dCTP (BioDeep_00000001322)

 

Secondary id: BioDeep_00001868751

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


({[({[(2R,3S,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

化学式: C9H16N3O13P3 (466.9895996)
中文名称: 2-脱氧胞苷-5-三磷酸[dCTP]三钠盐溶液, 2'-脱氧胞苷三磷酸, 2'-脱氧胞苷 5'-三磷酸
谱图信息: 最多检出来源 Homo sapiens(blood) 0.46%

分子结构信息

SMILES: C1C(C(OC1N2C=CC(=NC2=O)N)COP(=O)(O)OP(=O)(O)OP(=O)(O)O)O
InChI: InChI=1S/C9H16N3O13P3/c10-7-1-2-12(9(14)11-7)8-3-5(13)6(23-8)4-22-27(18,19)25-28(20,21)24-26(15,16)17/h1-2,5-6,8,13H,3-4H2,(H,18,19)(H,20,21)(H2,10,11,14)(H2,15,16,17)/t5-,6+,8+/m0/s1

描述信息

Deoxycytidine triphosphate (dCTP) is a cytidine nucleotide triphosphate that is used whenever DNA is synthesized, such as in the polymerase chain reaction. e.g.: [HMDB]. dCTP is found in many foods, some of which are canola, cloud ear fungus, sesbania flower, and butternut.
Deoxycytidine triphosphate (dCTP) is a cytidine nucleotide triphosphate that is used whenever DNA is synthesized, such as in the polymerase chain reaction. e.g.:.

同义名列表

29 个代谢物同义名

({[({[(2R,3S,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid; [[(2R,3S,5R)-5-(4-amino-2-oxopyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate; 2’-Deoxycytidine 5’-(tetrahydrogen triphosphate); 2-Deoxycytidine 5-triphosphate, p-(32)p-labeled; 2-Deoxycytidine 5-triphosphate, magnesium salt; 2-Deoxycytidine 5-(tetrahydrogen triphosphate); 2-Deoxycytidine 5-triphosphate disodium salt; 2-Deoxycytidine 5-triphosphate, 3H-labeled; 2-Deoxycytidine 5-triphosphoric acid; Deoxycytidine 5-triphosphoric acid; Deoxycytidine triphosphate (dCTP); Deoxycytidine triphosphoric acid; 2’-Deoxycytidine 5’-triphosphate; 2-Deoxycytidine 5-triphosphate; 2-Deoxycytidine-5-triphosphate; Deoxycytidine 5’-triphosphate; Deoxycytidine 5-triphosphate; Deoxycytidine-triphosphate; Deoxycytidine triphosphate; Deoxy-5’-CTP; Deoxy-5-CTP; 2’-DeoxyCTP; 2-DeoxyCTP; Deoxy-CTP; 5’-DCTP; 5-DCTP; dCTP; Deoxycytidine triphosphate (dCTP); dCTP



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

92 个相关的代谢反应过程信息。

Reactome(64)

