Seung Lee, Sang Hun Han, Ronald Swerdloff, Youngju Pak, Matthew Budoff, Christina Wang. The Effect of Testosterone Replacement Therapy on Nonalcoholic Fatty Liver Disease in Older Hypogonadal Men.
The Journal of clinical endocrinology and metabolism.
2024 Jan; 109(2):e757-e764. doi:
10.1210/clinem/dgad511
. [PMID: 37656011] - Gauthier Ganouna-Cohen, François Marcouiller, Britanny Blachot-Minassian, Maud Demarest, Charles Joly Beauparlant, Arnaud Droit, Elise Belaidi, Aida Bairam, Vincent Joseph. Loss of testosterone induces postprandial insulin resistance and increases the expression of the hepatic antioxidant flavin-containing monooxygenases in mice exposed to intermittent hypoxia.
Acta physiologica (Oxford, England).
2024 Jan; ?(?):e14089. doi:
10.1111/apha.14089
. [PMID: 38230898] - Rahul Kumar, Vikash Kumar, Guruswami Gurusubramanian, Saurabh Singh Rathore, Vikas Kumar Roy. Morin hydrate ameliorates heat-induced testicular impairment in a mouse model.
Molecular biology reports.
2024 Jan; 51(1):103. doi:
10.1007/s11033-023-09157-y
. [PMID: 38219219] - Selvakumar Mararajah, Nelli Giribabu, Naguib Salleh. Chlorophytum borivilianum aqueous root extract prevents deterioration of testicular function in mice and preserves human sperm function in hydrogen peroxide (H2O2)-induced oxidative stress.
Journal of ethnopharmacology.
2024 Jan; 318(Pt B):117026. doi:
10.1016/j.jep.2023.117026
. [PMID: 37572930] - Yan Zhou, Xia Wang, Siqi Guo, Ruiying Li, Ye Li, Ying Yu, Ting Liu. Correlation between chronic low-grade inflammation and glucose and lipid metabolism indicators in polycystic ovary syndrome.
Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology.
2024 Jan; 40(1):2302402. doi:
10.1080/09513590.2024.2302402
. [PMID: 38215787] - Andrej Feješ, Paulína Belvončíková, Dafne Porcel Sanchis, Veronika Borbélyová, Peter Celec, Mária Džunková, Roman Gardlík. The Effect of Cross-Sex Fecal Microbiota Transplantation on Metabolism and Hormonal Status in Adult Rats.
International journal of molecular sciences.
2024 Jan; 25(1):. doi:
10.3390/ijms25010601
. [PMID: 38203771] - Sujung Lee, Jiyeon Kim, Hyunseok Kong, Yong-Suk Kim. Ameliorative effects of elderberry (Sambucus nigra L.) extract and extract-derived monosaccharide-amino acid on H2O2-induced decrease in testosterone-deficiency syndrome in a TM3 Leydig cell.
PloS one.
2024; 19(4):e0302403. doi:
10.1371/journal.pone.0302403
. [PMID: 38662754] - Misaki Kojima, Masakuni Degawa. Causes of Sex Differences in Serum Cholesterol and Triglyceride Levels in Meishan Pigs.
Biological & pharmaceutical bulletin.
2024; 47(3):606-610. doi:
10.1248/bpb.b23-00895
. [PMID: 38462492] - L Zhang, F Yang, J Ma, Y Hu, M Li, C Wang, X Chang, L Yang. The Impact of Testosterone on Alzheimer's Disease Are Mediated by Lipid Metabolism and Obesity: A Mendelian Randomization Study.
The journal of prevention of Alzheimer's disease.
2024; 11(2):507-513. doi:
10.14283/jpad.2023.116
. [PMID: 38374757] - C F Oguejiofor, U U Eze, I G Eke, A A Eze, O B Onyejekwe, B M Anene. Adverse effects of exposure to petrol-generator exhaust fumes on the reproductive hormones, testis and spermatozoa in male dogs.
Reproductive toxicology (Elmsford, N.Y.).
2024 Jan; 123(?):108516. doi:
10.1016/j.reprotox.2023.108516
. [PMID: 38042436] - Edward Weaver, Federica Sommonte, Andrew Hooker, Nunzio Denora, Shahid Uddin, Dimitrios A Lamprou. Microfluidic encapsulation of enzymes and steroids within solid lipid nanoparticles.
Drug delivery and translational research.
