5-Methoxydimethyltryptamine (BioDeep_00000003467)

 

Secondary id: BioDeep_00000862806, BioDeep_00001868166

human metabolite Endogenous blood metabolite natural product


代谢物信息卡片


[2-(5-methoxy-1H-indol-3-yl)ethyl]dimethylamine

化学式: C13H18N2O (218.1419)
中文名称: 5-甲氧基-N,N-二甲基色胺, 5-甲氧基-2-甲基色胺
谱图信息: 最多检出来源 Homo sapiens(plant) 7.9%

分子结构信息

SMILES: c1(ccc2c(c1)c(c[nH]2)CCN(C)C)OC
InChI: InChI=1S/C13H18N2O/c1-15(2)7-6-10-9-14-13-5-4-11(16-3)8-12(10)13/h4-5,8-9,14H,6-7H2,1-3H3

描述信息

5-Methoxydimethyltryptamine, like all methoxydimethyltryptamines is a compound that contain the biogenic monoamine tryptamine and is substituted with one methoxy group and two methyl groups. Members of this group include several potent serotonergic hallucinogens found in several unrelated plants, skins of certain toads, and in mammalian brains. They are possibly involved in the etiology of schizophrenia. They are formed as metabolites of serotonin (5-hydroxytryptamine) or tryptamine by the enzyme indolethylamine N-methyltransferase (INMT). The physiological significance of the N-methylating pathway of indoleamine metabolism, and of the methylated end products, is unknown. Because of the known psychotropic properties of the dimethylated amines, their possible involvement in the chemical pathogenesis of mental disorders has received wide interest. The hallucinogenic actions of the methylated indoleamines, like those of LSD, are believed to be mediated through the 5HT2 receptor. (PMID 11763413).
5-Methoxydimethyltryptamine, like all Methoxydimethyltryptamines is a compound that contain the biogenic monoamine tryptamine and is substituted with one methoxy group and two methyl groups. Members of this group include several potent serotonergic hallucinogens found in several unrelated plants, skins of certain toads, and in mammalian brains. They are possibly involved in the etiology of schizophrenia. (PubChem)
C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist
KEIO_ID M103; [MS2] KO009040
KEIO_ID M103

同义名列表

24 个代谢物同义名

[2-(5-methoxy-1H-indol-3-yl)ethyl]dimethylamine; 3-[2-(N,N-Dimethylamino)ethyl]-5-methoxy-indole; 3-(2-(N,N-Dimethyl)aminoethyl)-5-methoxyindole; 5-Methoxyindole 3-(2-(N,N-dimethylamino)ethyl); 5-Methoxy-N,N-dimethyl-1H-indole-3-ethylamine; 5-Methoxy-N,N-dimethyl-1H-indole-3-ethanamine; 3-(2-Dimethylaminoethyl)-5-methoxyindole; Bufotenine, 5-methoxydimethyltryptamine; N,N-Dimethyl-5-methoxy tryptamine; 5-Methoxy-N,N-dimethyltryptamine; N,N Dimethyl 5 methoxytryptamine; N,N-Dimethyl-5-methoxytryptamine; 5 Methoxy N,N dimethyltryptamine; 5-Methoxydimethyltryptamine; Methoxydimethyltryptamines; Methoxydimethyltryptamine; O-Methylbufotenine; Methylbufotenine; Methoxybufotenin; Methylbufotenin; 5-MeO-DMT; MeODMT; 5-Methoxydimethyltryptamine; N,N-Dimethyl-5-methoxytryptamine