  • DNA Replication: ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
  • Synthesis of DNA: ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
  • DNA replication initiation: RNA primer:origin duplex:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:origin duplex
  • Cell Cycle: 2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
  • Cell Cycle, Mitotic: 2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
  • S Phase: ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
  • Chromosome Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Extension of Telomeres: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Extension By Telomerase: TTP + Telomerase RNP Bound and base-paired to the Telomeric Chromosome End + dATP + dCTP + dGTP ⟶ Telomerase RNP:Telomeric Chromosome End with an Additional single Stranded Telomere repeat
  • Telomere C-strand (Lagging Strand) Synthesis: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:G-strand extended telomere
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand (Lagging Strand) Synthesis: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • DNA Replication: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • Synthesis of DNA: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • DNA replication initiation: RNA primer:origin duplex:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:origin duplex
  • Cell Cycle: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • Cell Cycle, Mitotic: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • S Phase: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • Chromosome Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Extension of Telomeres: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand (Lagging Strand) Synthesis: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:G-strand extended telomere
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Chromosome Maintenance: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere Maintenance: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Extension of Telomeres: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand (Lagging Strand) Synthesis: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand (Lagging Strand) Synthesis: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Cell Cycle: ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
  • Cell Cycle, Mitotic: ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
  • S Phase: ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
  • Synthesis of DNA: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:origin duplex ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:origin duplex:PCNA homotrimer
  • DNA replication initiation: RNA primer:origin duplex:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:origin duplex
  • Chromosome Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Extension of Telomeres: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Extension By Telomerase: TTP + Telomerase RNP Bound and base-paired to the Telomeric Chromosome End + dATP + dCTP + dGTP ⟶ Telomerase RNP:Telomeric Chromosome End with an Additional single Stranded Telomere repeat
  • Telomere C-strand (Lagging Strand) Synthesis: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:G-strand extended telomere
  • DNA Replication: ATP + MCM2-7 ⟶ ADP + p-MCM2-7
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Telomere Extension By Telomerase: TTP + Telomerase RNP Bound and base-paired to the Telomeric Chromosome End + dATP + dCTP + dGTP ⟶ Telomerase RNP:Telomeric Chromosome End with an Additional single Stranded Telomere repeat
  • DNA Repair: MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
  • Translesion synthesis by REV1: REV1:MonoUb:K164-PCNA:RPA:RFC:AP-DNA Template + dCTP ⟶ REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt)-DNA Template
  • DNA Damage Bypass: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA + POLH
  • Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA template: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA + POLH
  • Translesion synthesis by REV1: REV1:MonoUb:K164-PCNA:RPA:RFC:AP-DNA Template + dCTP ⟶ REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt)-DNA Template
  • DNA Repair: MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
  • DNA Damage Bypass: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + Homologues of POLH + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA
  • Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA template: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + Homologues of POLH + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA
  • Translesion synthesis by REV1: REV1:MonoUb:K164-PCNA:RPA:RFC:AP-DNA Template + dCTP ⟶ REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt)-DNA Template
  • DNA Repair: MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
  • DNA Damage Bypass: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA + POLH
  • Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA template: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA + POLH

BioCyc(2)

WikiPathways(1)

Plant Reactome(0)

INOH(2)

PlantCyc(0)

COVID-19 Disease Map(1)

