Pisatin (BioDeep_00000008131)
Main id: BioDeep_00000396530
human metabolite PANOMIX_OTCML-2023 natural product
代谢物信息卡片
化学式: C17H14O6 (314.079)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: c1(ccc2c(c1)OC[C@]1([C@@H]2Oc2c1cc1c(c2)OCO1)O)OC
InChI: InChI=1S/C17H14O6/c1-19-9-2-3-10-12(4-9)20-7-17(18)11-5-14-15(22-8-21-14)6-13(11)23-16(10)17/h2-6,16,18H,7-8H2,1H3
描述信息
Stress metabolite from Pisum sativum (pea) and Trifolium pratense (red clover). Pisatin is found in many foods, some of which are pulses, tea, common pea, and herbs and spices.
Pisatin is found in common pea. Pisatin is a stress metabolite from Pisum sativum (pea) and Trifolium pratense (red clover).
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents
同义名列表
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:67347
- KEGG: C10516
- PubChem: 4484953
- PubChem: 101689
- HMDB: HMDB0033732
- Metlin: METLIN48214
- ChEMBL: CHEMBL1784262
- Wikipedia: Pisatin
- LipidMAPS: LMPK12070126
- MetaCyc: CPD-3944
- KNApSAcK: C00000651
- foodb: FDB011855
- chemspider: 3682780
- CAS: 469-01-2
- PMhub: MS000021691
- PubChem: 12699
- 3DMET: B03919
- NIKKAJI: J93.187J
- KNApSAcK: 67347
- LOTUS: LTS0143410
- wikidata: Q21099606
- LOTUS: LTS0041926
- LOTUS: LTS0083969
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
代谢反应
13 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- pterocarpan phytoalexins modification (maackiain, medicarpin, pisatin, phaseollin):
(-)-maackiain + H+ + NAD(P)H + O2 ⟶ 1α-hydroxy-maackiain + H2O + NAD(P)+
- (+)-pisatin biosynthesis:
(-)-maackiain ⟶ (+)-maackiain
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ 2-hydroxyformononetin + H2O + an oxidized [NADPH-hemoprotein reductase]
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(10)
- superpathway of pterocarpan biosynthesis (via formononetin):
H+ + NADPH + O2 + calycosin ⟶ H2O + NADP+ + pseudobaptigenin
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + calycosin
- (+)-pisatin biosynthesis:
(3R,4R)-7,2,4,2'-tetrahydroxy-4',5'-methylenedioxyisoflav-3-ene ⟶ (+)-6a-hydroxymaackiain + H2O
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + calycosin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + pseudobaptigenin
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + calycosin
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ 2-hydroxyformononetin + H2O + an oxidized [NADPH-hemoprotein reductase]
- (+)-pisatin biosynthesis:
(+)-maackiain + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-6a-hydroxymaackiain + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + calycosin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + pseudobaptigenin
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + calycosin
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + calycosin
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
50 个相关的物种来源信息
- 2759 - Eukaryota: LTS0041926
- 2759 - Eukaryota: LTS0083969
- 3803 - Fabaceae: LTS0041926
- 3803 - Fabaceae: LTS0083969
- 9606 - Homo sapiens: -
- 3853 - Lathyrus: LTS0041926
- 3853 - Lathyrus: LTS0083969
- 3859 - Lathyrus odoratus: 10.1016/0031-9422(88)84092-5
- 3859 - Lathyrus odoratus: 10.1016/S0031-9422(00)80519-1
- 3859 - Lathyrus odoratus: LTS0041926
- 3859 - Lathyrus odoratus: LTS0083969