2024 Jan; 14(1):266-279. doi:
10.1007/s13346-023-01398-5
. [PMID: 37505373] - Zhiyi Chen, Enpu Zhang, Lu Gan, Ganggang Jiang, Qilin Duan, Mou Huang, Huizhen Li, Guixiao Huang. Analysis of the association between testosterone and cardiovascular disease potential risk factor apolipoprotein B in adult males without cancer: national health and nutrition examination survey 2011-2016.
Frontiers in endocrinology.
2024; 15(?):1304344. doi:
10.3389/fendo.2024.1304344
. [PMID: 38435750] - Rohit Gautam, Sonali Pardhiya, Jay Prakash Nirala, Priyanka Sarsaiya, Paulraj Rajamani. Effects of 4G mobile phone radiation exposure on reproductive, hepatic, renal, and hematological parameters of male Wistar rat.
Environmental science and pollution research international.
2024 Jan; 31(3):4384-4399. doi:
10.1007/s11356-023-31367-x
. [PMID: 38102429] - Shashank Tripathi, Shweta Maurya, Ajit Singh. Adropin may promote insulin stimulated steroidogenesis and spermatogenesis in adult mice testes.
Journal of experimental zoology. Part A, Ecological and integrative physiology.
2024 01; 341(1):86-98. doi:
10.1002/jez.2763
. [PMID: 37902254] - Yong Lin, Huiling Zeng, Jieying Lin, Yiwei Peng, Xueyun Que, Lijun Wang, Ling Chen, Ni Bai. Evaluating the therapeutic potential of moxibustion on polycystic ovary syndrome: a rat model study on gut microbiota and metabolite interaction.
Frontiers in cellular and infection microbiology.
2024; 14(?):1328741. doi:
10.3389/fcimb.2024.1328741
. [PMID: 38665877] - Xiang Xu, Chengqian Li, Hongcui Diao, Yanjun Guo, Yuhang Zhao, Wenjuan Zhao, Bingzi Dong. Elevated circulating follicle stimulating hormone level is associated with dyslipidemia in male type 2 diabetes mellitus patients: A cross-sectional study.
Diabetes/metabolism research and reviews.
2024 Jan; 40(1):e3718. doi:
10.1002/dmrr.3718
. [PMID: 37644801] - Yuge Zhuang, Wenyuan Liu, Feilong Chen, Minyu Xie, Hanbin Zhang, Zicong Huang, Xiaoyuan Zhang, Jinsheng Liu, Ke Ma, Hongrui Feng, Shipeng Ruan, Jing He, Wansong Zhang, Feng Zou, Xiangjin Kang, Yong Fan, Guofei Zhang, Zhenguo Chen. Nitric oxide-induced lipophagic defects contribute to testosterone deficiency in rats with spinal cord injury.
Frontiers in endocrinology.
2024; 15(?):1360499. doi:
10.3389/fendo.2024.1360499
. [PMID: 38455652] - Sadia Suri, Saira Saeed Khan, Sadaf Naeem, Zeb Un Nisa, Nausheen Alam, Saba Majeed, Suresh Kumar, Rafeeq Alam Khan. The beneficial effect of Allium Cepa bulb extract on reproduction of rats; A two-generation study on fecundity and sex hormones.
PloS one.
2024; 19(3):e0294999. doi:
10.1371/journal.pone.0294999
. [PMID: 38483938] - K S Suhas, Shubham Vijapure, Supriya Yadav, Madhu Ramesh, M Saminathan, Kaveri Jambagi, Bindu Suresh, C L Madhu, Ajay Kumar, Vikash Chandra, Avinash G Telang. Nano-quercetin mitigates triazophos-induced testicular toxicity in rats by suppressing oxidative stress and apoptosis.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2024 Jan; 183(?):114331. doi:
10.1016/j.fct.2023.114331
. [PMID: 38061569] - Oluwatosin Olalekan Ogedengbe, A Bature, A A Fafure, S O Kehinde, A O Adekeye, C O Akintayo, B O Ajiboye, O A Adeeyo. Evaluation of Testicular Function and Structural Changes of Wistar Rats Following Antiretroviral Exposure: Protective Role of Cyperus Esculentus.
Nigerian journal of physiological sciences : official publication of the Physiological Society of Nigeria.
2023 Dec; 38(2):201-209. doi:
10.54548/njps.v38i2.9
. [PMID: 38696680] - Nadia Saadat, Joseph Ciarelli, Brooke Pallas, Vasantha Padmanabhan, Arpita Kalla Vyas. Sex-Specific Perturbation of Systemic Lipidomic Profile in Newborn Lambs Impacted by Prenatal Testosterone Excess.
