Fengycin (BioDeep_00000009057)

   


代谢物信息卡片


(4S)-5-[[(2R)-5-amino-1-[[(4S,7R,10S,13S,19R,22S,25R,28S)-10-(3-amino-3-oxopropyl)-4-[(2S)-butan-2-yl]-22-(2-carboxyethyl)-25-[(1R)-1-hydroxyethyl]-7-[(4-hydroxyphenyl)methyl]-19-methyl-3,6,9,12,18,21,24,27-octaoxo-2-oxa-5,8,11,17,20,23,26-heptazatricyclo[28.2.2.013,17]tetratriaconta-1(33),30(34),31-trien-28-yl]amino]-1-oxopentan-2-yl]amino]-4-[[(3R)-3-hydroxyhexadecanoyl]amino]-5-oxopentanoic acid

化学式: C72H110N12O20 (1462.7959)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCCCCCCCCCCCC(CC(=O)NC(CCC(=O)O)C(=O)NC(CCCN)C(=O)NC1CC2=CC=C(C=C2)OC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C3CCCN3C(=O)C(NC(=O)C(NC(=O)C(NC1=O)C(C)O)CCC(=O)O)C)CCC(=O)N)CC4=CC=C(C=C4)O)C(C)CC)O
InChI: InChI=1S/C72H110N12O20/c1-6-8-9-10-11-12-13-14-15-16-17-20-48(87)41-58(89)76-51(32-35-59(90)91)65(96)77-50(21-18-37-73)64(95)80-55-40-46-25-29-49(30-26-46)104-72(103)61(42(3)7-2)82-67(98)54(39-45-23-27-47(86)28-24-45)81-66(97)52(31-34-57(74)88)78-69(100)56-22-19-38-84(56)71(102)43(4)75-63(94)53(33-36-60(92)93)79-70(101)62(44(5)85)83-68(55)99/h23-30,42-44,48,50-56,61-62,85-87H,6-22,31-41,73H2,1-5H3,(H2,74,88)(H,75,94)(H,76,89)(H,77,96)(H,78,100)(H,79,101)(H,80,95)(H,81,97)(H,82,98)(H,83,99)(H,90,91)(H,92,93)



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 CAT, CCND1, CDK4, NEK8, NKX2-5, PLA2G12A, SOHLH2, SRF, STAC2, SUFU
Peripheral membrane protein 1 STAC2
Nucleus 8 CCND1, CDK4, MYBL2, NEK8, NKX2-5, SOHLH2, SRF, SUFU
cytosol 8 CAT, CCND1, CDK4, LIPE, MYBL2, NEK8, STAC2, SUFU
centrosome 2 CCND1, NEK8
nucleoplasm 6 CCND1, CDK4, MYBL2, NKX2-5, SRF, SUFU
RNA polymerase II transcription regulator complex 1 NKX2-5
Cell membrane 2 LIPE, STAC2
Cytoplasmic side 1 STAC2
lysosomal membrane 1 GAA
sarcolemma 1 STAC2
Cytoplasm, cytosol 2 LIPE, STAC2
Lysosome 1 GAA
plasma membrane 1 GAA
Membrane 3 CAT, GAA, LIPE
caveola 1 LIPE
extracellular exosome 2 CAT, GAA
Lysosome membrane 1 GAA
extracellular space 1 LPA
lysosomal lumen 1 GAA
bicellular tight junction 2 CCND1, CDK4
mitochondrion 1 CAT
protein-containing complex 2 CAT, NKX2-5
intracellular membrane-bounded organelle 2 CAT, GAA
Secreted 3 CLPS, GAA, PLA2G12A
extracellular region 6 CAT, CLPS, GAA, LPA, MLN, PLA2G12A
cytoplasmic side of plasma membrane 1 STAC2
Single-pass membrane protein 1 MLN
mitochondrial matrix 1 CAT
transcription regulator complex 2 CDK4, NKX2-5
Cell projection, cilium 1 NEK8
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NEK8
Nucleus membrane 2 CCND1, CDK4
nuclear membrane 2 CCND1, CDK4
nucleolus 1 CDK4
Cell membrane, sarcolemma 1 STAC2
Cytoplasm, cytoskeleton 1 NEK8
focal adhesion 1 CAT
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
ciliary tip 1 SUFU
ciliary base 2 NEK8, SUFU
cilium 1 NEK8
chromatin 4 CDK4, NKX2-5, SOHLH2, SRF
Cytoplasm, cytoskeleton, cilium axoneme 1 NEK8
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
tertiary granule membrane 1 GAA
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
transcription repressor complex 1 CCND1
azurophil granule membrane 1 GAA
Sarcoplasmic reticulum membrane 1 MLN
protein-DNA complex 1 NKX2-5
ficolin-1-rich granule membrane 1 GAA
cyclin-dependent protein kinase holoenzyme complex 2 CCND1, CDK4
catalase complex 1 CAT
GLI-SUFU complex 1 SUFU
plasma lipoprotein particle 1 LPA
Myb complex 1 MYBL2
autolysosome lumen 1 GAA
cyclin D1-CDK4 complex 2 CCND1, CDK4
cyclin D2-CDK4 complex 1 CDK4
cyclin D3-CDK4 complex 1 CDK4
cyclin D1-CDK6 complex 1 CCND1
Nkx-2.5 complex 1 NKX2-5
ciliary inversin compartment 1 NEK8