- 3860 - Lathyrus sativus: 10.1515/ZNC-1982-7-826
- 3860 - Lathyrus sativus: LTS0041926
- 3860 - Lathyrus sativus: LTS0083969
- 3398 - Magnoliopsida: LTS0041926
- 3398 - Magnoliopsida: LTS0083969
- 421375 - Pison: 10.1021/JA00869A030
- 3887 - Pisum: 10.1021/JA00869A030
- 3887 - Pisum: LTS0041926
- 3887 - Pisum: LTS0083969
- 3888 - Pisum sativum:
- 3888 - Pisum sativum: 10.1006/ABBI.1994.1338
- 3888 - Pisum sativum: 10.1016/0003-9861(91)90568-4
- 3888 - Pisum sativum: 10.1016/0031-9422(82)85184-4
- 3888 - Pisum sativum: 10.1016/0031-9422(92)80110-Z
- 3888 - Pisum sativum: 10.1016/S0031-9422(02)00673-8
- 3888 - Pisum sativum: 10.1016/S0031-9422(82)85025-5
- 3888 - Pisum sativum: 10.1021/JA00869A030
- 3888 - Pisum sativum: 10.1021/JF00012A010
- 3888 - Pisum sativum: 10.1021/JF300824D
- 3888 - Pisum sativum: 10.1038/191076A0
- 3888 - Pisum sativum: 10.1080/00021369.1972.10860370
- 3888 - Pisum sativum: 10.1515/ZNC-1983-3-405
- 3888 - Pisum sativum: 10.3987/COM-04-10277
- 3888 - Pisum sativum: LTS0041926
- 3888 - Pisum sativum: LTS0083969
- 208194 - Pisum sativum subsp. sativum: 10.1016/0003-9861(91)90568-4
- 208194 - Pisum sativum subsp. sativum: 10.1021/JF00012A010
- 208194 - Pisum sativum subsp. sativum: LTS0041926
- 35493 - Streptophyta: LTS0041926
- 35493 - Streptophyta: LTS0083969
- 47097 - Tephrosia: LTS0041926
- 47097 - Tephrosia: LTS0083969
- 587868 - Tephrosia candida: 10.1021/NP100378D
- 587868 - Tephrosia candida: LTS0041926
- 587868 - Tephrosia candida: LTS0083969
- 58023 - Tracheophyta: LTS0041926
- 58023 - Tracheophyta: LTS0083969
- 33090 - Viridiplantae: LTS0041926
- 33090 - Viridiplantae: LTS0083969
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Catherine C Wasmann, Jeffrey J Coleman. Screening and Assessment of Pisatin Demethylase Activity (PDA ).
Methods in molecular biology (Clifton, N.J.).
2022; 2391(?):185-190. doi:
10.1007/978-1-0716-1795-3_15
. [PMID: 34686986] - Lee A Hadwiger. Nonhost Disease Resistance in Pea: Chitosan's Suggested Role in DNA Minor Groove Actions Relative to Phytoalexin-Eliciting Anti-Cancer Compounds.
Molecules (Basel, Switzerland).
2020 Dec; 25(24):. doi:
10.3390/molecules25245913
. [PMID: 33327391] - Agnieszka Woźniak, Kinga Drzewiecka, Jacek Kęsy, Łukasz Marczak, Dorota Narożna, Marcin Grobela, Rafał Motała, Jan Bocianowski, Iwona Morkunas. The Influence of Lead on Generation of Signalling Molecules and Accumulation of Flavonoids in Pea Seedlings in Response to Pea Aphid Infestation.
Molecules (Basel, Switzerland).
2017 Aug; 22(9):. doi:
10.3390/molecules22091404
. [PMID: 28837107] - Agnieszka Woźniak, Magda Formela, Piotr Bilman, Katarzyna Grześkiewicz, Waldemar Bednarski, Łukasz Marczak, Dorota Narożna, Katarzyna Dancewicz, Van Chung Mai, Beata Borowiak-Sobkowiak, Jolanta Floryszak-Wieczorek, Beata Gabryś, Iwona Morkunas. The Dynamics of the Defense Strategy of Pea Induced by Exogenous Nitric Oxide in Response to Aphid Infestation.
International journal of molecular sciences.
2017 Feb; 18(2):. doi:
10.3390/ijms18020329
. [PMID: 28165429] - Iwona Morkunas, Agnieszka Woźniak, Magda Formela, Van Chung Mai, Łukasz Marczak, Dorota Narożna, Beata Borowiak-Sobkowiak, Christina Kühn, Bernhard Grimm. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings.