Endocrinology.
2023 Dec; 165(2):. doi:
10.1210/endocr/bqad187
. [PMID: 38060679] - Jingyi Zhang, Yifeng Shen, Guangsen Li, Feng Zhang, Aili Yang, Junjun Li, Shiyun Pu, Qingqing Huang, Baojun Zhuang, Xujun Yu. Bibliometrics and visualization analysis of literature on male hypogonadism from 2000 to 2023: research focus and frontiers.
International journal of impotence research.
2023 Dec; ?(?):. doi:
10.1038/s41443-023-00803-4
. [PMID: 38052978] - Elizabeth Enohnyket Besong, Tunmise Maryanne Akhigbe, Precious Jesutofunmi Ashonibare, Abimbola Ayoola Oladipo, Jacinta Nkechi Obimma, Moses Agbomhere Hamed, Damilare Hakeem Adeyemi, Roland Eghoghosoa Akhigbe. Zinc improves sexual performance and erectile function by preventing penile oxidative injury and upregulating circulating testosterone in lead-exposed rats.
Redox report : communications in free radical research.
2023 Dec; 28(1):2225675. doi:
10.1080/13510002.2023.2225675
. [PMID: 37345699] - Mohd Ashraf Ganie, Aafia Rashid, Mohammad Salem Baba, Mohd Afzal Zargar, Imtiyaz Ahmad Wani, Sobia Nisar, Ishfaq Ahmad Wani, Syed Douhath, Mukesh Sriwastawa, Mohd Ishaq Geer, Mir Mohd Asrar, Rintu Kutum, Saqib Hassan, Shahid Khan, Wajid Rafi, Dil Afroz Bhat, Wasia Showkat, Tajali Sahar, Naseer Ahmad Choh, Rabia Khurshid, Syed Mudassar, Zafar Amin Shah, Iram Shabir, Sanjeed Ahmad Sofi, Nandita Gupta, Imran Hafeez, Vishnubatla Sreenivas. Pre-polycystic ovary syndrome and polymenorrhoea as new facets of polycystic ovary syndrome (PCOS): Evidences from a single centre data set.
Clinical endocrinology.
2023 12; 99(6):566-578. doi:
10.1111/cen.14964
. [PMID: 37656656] - Demiana H Hanna, Sylvia Nabil Beshay, E El Shafee, Heba Ali Abd El-Rahman. The protective effect of aqueous extract of Stevia rebaudiana against tartrazine toxicity in male Wistar rat.
Cell biochemistry and function.
2023 Dec; 41(8):1462-1476. doi:
10.1002/cbf.3886
. [PMID: 38010705] - E E Besong, P J Ashonibare, O O Obembe, M A Folawiyo, D H Adeyemi, M A Hamed, T M Akhigbe, R E Akhigbe. Zinc protects against lead-induced testicular damage via modulation of steroidogenic and xanthine oxidase/uric acid/caspase 3-mediated apoptotic signaling in male Wistar rats.
The aging male : the official journal of the International Society for the Study of the Aging Male.
2023 Dec; 26(1):2224428. doi:
10.1080/13685538.2023.2224428
. [PMID: 37351853] - Xiaotian Pan. Metabolic characteristics of obese patients with polycystic ovarian syndrome: a meta-analysis.
Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology.
2023 Dec; 39(1):2239934. doi:
10.1080/09513590.2023.2239934
. [PMID: 37524309] - Daisy Kunnathuparambil Lonappan, Gouthami Kuruvalli, Althaf Hussain Shaik, Ananda Vardhan Hebbani, Hymavathi Reddyvari, Vaddi Damodara Reddy, Veeraraghavan Vadamalai. Alcohol-induced hormonal and metabolic alterations in plasma and erythrocytes-a gender-based study.
Toxicology mechanisms and methods.
2023 Nov; ?(?):1-9. doi:
10.1080/15376516.2023.2290071
. [PMID: 38031273] - Amina Sardar, Mehwish David, Sarwat Jahan, Tayyaba Afsar, Aneela Ahmad, Asad Ullah, Ali Almajwal, Huma Shafique, Suhail Razak. Determination of biochemical and histopathological changes on testicular and epididymis tissues induced by exposure to insecticide Imidacloprid during postnatal development in rats.
BMC pharmacology & toxicology.
2023 11; 24(1):68. doi:
10.1186/s40360-023-00709-3
. [PMID: 38012698] - Wesam T Basal, Aliaa M Issa, Omnia Abdelalem, Amel R Omar. Salvia officinalis restores semen quality and testicular functionality in cadmium-intoxicated male rats.