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

48 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 ADRA1A, AXIN2, CYP2D6, DCX, INMT, POMC
Endoplasmic reticulum membrane 1 CYP2D6
Mitochondrion membrane 1 MAOA
Nucleus 2 ADRA1A, AXIN2
cytosol 5 ADRA1A, AXIN2, DCX, INMT, MAOA
dendrite 6 DRD2, GRM2, HTR1A, HTR1B, HTR2A, HTR2C
centrosome 1 AXIN2
nucleoplasm 1 ADRA1A
Cell membrane 9 ADRA1A, DRD2, GRM2, GRM3, HTR1A, HTR1B, HTR2A, HTR2C, HTR3A
Cytoplasmic side 1 MAOA
Cleavage furrow 1 HTR3A
Cell projection, axon 1 HTR2A
Multi-pass membrane protein 9 ADRA1A, DRD2, GRM2, GRM3, HTR1A, HTR1B, HTR2A, HTR2C, HTR3A
Golgi apparatus membrane 1 DRD2
Synapse 6 DRD2, GRM2, HTR1A, HTR2C, HTR3A, TAC1
dendritic shaft 1 HTR2A
glutamatergic synapse 5 DCX, DRD2, GRM2, GRM3, HTR2A
Golgi membrane 1 DRD2
neuronal cell body 2 HTR2A, TAC1
postsynapse 1 HTR3A
presynaptic membrane 5 DRD2, GRM2, GRM3, HTR1B, HTR2A
Presynapse 1 HTR2A
acrosomal vesicle 1 DRD2
plasma membrane 10 ADRA1A, AXIN2, DRD2, GRM2, GRM3, HTR1A, HTR1B, HTR2A, HTR2C, HTR3A
synaptic vesicle membrane 1 DRD2
Membrane 5 CYP2D6, GRM2, GRM3, HTR3A, MAOA
axon 5 DRD2, GRM2, GRM3, HTR2A, TAC1
caveola 2 ADRA1A, HTR2A
endoplasmic reticulum 2 CYP2D6, HTR1B
extracellular space 4 CXCL8, IL10, POMC, TAC1
mitochondrion 2 CYP2D6, MAOA
intracellular membrane-bounded organelle 2 ADRA1A, CYP2D6
Microsome membrane 1 CYP2D6
postsynaptic density 1 GRM3
Secreted 4 CXCL8, IL10, POMC, TRH
extracellular region 5 CXCL8, IL10, POMC, TAC1, TRH
Mitochondrion outer membrane 1 MAOA
Single-pass membrane protein 2 CYP2D6, MAOA
mitochondrial outer membrane 1 MAOA
ciliary membrane 1 DRD2
Nucleus membrane 1 ADRA1A
nuclear membrane 1 ADRA1A
dendritic spine 2 DRD2, GRM3
perikaryon 1 DRD2
beta-catenin destruction complex 1 AXIN2
cytoplasmic vesicle 1 HTR2A
postsynaptic membrane 5 DRD2, GRM2, GRM3, HTR2A, HTR3A
microtubule 1 DCX
GABA-ergic synapse 1 DRD2
secretory granule 2 POMC, TRH
lateral plasma membrane 1 DRD2
Postsynaptic cell membrane 1 HTR3A
Cell projection, neuron projection 1 DCX
neuron projection 2 DCX, HTR3A
cilium 1 DRD2
microtubule associated complex 1 DCX
cytoskeleton 1 DCX
non-motile cilium 1 DRD2
serotonin-activated cation-selective channel complex 1 HTR3A
transmembrane transporter complex 1 HTR3A
sperm flagellum 1 DRD2
Membrane, caveola 2 ADRA1A, HTR2A
cell body fiber 1 HTR2A
Cell projection, dendrite 3 GRM2, HTR1A, HTR2A
secretory granule lumen 1 POMC
axon terminus 1 DRD2
endocytic vesicle 1 DRD2
Single-pass type IV membrane protein 1 MAOA
neurofilament 1 HTR2A
calyx of Held 1 HTR1B
dopaminergic synapse 1 DRD2
astrocyte projection 2 GRM2, GRM3
G protein-coupled receptor complex 1 DRD2
G protein-coupled serotonin receptor complex 3 HTR1B, HTR2A, HTR2C
serotonergic synapse 1 HTR1B