Protoplasma.
2016 Jul; 253(4):1063-79. doi:
10.1007/s00709-015-0865-7
. [PMID: 26239447] - G Desalegn, R Turetschek, H-P Kaul, S Wienkoop. Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection.
Journal of proteomics.
2016 06; 143(?):173-187. doi:
10.1016/j.jprot.2016.03.018
. [PMID: 27016040] - Herana Kamal Seneviratne, Doralyn S Dalisay, Kye-Won Kim, Syed G A Moinuddin, Hong Yang, Christopher M Hartshorn, Laurence B Davin, Norman G Lewis. Non-host disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization.
Phytochemistry.
2015 May; 113(?):140-8. doi:
10.1016/j.phytochem.2014.10.013
. [PMID: 25457488] - Lee A Hadwiger, Kiwamu Tanaka. EDTA a novel inducer of pisatin, a phytoalexin indicator of the non-host resistance in peas.
Molecules (Basel, Switzerland).
2014 Dec; 20(1):24-34. doi:
10.3390/molecules20010024
. [PMID: 25546618] - Lee A Hadwiger, Keri Druffel, Jodi L Humann, Brenda K Schroeder. Nuclease released by Verticillium dahliae is a signal for non-host resistance.
Plant science : an international journal of experimental plant biology.
2013 Mar; 201-202(?):98-107. doi:
10.1016/j.plantsci.2012.11.011
. [PMID: 23352407] - Lee A Hadwiger, James Polashock. Fungal mitochondrial DNases: effectors with the potential to activate plant defenses in nonhost resistance.
Phytopathology.
2013 Jan; 103(1):81-90. doi:
10.1094/phyto-04-12-0085-r
. [PMID: 23228145] - Nicholas A Milani, Daniel P Lawrence, A Elizabeth Arnold, Hans D VanEtten. Origin of pisatin demethylase (PDA) in the genus Fusarium.
Fungal genetics and biology : FG & B.
2012 Nov; 49(11):933-42. doi:
10.1016/j.fgb.2012.08.007
. [PMID: 22985693] - John E Casida. The greening of pesticide-environment interactions: some personal observations.
Environmental health perspectives.
2012 Apr; 120(4):487-93. doi:
10.1289/ehp.1104405
. [PMID: 22472325] - Coralie Damon, Frédéric Lehembre, Christine Oger-Desfeux, Patricia Luis, Jacques Ranger, Laurence Fraissinet-Tachet, Roland Marmeisse. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils.
PloS one.
2012; 7(1):e28967. doi:
10.1371/journal.pone.0028967
. [PMID: 22238585] - Jeffrey J Coleman, Gerard J White, Marianela Rodriguez-Carres, Hans D Vanetten. An ABC transporter and a cytochrome P450 of Nectria haematococca MPVI are virulence factors on pea and are the major tolerance mechanisms to the phytoalexin pisatin.
Molecular plant-microbe interactions : MPMI.
2011 Mar; 24(3):368-76. doi:
10.1094/mpmi-09-10-0198
. [PMID: 21077772] - Klaas Bouwmeester, Mara de Sain, Rob Weide, Anne Gouget, Sofieke Klamer, Herve Canut, Francine Govers. The lectin receptor kinase LecRK-I.9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector.
PLoS pathogens.
2011 Mar; 7(3):e1001327. doi:
10.1371/journal.ppat.1001327
. [PMID: 21483488] - Sandra M Mathioni, André Beló, Christopher J Rizzo, Ralph A Dean, Nicole M Donofrio. Transcriptome profiling of the rice blast fungus during invasive plant infection and in vitro stresses.
BMC genomics.
2011 Jan; 12(?):49. doi:
10.1186/1471-2164-12-49
. [PMID: 21247492] - Sara Fondevilla, Helge Küster, Franziska Krajinski, José I Cubero, Diego Rubiales. Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology.