Scientific reports.
2023 11; 13(1):20808. doi:
10.1038/s41598-023-45193-1
. [PMID: 38012170] - Y Y Han, Q H Zhang, W S Chen, Z L Li, D Xie, S L Zhang, H Lu, L W Wang, Z H Xu, L Z Zhang. Fermented rape pollen powder can alleviate benign prostatic hyperplasia in rats by reducing hormone content and changing gut microbiota.
Beneficial microbes.
2023 Nov; 14(5):503-524. doi:
10.1163/18762891-20230039
. [PMID: 38656098] - Pawel Pabisz, Jerzy Bazak, Michal Sabat, Albert W Girotti, Witold Korytowski. Cholesterol Hydroperoxide Co-trafficking in Testosterone-generating Leydig Cells: GPx4 Inhibition of Cytotoxic and Anti-steroidogenic Effects.
Cell biochemistry and biophysics.
2023 Nov; ?(?):. doi:
10.1007/s12013-023-01194-5
. [PMID: 37995086] - Oumayma Boukari, Wahid Khemissi, Soumaya Ghodhbane, Aida Lahbib, Olfa Tebourbi, Khemais Ben Rhouma, Mohsen Sakly, Dorsaf Hallegue. Effects of testosterone replacement on lipid profile, hepatotoxicity, oxidative stress, and cognitive performance in castrated wistar rats.
Archivio italiano di urologia, andrologia : organo ufficiale [di] Societa italiana di ecografia urologica e nefrologica.
2023 Nov; 95(4):11593. doi:
10.4081/aiua.2023.11593
. [PMID: 38193231] - Dongxu Wang, Han Zhao, Chuan Xing, Bo Lv, Xiaochen Wang, Bing He. Androgens exacerbate hepatic triglyceride accumulation in rats with polycystic ovary syndrome by downregulating MTTP expression.
Endocrine.
2023 Nov; ?(?):. doi:
10.1007/s12020-023-03590-6
. [PMID: 37950821] - Lin Bai, Yaping Zhang, Changmin Zheng, Shifu Xu, Yining He, Guangqiang Yu, Delun Huang, Yulin Huang, Mingxing Li, Changlong Xu. Tanshinone IIA protects mouse testes from heat stress injury by inhibiting apoptosis and TGFβ1/Smad2/Smad3 signaling pathway.
Cell stress & chaperones.
2023 11; 28(6):749-759. doi:
10.1007/s12192-023-01367-4
. [PMID: 37610501] - Neal D Shore, Bryan A Mehlhaff, Michael S Cookson, Daniel R Saltzstein, Ronald Tutrone, Bruce Brown, Sophia Lu, Mark Fallick, Sarah Hanson, Fred Saad. Impact of Concomitant Cardiovascular Therapies on Efficacy and Safety of Relugolix vs Leuprolide: Subgroup Analysis from HERO Study in Advanced Prostate Cancer.
Advances in therapy.
2023 11; 40(11):4919-4927. doi:
10.1007/s12325-023-02634-7
. [PMID: 37713020] - Rasha Abu-Khudir, Gehan M Badr, Heba Ibrahim Abd El-Moaty, Rabab S Hamad, Najla K Al Abdulsalam, Aml Sayed Ali Abdelrahem, Saleha Alqarni, Mayyadah Abdullah Alkuwayti, Sherine Abdel Salam, Hanaa F Abd El-Kareem. Garden Cress Seed Oil Abrogates Testicular Oxidative Injury and NF-kB-Mediated Inflammation in Diabetic Mice.
International journal of molecular sciences.
2023 Oct; 24(20):. doi:
10.3390/ijms242015478
. [PMID: 37895159] - HengLi Ji, Wei Fan, Mohibullah Kakar, Reem Atalla Alajmi, Muhammad Amjad Bashir, Yasmeen Shakir. Effect of cadmium on the regulatory mechanism of steroidogenic pathway of Leydig cells during spermatogenesis.
Journal of experimental zoology. Part A, Ecological and integrative physiology.
2023 Oct; ?(?):. doi:
10.1002/jez.2758
. [PMID: 37861072] - Song-Li Hao, Chun-Lan Zhang, Xiao-Yu Meng. Comparison of different drug for reducing testosterone levels in women with polycystic ovary syndrome: A systematic review and network meta-analysis.
Medicine.