PathBank(22)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Xiao-Yong Fan, Bi-Kui Tang, Yuan-Yuan Xu, Ang-Xuan Han, Kun-Xiong Shi, Yong-Kai Wu, Yu Ye, Mei-Li Wei, Chen Niu, Ka-Wing Wong, Guo-Ping Zhao, Liang-Dong Lyu. Oxidation of dCTP contributes to antibiotic lethality in stationary-phase mycobacteria. Proceedings of the National Academy of Sciences of the United States of America. 2018 02; 115(9):2210-2215. doi: 10.1073/pnas.1719627115. [PMID: 29382762]
  • Ning Tsao, Ming-Hsiang Lee, Wei Zhang, Yung-Chi Cheng, Zee-Fen Chang. The contribution of CMP kinase to the efficiency of DNA repair. Cell cycle (Georgetown, Tex.). 2015; 14(3):354-63. doi: 10.4161/15384101.2014.987618. [PMID: 25659034]
  • Lucio Tremolizzo, Paolo Messina, Elisa Conti, Gessica Sala, Matteo Cecchi, Luisa Airoldi, Roberta Pastorelli, Elisabetta Pupillo, Monica Bandettini Di Poggio, Massimiliano Filosto, Christian Lunetta, Cristina Agliardi, Franca Guerini, Jessica Mandrioli, Andrea Calvo, Ettore Beghi, Carlo Ferrarese. Whole-blood global DNA methylation is increased in amyotrophic lateral sclerosis independently of age of onset. Amyotrophic lateral sclerosis & frontotemporal degeneration. 2014 Mar; 15(1-2):98-105. doi: 10.3109/21678421.2013.851247. [PMID: 24224837]
  • Stephan Bender, Thomas Rellum, Christine Freitag, Franz Resch, Marcella Rietschel, Jens Treutlein, Christine Jennen-Steinmetz, Daniel Brandeis, Tobias Banaschewski, Manfred Laucht. Dopamine inactivation efficacy related to functional DAT1 and COMT variants influences motor response evaluation. PloS one. 2012; 7(5):e37814. doi: 10.1371/journal.pone.0037814. [PMID: 22649558]
  • Hong Li Chou, Ziyu Dai, Chia Wen Hsieh, Maurice Sb Ku. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid. Biotechnology for biofuels. 2011 Dec; 4(?):58. doi: 10.1186/1754-6834-4-58. [PMID: 22152050]
  • Simone Marcelletti, Patrizia Ferrante, Milena Petriccione, Giuseppe Firrao, Marco Scortichini. Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. PloS one. 2011; 6(11):e27297. doi: 10.1371/journal.pone.0027297. [PMID: 22132095]
  • Karl Y Hostetler. Synthesis and early development of hexadecyloxypropylcidofovir: an oral antipoxvirus nucleoside phosphonate. Viruses. 2010 Oct; 2(10):2213-2225. doi: 10.3390/v2102213. [PMID: 21994617]
  • Maria Laine P Tinoco, Bárbara B A Dias, Rebeca C Dall'Astta, João A Pamphile, Francisco J L Aragão. In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC biology. 2010 Mar; 8(?):27. doi: 10.1186/1741-7007-8-27. [PMID: 20356372]
  • Dolores Córdoba-Cañero, Teresa Morales-Ruiz, Teresa Roldán-Arjona, Rafael R Ariza. Single-nucleotide and long-patch base excision repair of DNA damage in plants. The Plant journal : for cell and molecular biology. 2009 Nov; 60(4):716-28. doi: 10.1111/j.1365-313x.2009.03994.x. [PMID: 19682284]
  • Deepak T Nair, Robert E Johnson, Louise Prakash, Satya Prakash, Aneel K Aggarwal. Protein-template-directed synthesis across an acrolein-derived DNA adduct by yeast Rev1 DNA polymerase. Structure (London, England : 1993). 2008 Feb; 16(2):239-45. doi: 10.1016/j.str.2007.12.009. [PMID: 18275815]
  • Klaus Klumpp, Genadiy Kalayanov, Han Ma, Sophie Le Pogam, Vincent Leveque, Wen-Rong Jiang, Nicole Inocencio, Anniek De Witte, Sonal Rajyaguru, Ezra Tai, Sushmita Chanda, Michael R Irwin, Christian Sund, Anna Winqist, Tatiana Maltseva, Staffan Eriksson, Elena Usova, Mark Smith, Andre Alker, Isabel Najera, Nick Cammack, Joseph A Martin, Nils Gunnar Johansson, David B Smith. 2'-deoxy-4'-azido nucleoside analogs are highly potent inhibitors of hepatitis C virus replication despite the lack of 2'-alpha-hydroxyl groups. The Journal of biological chemistry. 2008 Jan; 283(4):2167-75. doi: 10.1074/jbc.m708929200. [PMID: 18003608]
  • Kent Persson, Keith Hamby, Luis A Ugozzoli. Four-color multiplex reverse transcription polymerase chain reaction--overcoming its limitations. Analytical biochemistry. 2005 Sep; 344(1):33-42. doi: 10.1016/j.ab.2005.06.026. [PMID: 16039598]
  • Suzie Ribeiro, Nasir Hussain, Alexander T Florence. Release of DNA from dendriplexes encapsulated in PLGA nanoparticles. International journal of pharmaceutics. 2005 Jul; 298(2):354-60. doi: 10.1016/j.ijpharm.2005.03.036. [PMID: 15979263]