BMC genomics.
2011 Jan; 12(?):28. doi:
10.1186/1471-2164-12-28
. [PMID: 21226971] - Jiao Wu, Yali Zhang, Huiqin Zhang, Hong Huang, Kevin M Folta, Jiang Lu. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology.
BMC plant biology.
2010 Oct; 10(?):234. doi:
10.1186/1471-2229-10-234
. [PMID: 21029438] - Uljana Hesse-Orce, Scott DiGuistini, Christopher I Keeling, Ye Wang, Maria Li, Hannah Henderson, T Roderick Docking, Nancy Y Liao, Gordon Robertson, Robert A Holt, Steven J M Jones, Jörg Bohlmann, Colette Breuil. Gene discovery for the bark beetle-vectored fungal tree pathogen Grosmannia clavigera.
BMC genomics.
2010 Oct; 11(?):536. doi:
10.1186/1471-2164-11-536
. [PMID: 20920358] - Abdelbasset El Hadrami, Lorne R Adam, Ismail El Hadrami, Fouad Daayf. Chitosan in plant protection.
Marine drugs.
2010 Mar; 8(4):968-87. doi:
10.3390/md8040968
. [PMID: 20479963] - Sumanti Gupta, Dipankar Chakraborti, Anindita Sengupta, Debabrata Basu, Sampa Das. Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I.
PloS one.
2010 Feb; 5(2):e9030. doi:
10.1371/journal.pone.0009030
. [PMID: 20140256] - Simon R Ellwood, Zhaohui Liu, Rob A Syme, Zhibing Lai, James K Hane, Felicity Keiper, Caroline S Moffat, Richard P Oliver, Timothy L Friesen. A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres.
Genome biology.
2010; 11(11):R109. doi:
10.1186/gb-2010-11-11-r109
. [PMID: 21067574] - Jeffrey J Coleman, Steve D Rounsley, Marianela Rodriguez-Carres, Alan Kuo, Catherine C Wasmann, Jane Grimwood, Jeremy Schmutz, Masatoki Taga, Gerard J White, Shiguo Zhou, David C Schwartz, Michael Freitag, Li-Jun Ma, Etienne G J Danchin, Bernard Henrissat, Pedro M Coutinho, David R Nelson, Dave Straney, Carolyn A Napoli, Bridget M Barker, Michael Gribskov, Martijn Rep, Scott Kroken, István Molnár, Christopher Rensing, John C Kennell, Jorge Zamora, Mark L Farman, Eric U Selker, Asaf Salamov, Harris Shapiro, Jasmyn Pangilinan, Erika Lindquist, Casey Lamers, Igor V Grigoriev, David M Geiser, Sarah F Covert, Esteban Temporini, Hans D Vanetten. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion.
PLoS genetics.
2009 Aug; 5(8):e1000618. doi:
10.1371/journal.pgen.1000618
. [PMID: 19714214] - Marcello Iriti, Franco Faoro. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution.
International journal of molecular sciences.
2009 Jul; 10(8):3371-3399. doi:
10.3390/ijms10083371
. [PMID: 20111684] - Jeffrey J Coleman, Eleftherios Mylonakis. Efflux in fungi: la pièce de résistance.
PLoS pathogens.
2009 Jun; 5(6):e1000486. doi:
10.1371/journal.ppat.1000486
. [PMID: 19557154] - Giovanni Del Sorbo, Michelina Ruocco, Henk-Jan Schoonbeek, Felice Scala, Catello Pane, Francesco Vinale, Marteen A De Waard. Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea).
Mycological research.
2008 Jun; 112(Pt 6):737-46. doi:
10.1016/j.mycres.2008.01.005
. [PMID: 18515055] - Lee A Hadwiger. Pea-Fusarium solani interactions contributions of a system toward understanding disease resistance.
Phytopathology.
2008 Apr; 98(4):372-9. doi:
10.1094/phyto-98-4-0372
. [PMID: 18944184] - Evans Kaimoyo, Mohamed A Farag, Lloyd W Sumner, Catherine Wasmann, Joel L Cuello, Hans VanEtten. Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites.