2023 Oct; 102(41):e35152. doi:
10.1097/md.0000000000035152
. [PMID: 37832133] - Shiori Takeji, Mai Okada, Shu Hayashi, Kengo Kanamaru, Yuichi Uno, Hiromasa Imaishi, Tomohide Uno. Metabolism of testosterone and progesterone by cytochrome P450 2C19 allelic variants.
Biopharmaceutics & drug disposition.
2023 Oct; ?(?):. doi:
10.1002/bdd.2378
. [PMID: 37815926] - Yuan Zhao, Jinru Wu, Xiangbin Li, Qiugu Chen, Zhiming Hong, Lin Zheng, Shiying Huang, Pingli Mo, Changhui Li, Rui Wang, Qiuyan Guo, Shangbin Zhang, Jianping Chen. Protective effect of Huangqi-Guizhi-Wuwutang against cyclophosphamide-induced spermatogenesis dysfunction in mice by promoting steroid hormone biosynthesis.
Journal of ethnopharmacology.
2023 Oct; 319(Pt 2):117260. doi:
10.1016/j.jep.2023.117260
. [PMID: 37813291] - Qigang Fan, Ruifen He, Yi Li, Pu Gao, Runchun Huang, Rong Li, Jiayu Zhang, Hongli Li, Xiaolei Liang. Studying the effect of hyperoside on recovery from cyclophosphamide induced oligoasthenozoospermia.
Systems biology in reproductive medicine.
2023 Oct; 69(5):333-346. doi:
10.1080/19396368.2023.2241600
. [PMID: 37578152] - A R Moura, A R Santos, J D A Losano, A F P Siqueira, T R S Hamilton, R Zanella, K C Caires, R Simões. Evaluation of sperm and hormonal assessments in Wagyu, Nellore, and Angus bulls.
Zygote (Cambridge, England).
2023 Oct; 31(5):507-516. doi:
10.1017/s0967199423000278
. [PMID: 37492001] - Haoran Wu, Zezheng Gao, Dan Dai, Xing Liu, Yini Fang, Xuemei Chen, Qi Wang. Efficacy and safety assessment of traditional Chinese medicine for erectile dysfunction: A meta-analysis and trial sequential analysis.
Andrology.
2023 10; 11(7):1345-1367. doi:
10.1111/andr.13420
. [PMID: 36848898] - Gustavo Andrade, Ivan Iori, Mariana K Hsieh, Giovanna Milani, Pedro C E Zandoná, Thiago A Teixeira, Joël R Drevet, Elaine Maria Costa, Jorge Hallak. Serum lipid profile levels and semen quality: new insights and clinical perspectives for male infertility and men's health.
International urology and nephrology.
2023 Oct; 55(10):2397-2404. doi:
10.1007/s11255-023-03688-w
. [PMID: 37442905] - Zhaoqi Yan, Yifeng Xu, Keke Li, Liangji Liu. Association between genetically proxied HMGCR inhibition and male reproductive health: A Mendelian randomization study.
Medicine.
2023 Sep; 102(39):e34690. doi:
10.1097/md.0000000000034690
. [PMID: 37773823] - Yue Huang, Xiang Zhang. Meta-analysis of the efficacy of ω-3 polyunsaturated fatty acids when treating patients with polycystic ovary syndrome.
Medicine.
2023 Sep; 102(39):e35403. doi:
10.1097/md.0000000000035403
. [PMID: 37773824] - Abdulmaged M Traish. Major cardiovascular disease risk in men with testosterone deficiency (hypogonadism): appraisal of short, medium and long-term testosterone therapy - a narrative review.
Sexual medicine reviews.
2023 09; 11(4):384-394. doi:
10.1093/sxmrev/qead031
. [PMID: 37587664] - Wenqian Xie, Qingjing Gao, Pengyu Chen, Haolin Zhang, Yuning Liu, Qiang Weng. Seasonal expressions of the translocator protein (18kDa), voltage-dependent anion channel, and steroidogenic acute regulatory protein in the scent glands of muskrats (Ondatra zibethicus).
The Journal of steroid biochemistry and molecular biology.
2023 Sep; ?(?):106400. doi:
10.1016/j.jsbmb.2023.106400
. [PMID: 37722462] - Afonso Morgado, Georgios Tsampoukas, Ioannis Sokolakis, Nadja Schoentgen, Ahmet Urkmez, Selcuk Sarikaya. Do "testosterone boosters" really increase serum total testosterone? A systematic review.
International journal of impotence research.