  • Chun Hung Ma, Joannie Hui, Janet Tsui Ying Tang, Danny Tze Ming Leung, Yiu Loon Chui, Tai Fai Fok, Pak-Leong Lim. Antibodies to guanosine triphosphate misidentified as anti-double-stranded DNA antibodies in a patient with antinuclear antibody-negative lupus, due to buckling of insolubilized assay DNA. Arthritis and rheumatism. 2004 May; 50(5):1533-8. doi: 10.1002/art.20188. [PMID: 15146423]
  • Sanjay U C Sankatsing, Patrick G Hoggard, Alwin D R Huitema, Rolf W Sparidans, Stephen Kewn, Kristel M L Crommentuyn, Joep M A Lange, Jos H Beijnen, David J Back, Jan M Prins. Effect of mycophenolate mofetil on the pharmacokinetics of antiretroviral drugs and on intracellular nucleoside triphosphate pools. Clinical pharmacokinetics. 2004; 43(12):823-32. doi: 10.2165/00003088-200443120-00004. [PMID: 15355127]
  • S F O'Handley, C A Dunn, M J Bessman. Orf135 from Escherichia coli Is a Nudix hydrolase specific for CTP, dCTP, and 5-methyl-dCTP. The Journal of biological chemistry. 2001 Feb; 276(8):5421-6. doi: 10.1074/jbc.m004100200. [PMID: 11053429]
  • D Kumari, K Usdin. Sequencing errors in reactions using labeled terminators. BioTechniques. 1999 Oct; 27(4):648-50. doi: 10.2144/99274bm02. [PMID: 10524297]
  • Q Kong, A E Simon. In situ hybridization to RNA in whole Arabidopsis plants. Methods in molecular biology (Clifton, N.J.). 1998; 82(?):409-15. doi: 10.1385/0-89603-391-0:409. [PMID: 9664442]
  • J D Cohen, D J Strock, J E Teik, T B Katz, P D Marcel. Deoxycytidine in human plasma: potential for protecting leukemic cells during chemotherapy. Cancer letters. 1997 Jun; 116(2):167-75. doi: 10.1016/s0304-3835(97)00185-7. [PMID: 9215860]
  • M Pillay, S T Kenny. Anomalies in direct pair-wise comparisons of RAPD fragments for genetic analysis. BioTechniques. 1995 Nov; 19(5):694-6, 698. doi: ". [PMID: 8588897]
  • S M Trentmann, E van der Knaap, H Kende. Alternatives to 35S as a label for the differential display of eukaryotic messenger RNA. Science (New York, N.Y.). 1995 Feb; 267(5201):1186-7. doi: 10.1126/science.7855603. [PMID: 7855603]
  • B S Vishwanath, F J Frey, M Bradbury, M F Dallman, B M Frey. Adrenalectomy decreases lipocortin-I messenger ribonucleic acid and tissue protein content in rats. Endocrinology. 1992 Feb; 130(2):585-91. doi: 10.1210/endo.130.2.1531128. [PMID: 1531128]
  • J Taljanidisz, M Sasvari-Szekely, T Spasokutotskaja, F Antoni, M Staub. Reversible permeabilization of lymphocytes destroys the incorporation of deoxythymidine but not of deoxycytidine. Biochimica et biophysica acta. 1986 Mar; 885(3):266-71. doi: 10.1016/0167-4889(86)90241-7. [PMID: 3947681]
  • M J Cowan, D W Wara, A J Ammann. Deoxycytidine therapy in two patients with adenosine deaminase deficiency and severe immunodeficiency disease. Clinical immunology and immunopathology. 1985 Oct; 37(1):30-6. doi: 10.1016/0090-1229(85)90132-1. [PMID: 3161676]
  • L L Danhauser, Y M Rustum. Potential for selective enhancement of the in vivo metabolism of 1-beta-D-arabinofuranosylcytosine in rats by thymidine pretreatment. Cancer research. 1985 May; 45(5):2002-7. doi: . [PMID: 3986756]
  • J Ochs, J A Sinkule, M K Danks, A T Look, W P Bowman, G Rivera. Continuous infusion high-dose cytosine arabinoside in refractory childhood leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1984 Oct; 2(10):1092-7. doi: 10.1200/jco.1984.2.10.1092. [PMID: 6593435]
  • R D Snyder. Deoxyribonucleoside triphosphate pools in human diploid fibroblasts and their modulation by hydroxyurea and deoxynucleosides. Biochemical pharmacology. 1984 May; 33(9):1515-8. doi: 10.1016/0006-2952(84)90421-0. [PMID: 6732868]
  • H J Lin, P C Wu, C L Lai, W Chak. Micromethod for phosphonoformate inhibition assay of hepatitis B viral DNA polymerase. Clinical chemistry. 1984 Apr; 30(4):549-52. doi: 10.1093/clinchem/30.4.549. [PMID: 6231137]
  • A Hampton, F Kappler, R R Chawla. Design of species- or isozyme-specific enzyme inhibitors. 1. Effect of thymidine substituents on affinity for the thymidine site of hamster cytoplasmic thymidine kinase. Journal of medicinal chemistry. 1979 Jun; 22(6):621-31. doi: 10.1021/jm00192a005. [PMID: 458818]