Biotechnology progress.
2008 Mar; 24(2):377-84. doi:
10.1021/bp0703329
. [PMID: 18331050] - Evans Kaimoyo, Hans D VanEtten. Inactivation of pea genes by RNAi supports the involvement of two similar O-methyltransferases in the biosynthesis of (+)-pisatin and of chiral intermediates with a configuration opposite that found in (+)-pisatin.
Phytochemistry.
2008 Jan; 69(1):76-87. doi:
10.1016/j.phytochem.2007.06.013
. [PMID: 17707445] - Nicola J Patron, Ross F Waller, Anton J Cozijnsen, David C Straney, Donald M Gardiner, William C Nierman, Barbara J Howlett. Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes.
BMC evolutionary biology.
2007 Sep; 7(?):174. doi:
10.1186/1471-2148-7-174
. [PMID: 17897469] - Norimoto Shimada, Shusei Sato, Tomoyoshi Akashi, Yasukazu Nakamura, Satoshi Tabata, Shin-Ichi Ayabe, Toshio Aoki. Genome-wide analyses of the structural gene families involved in the legume-specific 5-deoxyisoflavonoid biosynthesis of Lotus japonicus.
DNA research : an international journal for rapid publication of reports on genes and genomes.
2007 Feb; 14(1):25-36. doi:
10.1093/dnares/dsm004
. [PMID: 17452423] - Tomoyoshi Akashi, Hans D VanEtten, Yuji Sawada, Catherine C Wasmann, Hiroshi Uchiyama, Shin-ichi Ayabe. Catalytic specificity of pea O-methyltransferases suggests gene duplication for (+)-pisatin biosynthesis.
Phytochemistry.
2006 Dec; 67(23):2525-30. doi:
10.1016/j.phytochem.2006.09.010
. [PMID: 17067644] - Chang-Jun Liu, Bettina E Deavours, Stéphane B Richard, Jean-Luc Ferrer, Jack W Blount, David Huhman, Richard A Dixon, Joseph P Noel. Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses.
The Plant cell.
2006 Dec; 18(12):3656-69. doi:
10.1105/tpc.106.041376
. [PMID: 17172354] - L D Cooper, R P Doss, R Price, K Peterson, J E Oliver. Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin.
Journal of experimental botany.
2005 Apr; 56(414):1229-37. doi:
10.1093/jxb/eri117
. [PMID: 15753113] - Qindong Wu, Hans D VanEtten. Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen.
Molecular plant-microbe interactions : MPMI.
2004 Jul; 17(7):798-804. doi:
10.1094/mpmi.2004.17.7.798
. [PMID: 15242174] - Xiaoguang Liu, Mark Inlow, Hans D VanEtten. Expression profiles of pea pathogenicity ( PEP) genes in vivo and in vitro, characterization of the flanking regions of the PEP cluster and evidence that the PEP cluster region resulted from horizontal gene transfer in the fungal pathogen Nectria haematococca.
Current genetics.
2003 Nov; 44(2):95-103. doi:
10.1007/s00294-003-0428-x
. [PMID: 12925899] - Hisashi Kato-Noguchi. Isolation and identification of an allelopathic substance in Pisum sativum.
Phytochemistry.
2003 Apr; 62(7):1141-4. doi:
10.1016/s0031-9422(02)00673-8
. [PMID: 12591269] - Deanna L Funnell, Patty S Matthews, Hans D VanEtten. Identification of new pisatin demethylase genes (PDA5 and PDA7) in Nectria haematococca and non-Mendelian segregation of pisatin demethylating ability and virulence on pea due to loss of chromosomal elements.
Fungal genetics and biology : FG & B.
2002 Nov; 37(2):121-33. doi:
10.1016/s1087-1845(02)00503-0
. [PMID: 12409098] - Deanna L Funnell, Hans D VanEtten. Pisatin demethylase genes are on dispensable chromosomes while genes for pathogenicity on carrot and ripe tomato are on other chromosomes in Nectria haematococca.