文献列表

  • Fateme Zohairi, Himanshu Khandelia, Ali Asghar Hakami Zanjani. Interaction of psychedelic tryptamine derivatives with a lipid bilayer. Chemistry and physics of lipids. 2023 Mar; 251(?):105279. doi: 10.1016/j.chemphyslip.2023.105279. [PMID: 36627076]
  • Muhammad Junaid Rao, Mingzheng Duan, Xiaoshuang Wei, Hou Zuo, Li Ma, Muhammad Tahir Ul Qamar, Min Li, Shijian Han, Lihua Hu, Lingqiang Wang. LC-MS/MS-based metabolomics approach revealed novel phytocompounds from sugarcane rind with promising pharmacological value. Journal of the science of food and agriculture. 2022 Nov; 102(14):6632-6642. doi: 10.1002/jsfa.12030. [PMID: 35603546]
  • Anna O Ermakova, Fiona Dunbar, James Rucker, Matthew W Johnson. A narrative synthesis of research with 5-MeO-DMT. Journal of psychopharmacology (Oxford, England). 2022 Mar; 36(3):273-294. doi: 10.1177/02698811211050543. [PMID: 34666554]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Alan K Davis, Joseph P Barsuglia, Rafael Lancelotta, Robert M Grant, Elise Renn. The epidemiology of 5-methoxy- N, N-dimethyltryptamine (5-MeO-DMT) use: Benefits, consequences, patterns of use, subjective effects, and reasons for consumption. Journal of psychopharmacology (Oxford, England). 2018 07; 32(7):779-792. doi: 10.1177/0269881118769063. [PMID: 29708042]
  • Joseph P Barsuglia, Martin Polanco, Robert Palmer, Benjamin J Malcolm, Benjamin Kelmendi, Tanya Calvey. A case report SPECT study and theoretical rationale for the sequential administration of ibogaine and 5-MeO-DMT in the treatment of alcohol use disorder. Progress in brain research. 2018; 242(?):121-158. doi: 10.1016/bs.pbr.2018.08.002. [PMID: 30471678]
  • Adam L Halberstadt. Behavioral and pharmacokinetic interactions between monoamine oxidase inhibitors and the hallucinogen 5-methoxy-N,N-dimethyltryptamine. Pharmacology, biochemistry, and behavior. 2016 Apr; 143(?):1-10. doi: 10.1016/j.pbb.2016.01.005. [PMID: 26780349]
  • Marcos Marçal Ferreira Queiroz, Emerson Ferreira Queiroz, Maria Luiza Zeraik, Samad Nejad Ebrahimi, Laurence Marcourt, Muriel Cuendet, Ian Castro-Gamboa, Matthias Hamburger, Vanderlan da Silva Bolzani, Jean-Luc Wolfender. Chemical composition of the bark of Tetrapterys mucronata and identification of acetylcholinesterase inhibitory constituents. Journal of natural products. 2014 Mar; 77(3):650-6. doi: 10.1021/np401003p. [PMID: 24521095]
  • Jacob Owens, Frederick D Provenza, Randall D Wiedmeier, Juan J Villalba. Influence of saponins and tannins on intake and nutrient digestion of alkaloid-containing foods. Journal of the science of food and agriculture. 2012 Aug; 92(11):2373-8. doi: 10.1002/jsfa.5643. [PMID: 22430569]
  • Steven A Barker, Ethan H McIlhenny, Rick Strassman. A critical review of reports of endogenous psychedelic N, N-dimethyltryptamines in humans: 1955-2010. Drug testing and analysis. 2012 Jul; 4(7-8):617-35. doi: 10.1002/dta.422. [PMID: 22371425]
  • J C Winter, D J Amorosi, Kenner C Rice, Kejun Cheng, Ai-Ming Yu. Stimulus control by 5-methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice. Pharmacology, biochemistry, and behavior. 2011 Sep; 99(3):311-5. doi: 10.1016/j.pbb.2011.05.015. [PMID: 21624387]
  • Shravani Bhanja, Kochupurackal P Mohanakumar. Early-life treatment of antiserotonin antibodies alters sensitivity to serotonin receptors, nociceptive stimulus and serotonin metabolism in adult rats. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 2010 Jun; 28(4):317-24. doi: 10.1016/j.ijdevneu.2010.02.007. [PMID: 20188813]