2023 Sep; ?(?):. doi:
10.1038/s41443-023-00763-9
. [PMID: 37697053] - Bingyan Xu, Wei Mo, Xiangliang Tan, Peizhen Zhang, Junlin Huang, Chensihan Huang, Dan Guo, Xueyun Wei, Yating Liu, Xuzhen Lei, Weijuan Dou, Jiayang Lin, Deying Liu, Linjie Yang, Yan Huang, Huijie Zhang, Yunfei Liao. Associations of Serum testosterone and sex hormone-binding globulin with incident Arrhythmias in men from UK Biobank.
The Journal of clinical endocrinology and metabolism.
2023 Sep; ?(?):. doi:
10.1210/clinem/dgad526
. [PMID: 37665960] - Maysa M F El-Nagar, Alaa E Elsisi. Exposure to bromoxynil octanoate herbicide induces oxidative stress, inflammation, and apoptosis in testicular tissue via modulating NF-кB pathway.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2023 Sep; 180(?):114008. doi:
10.1016/j.fct.2023.114008
. [PMID: 37660944] - Jun Ho Lee, Hyuk-Dal Jung, Jae Duck Choi, Jung Yoon Kang, Tag Keun Yoo, Yeon Won Park. Non-linear association between testosterone and LDL concentrations in men.
Andrology.
2023 09; 11(6):1107-1113. doi:
10.1111/andr.13393
. [PMID: 36681877] - Xiaofang Xuan, Chunmei Ye, Jiwei Zhao, Fuping Shen, Yanxia Chen, Jinlin Liu. Dysregulated Tfr/Tfh2 cells in patients with polycystic ovarian syndrome.
Journal of reproductive immunology.
2023 09; 159(?):104137. doi:
10.1016/j.jri.2023.104137
. [PMID: 37625338] - Eduard Isenmann, Pijus Alisauskas, Ulrich Flenker, Jan Schalla, Patrick Diel. The Anabolic Effect of Fenugreek: A Systematic Review with Meta-analysis.
International journal of sports medicine.
2023 Sep; 44(10):692-703. doi:
10.1055/a-2048-5925
. [PMID: 37253363] - E E Besong, P J Ashonibare, T M Akhigbe, J N Obimma, R E Akhigbe. Sodium acetate abates lead-induced sexual dysfunction by upregulating testosterone-dependent eNOS/NO/cGMP signaling and activating Nrf2/HO-1 in male Wistar rat.
Naunyn-Schmiedeberg's archives of pharmacology.
2023 Sep; ?(?):. doi:
10.1007/s00210-023-02696-y
. [PMID: 37658211] - Adesina A Babalola, Adedoyin R Adelowo, Oluwatobiloba F Da-Silva, Cynthia N Ikeji, Olatunde Owoeye, Joao B T Rocha, Isaac A Adedara, Ebenezer O Farombi. Attenuation of doxorubicin-induced hypothalamic-pituitary-testicular axis dysfunction by diphenyl diselenide involves suppression of hormonal deficits, oxido-inflammatory stress and caspase 3 activity in rats.
Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS).
2023 Sep; 79(?):127254. doi:
10.1016/j.jtemb.2023.127254
. [PMID: 37379681] - Guo-Yu Gong, Sheng-Yan Xi, Cheng-Chen Li, Wen-Li Tang, Xue-Ming Fu, Yuan-Peng Huang. Bushen Tongluo formula ameliorated testosterone propionate-induced benign prostatic hyperplasia in rats.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Aug; 120(?):155048. doi:
10.1016/j.phymed.2023.155048
. [PMID: 37651753] - Luna Liu, Meijie Zhang, Fangjie Jiang, Dandan Luo, Shuang Liu, Yu Su, Qingbo Guan, Chunxiao Yu. High cholesterol diet-induced testicular dysfunction in rats.
Hormones (Athens, Greece).
2023 Aug; ?(?):. doi:
10.1007/s42000-023-00472-4
. [PMID: 37596375] - Mindy C DeRouen, Juan Yang, Yuqing Li, Adrian A Franke, Anne N Tome, Kami K White, Brenda Y Hernandez, Yurii Shvetsov, Veronica Setiawan, Anna H Wu, Lynne R Wilkens, Loïc Le Marchand, Lenora W M Loo, Iona Cheng. Circulating 27-hydroxycholesterol, lipids, and steroid hormones in breast cancer risk: a nested case-control study of the Multiethnic Cohort Study.
Breast cancer research : BCR.
2023 08; 25(1):95. doi:
10.1186/s13058-023-01693-6
. [PMID: 37580793]