Molecular plant-microbe interactions : MPMI.
2002 Aug; 15(8):840-6. doi:
10.1094/mpmi.2002.15.8.840
. [PMID: 12182342] - Dominique Morandi, Armelle Gollotte, Pierre Camporota. Influence of an arbuscular mycorrhizal fungus on the interaction of a binucleate Rhizoctonia species with Myc+ and Myc- pea roots.
Mycorrhiza.
2002 Apr; 12(2):97-102. doi:
10.1007/s00572-001-0154-5
. [PMID: 12035734] - H L George, H D VanEtten. Characterization of pisatin-inducible cytochrome p450s in fungal pathogens of pea that detoxify the pea phytoalexin pisatin.
Fungal genetics and biology : FG & B.
2001 Jun; 33(1):37-48. doi:
10.1006/fgbi.2001.1270
. [PMID: 11407884] - Y Han, X Liu, U Benny, H C Kistler, H D VanEtten. Genes determining pathogenicity to pea are clustered on a supernumerary chromosome in the fungal plant pathogen Nectria haematococca.
The Plant journal : for cell and molecular biology.
2001 Feb; 25(3):305-14. doi:
10.1046/j.1365-313x.2001.00969.x
. [PMID: 11208022] - J J Choi, S J Klosterman, L A Hadwiger. A comparison of the effects of DNA-damaging agents and biotic elicitors on the induction of plant defense genes, nuclear distortion, and cell death.
Plant physiology.
2001 Feb; 125(2):752-62. doi:
10.1104/pp.125.2.752
. [PMID: 11161032] - D L Funnell, P S Matthews, H D Vanetten. Breeding for Highly Fertile Isolates of Nectria haematococca MPVI that are Highly Virulent on Pea and In Planta Selection for Virulent Recombinants.
Phytopathology.
2001 Jan; 91(1):92-101. doi:
10.1094/phyto.2001.91.1.92
. [PMID: 18944283] - M Sugimoto, K Toyoda, Y Ichinose, T Yamada, T Shiraishi. Cytochalasin A inhibits the binding of phenylalanine ammonia-lyase mRNA to ribosomes during induction of phytoalexin in pea seedlings.
Plant & cell physiology.
2000 Feb; 41(2):234-8. doi:
10.1093/pcp/41.2.234
. [PMID: 10795320] - T B Prasanna, M Vairamani, D P Kasbekar. Effects of pisatin on Dictyostelium discoideum: its relationship to inducible resistance to nystatin and extension to other isoflavonoid phytoalexins.
Archives of microbiology.
1998 Oct; 170(4):309-12. doi:
10.1007/s002030050647
. [PMID: 9732446] - Q Wu, C L Preisig, H D VanEtten. Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal step for the synthesis of the phytoalexin pisatin in Pisum sativum.
Plant molecular biology.
1997 Nov; 35(5):551-60. doi:
10.1023/a:1005836508844
. [PMID: 9349277] - K Hirschi, H VanEtten. Expression of the pisatin detoxifying genes (PDA) of Nectria haematococca in vitro and in planta.
Molecular plant-microbe interactions : MPMI.
1996 Aug; 9(6):483-91. doi:
10.1094/mpmi-9-0483
. [PMID: 8755624] - J He, Y Ruan, D Straney. Analysis of determinants of binding and transcriptional activation of the pisatin-responsive DNA binding factor of Nectria haematococca.
Molecular plant-microbe interactions : MPMI.
1996 Apr; 9(3):171-9. doi:
10.1094/mpmi-9-0171
. [PMID: 8850087] - K Akiyama, K Kawazu, A Kobayashi. A novel method for chemo-enzymatic synthesis of elicitor-active chitosan oligomers and partially N-deacetylated chitin oligomers using N-acylated chitotrioses as substrates in a lysozyme-catalyzed transglycosylation reaction system.
Carbohydrate research.