  • Liaoyuan A Hu, Tian Zhou, Jinwoo Ahn, Shuli Wang, Julia Zhou, Yi Hu, Qingyun Liu. Human and mouse trace amine-associated receptor 1 have distinct pharmacology towards endogenous monoamines and imidazoline receptor ligands. The Biochemical journal. 2009 Oct; 424(1):39-45. doi: 10.1042/bj20090998. [PMID: 19725810]
  • Lili Zhou, Andrew A Hopkins, David V Huhman, Lloyd W Sumner. Efficient and sensitive method for quantitative analysis of alkaloids in hardinggrass (Phalaris aquatica L.). Journal of agricultural and food chemistry. 2006 Dec; 54(25):9287-91. doi: 10.1021/jf061819k. [PMID: 17147408]
  • J C Callaway, Charles S Grob, Dennis J McKenna, David E Nichols, Alexander Shulgin, Kenneth W Tupper. A demand for clarity regarding a case report on the ingestion of 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) in an Ayahuasca preparation. Journal of analytical toxicology. 2006 Jul; 30(6):406-7; author reply 407. doi: 10.1093/jat/30.6.406. [PMID: 16872575]
  • Kinzo Matsumoto, Ryo Morishige, Yukihisa Murakami, Michihisa Tohda, Hiromitsu Takayama, Iwao Sakakibara, Hiroshi Watanabe. Suppressive effects of isorhynchophylline on 5-HT2A receptor function in the brain: behavioural and electrophysiological studies. European journal of pharmacology. 2005 Jul; 517(3):191-9. doi: 10.1016/j.ejphar.2005.05.015. [PMID: 15963493]
  • Tsuyoshi Hirose, Yasufumi Uwahodo, Sakiko Yamada, Takashi Miwa, Tetsuro Kikuchi, Hisashi Kitagawa, Kevin D Burris, C Anthony Altar, Toshitaka Nabeshima. Mechanism of action of aripiprazole predicts clinical efficacy and a favourable side-effect profile. Journal of psychopharmacology (Oxford, England). 2004 Sep; 18(3):375-83. doi: 10.1177/026988110401800308. [PMID: 15358981]
  • Julie Y Crider, Gary W Williams, Colene D Drace, Parvaneh Katoli, Michelle Senchyna, Najam A Sharif. Pharmacological characterization of a serotonin receptor (5-HT7) stimulating cAMP production in human corneal epithelial cells. Investigative ophthalmology & visual science. 2003 Nov; 44(11):4837-44. doi: 10.1167/iovs.02-1292. [PMID: 14578406]
  • Jan De Meutter, Tom Tytgat, Erwin Witters, Greetje Gheysen, Henri Van Onckelen, Godelieve Gheysen. Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita. Molecular plant pathology. 2003 Jul; 4(4):271-7. doi: 10.1046/j.1364-3703.2003.00176.x. [PMID: 20569387]
  • Karl B Thor, Mary A Katofiasc, Hansjorg Danuser, Johannes Springer, John M Schaus. The role of 5-HT(1A) receptors in control of lower urinary tract function in cats. Brain research. 2002 Aug; 946(2):290-7. doi: 10.1016/s0006-8993(02)02897-4. [PMID: 12137933]
  • T Forsström, J Tuominen, J Karkkäinen. Determination of potentially hallucinogenic N-dimethylated indoleamines in human urine by HPLC/ESI-MS-MS. Scandinavian journal of clinical and laboratory investigation. 2001; 61(7):547-56. doi: 10.1080/003655101753218319. [PMID: 11763413]
  • A T Weil, W Davis. Bufo alvarius: a potent hallucinogen of animal origin. Journal of ethnopharmacology. 1994 Jan; 41(1-2):1-8. doi: 10.1016/0378-8741(94)90051-5. [PMID: 8170151]
  • Y Shen, F J Monsma, M A Metcalf, P A Jose, M W Hamblin, D R Sibley. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. The Journal of biological chemistry. 1993 Aug; 268(24):18200-4. doi: . [PMID: 8394362]
  • N Adham, H T Kao, L E Schecter, J Bard, M Olsen, D Urquhart, M Durkin, P R Hartig, R L Weinshank, T A Branchek. Cloning of another human serotonin receptor (5-HT1F): a fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proceedings of the National Academy of Sciences of the United States of America. 1993 Jan; 90(2):408-12. doi: 10.1073/pnas.90.2.408. [PMID: 8380639]
  • C A Bourke, M J Carrigan, R J Dixon. The pathogenesis of the nervous syndrome of Phalaris aquatica toxicity in sheep. Australian veterinary journal. 1990 Oct; 67(10):356-8. doi: 10.1111/j.1751-0813.1990.tb07400.x. [PMID: 2288538]
