Acetone cyanohydrin (BioDeep_00000004967)
Secondary id: BioDeep_00000864240, BioDeep_00001867936
human metabolite PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C4H7NO (85.0528)
中文名称: 丙酮氰醇
谱图信息:
最多检出来源 Homo sapiens(plant) 10.38%
分子结构信息
SMILES: CC(C)(C#N)O
InChI: InChI=1S/C4H7NO/c1-4(2,6)3-5/h6H,1-2H3
描述信息
Acetone cyanohydrin, also known as 2-hydroxyisobutyronitrile or 2-methyllactonitrile, is a member of the class of compounds known as tertiary alcohols. Tertiary alcohols are compounds in which a hydroxy group, -OH, is attached to a saturated carbon atom R3COH (R not H ). Acetone cyanohydrin is soluble (in water) and a very weakly acidic compound (based on its pKa). Acetone cyanohydrin can be found in a number of food items such as burdock, sweet marjoram, rice, and garland chrysanthemum, which makes acetone cyanohydrin a potential biomarker for the consumption of these food products. Acetone cyanohydrin is a non-carcinogenic (not listed by IARC) potentially toxic compound.
Acetone cyanohydrin (ACH) is an organic compound used in the production of methyl methacrylate, the monomer of the transparent plastic polymethyl methacrylate (PMMA), also known as acrylic. (Wikipedia)
同义名列表
14 个代谢物同义名
2-Hydroxy-2-methylpropanenitrile; Acetone cyanohydrin, 14C-labeled; α-Hydroxyisobutyronitrile; alpha-Hydroxyisobutyronitrile; 2-Hydroxyisobutyronitrile; Α-hydroxyisobutyronitrile; a-Hydroxyisobutyronitrile; 2-Methyllactonitrile; Acetone cyanohydrin; Acetone-cyanohydrin; Acetone cyanhydrin; Acetoncyanhydrine; Acetone cyanohydrin; Acetone cyanohydrin
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:15348
- KEGG: C02659
- PubChem: 6406
- HMDB: HMDB0060427
- Metlin: METLIN63623
- DrugBank: DB02203
- ChEMBL: CHEMBL1231861
- Wikipedia: Acetone cyanohydrin
- MetaCyc: 2-HYDROXY-2-METHYLPROPANENITRILE
- foodb: FDB030647
- CAS: 75-86-5
- PMhub: MS000017628
- PubChem: 5632
- PDB-CCD: CNH
- 3DMET: B00479
- NIKKAJI: J1.468K
- RefMet: 2-Hydroxy-2-methylpropanenitrile
- KNApSAcK: 15348
分类词条
相关代谢途径
Reactome(0)
BioCyc(4)
PlantCyc(4)
代谢反应
47 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(5)
- linamarin degradation:
2-hydroxy-2-methylpropanenitrile ⟶ acetone + hydrogen cyanide
- linustatin bioactivation:
2-hydroxy-2-methylpropanenitrile ⟶ acetone + hydrogen cyanide
- linamarin degradation:
H2O + linamarin ⟶ β-D-glucose + acetone cyanohydrin
- superpathway of linamarin and lotaustralin biosynthesis:
(E)-2-methylpropanal-oxime ⟶ (Z)-2-methylpropanal-oxime
- linamarin biosynthesis:
(E)-2-methylpropanal-oxime ⟶ (Z)-2-methylpropanal-oxime
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(42)
- linamarin degradation:
H2O + linamarin ⟶ 2-hydroxy-2-methylpropanenitrile + D-glucopyranose
- linustatin bioactivation:
H2O + linamarin ⟶ 2-hydroxy-2-methylpropanenitrile + D-glucopyranose
- linamarin degradation:
2-hydroxy-2-methylpropanenitrile ⟶ acetone + hydrogen cyanide
- linustatin bioactivation:
H2O + linustatin ⟶ D-glucopyranose + linamarin
- linamarin degradation:
H2O + linamarin ⟶ 2-hydroxy-2-methylpropanenitrile + D-glucopyranose
- linustatin bioactivation:
2-hydroxy-2-methylpropanenitrile ⟶ acetone + hydrogen cyanide
- superpathway of linamarin and lotaustralin biosynthesis:
N,N-dihydroxy-L-valine + H+ ⟶ (E)-2-methylpropanal-oxime + CO2 + H2O
- linamarin biosynthesis:
N,N-dihydroxy-L-valine + H+ ⟶ (E)-2-methylpropanal-oxime + CO2 + H2O
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- E Rivadeneyra-Domínguez, C J Rosas-Jarquín, A Vázquez-Luna, R Díaz-Sobac, J F Rodríguez-Landa. Effects of acetone cyanohydrin, a derivative of cassava, on motor activity and kidney and liver function in Wistar rats.
Neurologia (Barcelona, Spain).
2019 Jun; 34(5):300-308. doi:
10.1016/j.nrl.2017.01.004
. [PMID: 28318734] - Da-Wei Wang, Hong-Yan Lin, Bo He, Feng-Xu Wu, Tao Chen, Qiong Chen, Wen-Chao Yang, Guang-Fu Yang. An Efficient One-Pot Synthesis of 2-(Aryloxyacetyl)cyclohexane-1,3-diones as Herbicidal 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors.
Journal of agricultural and food chemistry.
2016 Nov; 64(47):8986-8993. doi:
10.1021/acs.jafc.6b04110
. [PMID: 27933872] - Rui-Sheng Wang, Sona Pandey, Song Li, Timothy E Gookin, Zhixin Zhao, Réka Albert, Sarah M Assmann. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells.
BMC genomics.
2011 May; 12(?):216. doi:
10.1186/1471-2164-12-216
. [PMID: 21554708] - Bala Nambisan. Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2011 Mar; 49(3):690-3. doi:
10.1016/j.fct.2010.10.035
. [PMID: 21074593] - Narayanan N Narayanan, Uzoma Ihemere, Claire Ellery, Richard T Sayre. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.
PloS one.
2011; 6(7):e21996. doi:
10.1371/journal.pone.0021996
. [PMID: 21799761] - Célia Sulzbacher Caruso, Regiane de Fátima Travensolo, Rogério de Campus Bicudo, Eliana Gertrudes de Macedo Lemos, Ana Paula Ulian de Araújo, Emanuel Carrilho. alpha-Hydroxynitrile lyase protein from Xylella fastidiosa: Cloning, expression, and characterization.
Microbial pathogenesis.
2009 Sep; 47(3):118-27. doi:
10.1016/j.micpath.2009.06.007
. [PMID: 19576280] - Ruo Xu, Min-Hua Zong, Yu-Ying Liu, Jun He, Yuan-Yuan Zhang, Wen-Yong Lou. Enzymatic enantioselective transcyanation of silicon-containing aliphatic ketone with (S)-hydroxynitrile lyase from Manihot esculenta.
Applied microbiology and biotechnology.
2004 Nov; 66(1):27-33. doi:
10.1007/s00253-004-1708-1
. [PMID: 15309340] - Kenneth M Olsen. SNPs, SSRs and inferences on cassava's origin.
Plant molecular biology.
2004 Nov; 56(4):517-26. doi:
10.1007/s11103-004-5043-9
. [PMID: 15630616] - T Goldfarb, E R Gritz, M E Jarvik, I P Stolerman. Reactions to cigarettes as a function of nicotine and 'tar'.
Clinical pharmacology and therapeutics.
1976 Jun; 19(6):767-72. doi:
10.1002/cpt1976196767
. [PMID: 5215]