1995 Dec; 279(?):151-60. doi:
10.1016/0008-6215(95)00288-x
. [PMID: 8593620] - L A Hadwiger, M M Chang, M A Parsons. Fusarium solani DNase is a signal for increasing expression of nonhost disease resistance response genes, hypersensitivity, and pisatin production.
Molecular plant-microbe interactions : MPMI.
1995 Nov; 8(6):871-9. doi:
10.1094/mpmi-8-0871
. [PMID: 8664496] - Y Ruan, D C Straney. In vitro transcription from the Nectria haematococca PDA1 promoter in an homologous extract reflects in vivo pisatin-responsive regulation.
Current genetics.
1994 Dec; 27(1):46-53. doi:
10.1007/bf00326578
. [PMID: 7750146] - L A Hadwiger, T Ogawa, H Kuyama. Chitosan polymer sizes effective in inducing phytoalexin accumulation and fungal suppression are verified with synthesized oligomers.
Molecular plant-microbe interactions : MPMI.
1994 Jul; 7(4):531-3. doi:
10.1094/mpmi-7-0531
. [PMID: 8075425] - D C Straney, H D VanEtten. Characterization of the PDA1 promoter of Nectria haematococca and identification of a region that binds a pisatin-responsive DNA binding factor.
Molecular plant-microbe interactions : MPMI.
1994 Mar; 7(2):256-66. doi:
10.1094/mpmi-7-0256
. [PMID: 8012044] - H VanEtten, D Funnell-Baerg, C Wasmann, K McCluskey. Location of pathogenicity genes on dispensable chromosomes in Nectria haematococca MPVI.
Antonie van Leeuwenhoek.
1994; 65(3):263-7. doi:
10.1007/bf00871955
. [PMID: 7847894] - D P Kasbekar, K G Papavinasasundaram. An inducible, nondegradative phytoalexin resistance mechanism in Dictyostelium discoideum is suppressed by mutations that alter membrane sterol composition.
Applied and environmental microbiology.
1992 Jun; 58(6):2071-4. doi:
10.1128/aem.58.6.2071-2074.1992
. [PMID: 1622285] - V P Miao, S F Covert, H D VanEtten. A fungal gene for antibiotic resistance on a dispensable ('B') chromosome.
Science (New York, N.Y.).
1991 Dec; 254(5039):1773-6. doi:
10.1126/science.1763326
. [PMID: 1763326] - C L Preisig, H D VanEtten, R A Moreau. Induction of 6a-hydroxymaackiain 3-O-methyltransferase and phenylalanine ammonia-lyase mRNA translational activities during the biosynthesis of pisatin.
Archives of biochemistry and biophysics.
1991 Nov; 290(2):468-73. doi:
10.1016/0003-9861(91)90568-4
. [PMID: 1929414] - V P Miao, D E Matthews, H D VanEtten. Identification and chromosomal locations of a family of cytochrome P-450 genes for pisatin detoxification in the fungus Nectria haematococca.
Molecular & general genetics : MGG.
1991 Apr; 226(1-2):214-23. doi:
10.1007/bf00273606
. [PMID: 2034215] - K M Lovette, H Y Chuang, A F Mohammad, R G Mason. The subcellular distribution and partial characterization of cholinesterase activities of canine platelets.
Biochimica et biophysica acta.
1976 Apr; 428(2):355-68. doi:
10.1016/0304-4165(76)90043-x
. [PMID: 6047] - R S Burden, P M Rogers, R L Wain. Investigations on fungicides. XVI. Natural resistance of plant roots to fungal pathogens.
The Annals of applied biology.
1974 Sep; 78(1):59-63. doi:
10.1111/j.1744-7348.1974.tb01485.x
. [PMID: 19280789] - . .
.
. doi:
. [PMID: 8076822]
- . .
.
. doi:
. [PMID: 8208242]
- . .
.
. doi:
. [PMID: 22066900]
- . .
.
. doi:
. [PMID: 16504226]
- . .
.
. doi:
. [PMID: 24332213]
- . .
.
. doi:
. [PMID: 3065148]
- . .
.
. doi:
. [PMID: 8037464]