  • W Löscher, U Witte, G Fredow, M Ganter, K Bickhardt. Pharmacodynamic effects of serotonin (5-HT) receptor ligands in pigs: stimulation of 5-HT2 receptors induces malignant hyperthermia. Naunyn-Schmiedeberg's archives of pharmacology. 1990 Jun; 341(6):483-93. doi: 10.1007/bf00171727. [PMID: 2118235]
  • J F Nash, H Y Meltzer. Effect of gepirone and ipsapirone on the stimulated and unstimulated secretion of prolactin in the rat. The Journal of pharmacology and experimental therapeutics. 1989 Apr; 249(1):236-41. doi: NULL. [PMID: 2565390]
  • C A Bourke, M J Carrigan, R J Dixon. Experimental evidence that tryptamine alkaloids do not cause Phalaris aquatica sudden death syndrome in sheep. Australian veterinary journal. 1988 Jul; 65(7):218-20. doi: 10.1111/j.1751-0813.1988.tb14462.x. [PMID: 3421887]
  • B R Sitaram, L Lockett, M McLeish, Y Hayasaka, G L Blackman, W R McLeod. Gas chromatographic-mass spectroscopic characterisation of the psychotomimetic indolealkylamines and their in vivo metabolites. Journal of chromatography. 1987 Nov; 422(?):13-23. doi: 10.1016/0378-4347(87)80435-8. [PMID: 3481368]
  • B R Sitaram, L Lockett, G L Blackman, W R McLeod. Urinary excretion of 5-methoxy-N,N-dimethyltryptamine, N,N-dimethyltryptamine and their N-oxides in the rat. Biochemical pharmacology. 1987 Jul; 36(13):2235-7. doi: 10.1016/0006-2952(87)90159-6. [PMID: 3475068]
  • B R Sitaram, R Talomsin, G L Blackman, W R McLeod. Study of metabolism of psychotomimetic indolealkylamines by rat tissue extracts using liquid chromatography. Biochemical pharmacology. 1987 May; 36(9):1503-8. doi: 10.1016/0006-2952(87)90117-1. [PMID: 3472525]
  • B R Sitaram, L Lockett, R Talomsin, G L Blackman, W R McLeod. In vivo metabolism of 5-methoxy-N,N-dimethyltryptamine and N,N-dimethyltryptamine in the rat. Biochemical pharmacology. 1987 May; 36(9):1509-12. doi: 10.1016/0006-2952(87)90118-3. [PMID: 3472526]
  • H Hallberg. Blockade of central beta-adrenoceptors attenuates tremor induced by 5-hydroxytryptamine (5-HT)-receptor activation in rats. Acta physiologica Scandinavica. 1987 Mar; 129(3):421-8. doi: 10.1111/j.1748-1716.1987.tb08087.x. [PMID: 2883812]
  • W D MacRae, G H Towers. Justicia pectoralis: a study of the basis for its use as a hallucinogenic snuff ingredient. Journal of ethnopharmacology. 1984 Oct; 12(1):93-111. doi: 10.1016/0378-8741(84)90088-6. [PMID: 6097774]
  • M Simonovic, H Y Meltzer. Biphasic effect of 5-methoxy-N,N-dimethyltryptamine on rat prolactin secretion. Brain research. 1983 Aug; 272(2):269-75. doi: 10.1016/0006-8993(83)90573-5. [PMID: 6616203]
  • J A Clemens, M E Roush. Inhibition of prolactin release by stimulation of presynaptic serotonin autoreceptors. Life sciences. 1982 Dec; 31(23):2641-6. doi: 10.1016/0024-3205(82)90740-8. [PMID: 7154858]
  • R E Chapin, G R Breese, R A Mueller. Antagonism of ethanol-induced decrease in LH by para-chlorophenylalanine: lack of correlation with altered serotonergic mechanisms. Pharmacology, biochemistry, and behavior. 1981 Mar; 14(3):293-8. doi: 10.1016/0091-3057(81)90393-2. [PMID: 6453351]
  • H Y Meltzer, M Simonovic, R D Sturgeon, V S Fang. Effect of antidepressants, lithium and electroconvulsive treatment on rat serum prolactin levels. Acta psychiatrica Scandinavica. Supplementum. 1981; 290(?):100-21. doi: 10.1111/j.1600-0447.1981.tb00713.x. [PMID: 6971560]
  • C M Kuhn, R A Vogel, R B Mailman, R A Mueller, S M Schanberg, G R Breese. Effect of 5,7-dihydroxytryptamine on serotonergic control of prolactin secretion and behavior in rats. Psychopharmacology. 1981; 73(2):188-93. doi: 10.1007/bf00429216. [PMID: 6785814]