文献列表

  • Jun Su Noh, Seo Hyun Hwang, Chaw Ei Htwe Maung, Jeong-Yong Cho, Kil Yong Kim. Enhanced control efficacy of Bacillus subtilis NM4 via integration of chlorothalonil on potato early blight caused by Alternaria solani. Microbial pathogenesis. 2024 May; 190(?):106604. doi: 10.1016/j.micpath.2024.106604. [PMID: 38490458]
  • Ying-Jie Deng, Zheng Chen, Yan-Ping Chen, Jie-Ping Wang, Rong-Feng Xiao, Xun Wang, Bo Liu, Mei-Chun Chen, Jin He. Lipopeptide C17 Fengycin B Exhibits a Novel Antifungal Mechanism by Triggering Metacaspase-Dependent Apoptosis in Fusarium oxysporum. Journal of agricultural and food chemistry. 2024 Apr; 72(14):7943-7953. doi: 10.1021/acs.jafc.4c00126. [PMID: 38529919]
  • Daniela Medeot, Analía Sannazzaro, María Julia Estrella, Gonzalo Torres Tejerizo, Bruno Contreras-Moreira, Mariano Pistorio, Edgardo Jofré. Unraveling the genome of Bacillus velezensis MEP218, a strain producing fengycin homologs with broad antibacterial activity: comprehensive comparative genome analysis. Scientific reports. 2023 12; 13(1):22168. doi: 10.1038/s41598-023-49194-y. [PMID: 38092837]
  • Geng-Rong Gao, Si-Yu Wei, Ming-Zhu Ding, Zheng-Jie Hou, Dun-Ju Wang, Qiu-Man Xu, Jing-Sheng Cheng, Ying-Jin Yuan. Enhancing fengycin production in the co-culture of Bacillus subtilis and Corynebacterium glutamicum by engineering proline transporter. Bioresource technology. 2023 May; ?(?):129229. doi: 10.1016/j.biortech.2023.129229. [PMID: 37244302]
  • Geng-Rong Gao, Zheng-Jie Hou, Ming-Zhu Ding, Song Bai, Si-Yu Wei, Bin Qiao, Qiu-Man Xu, Jing-Sheng Cheng, Ying-Jin Yuan. Improved Production of Fengycin in Bacillus subtilis by Integrated Strain Engineering Strategy. ACS synthetic biology. 2022 12; 11(12):4065-4076. doi: 10.1021/acssynbio.2c00380. [PMID: 36379006]
  • S Banerjee, S Sen, A Bhakat, A Bhowmick, K Sarkar. The lipopeptides fengycin and iturin are involved in the anticandidal activity of endophytic Bacillus sp. as determined by experimental and in silico analysis. Letters in applied microbiology. 2022 Aug; 75(2):450-459. doi: 10.1111/lam.13750. [PMID: 35620862]
  • Yifan Fu, Qinggang Guo, Lihong Dong, Xiaomeng Liu, Xiuye Chen, Peipei Wang, Zhenhe Su, Ping Ma. iTRAQ-based proteomic analysis of Bacillus subtilis strain NCD-2 regulated by PhoPR two-component system: A comparative analysis with transcriptomics revealed the regulation for fengycin production by branched chain amino acids. Microbiological research. 2022 Jul; 260(?):127024. doi: 10.1016/j.micres.2022.127024. [PMID: 35461032]
  • Carlos Andrés Moreno-Velandia, Marc Ongena, Alba Marina Cotes. Effects of Fengycins and Iturins on Fusarium oxysporum f. sp. physali and Root Colonization by Bacillus velezensis Bs006 Protect Golden Berry Against Vascular Wilt. Phytopathology. 2021 Dec; 111(12):2227-2237. doi: 10.1094/phyto-01-21-0001-r. [PMID: 34032523]
  • Haiyang Liu, Qingchao Zeng, Nuerziya Yalimaimaiti, Wei Wang, Renfu Zhang, Ju Yao. Comprehensive genomic analysis of Bacillus velezensis AL7 reveals its biocontrol potential against Verticillium wilt of cotton. Molecular genetics and genomics : MGG. 2021 Nov; 296(6):1287-1298. doi: 10.1007/s00438-021-01816-8. [PMID: 34553246]
  • Beom Ryong Kang, Joon Seong Park, Woo-Jin Jung. Antiviral activity by lecithin-induced fengycin lipopeptides as a potent key substrate against Cucumber mosaic virus. Microbial pathogenesis. 2021 Jun; 155(?):104910. doi: 10.1016/j.micpath.2021.104910. [PMID: 33930417]
  • Beom Ryong Kang, Joon Seong Park, Woo-Jin Jung. Antifungal evaluation of fengycin isoforms isolated from Bacillus amyloliquefaciens PPL against Fusarium oxysporum f. sp. lycopersici. Microbial pathogenesis. 2020 Dec; 149(?):104509. doi: 10.1016/j.micpath.2020.104509. [PMID: 32956793]
  • Maliheh Vahidinasab, Lars Lilge, Aline Reinfurt, Jens Pfannstiel, Marius Henkel, Kambiz Morabbi Heravi, Rudolf Hausmann. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Microbial cell factories. 2020 Nov; 19(1):205. doi: 10.1186/s12934-020-01468-0. [PMID: 33167976]
  • Fang-Zhou Li, Ying-Jie Zeng, Min-Hua Zong, Ji-Guo Yang, Wen-Yong Lou. Bioprospecting of a novel endophytic Bacillus velezensis FZ06 from leaves of Camellia assamica: Production of three groups of lipopeptides and the inhibition against food spoilage microorganisms. Journal of biotechnology. 2020 Nov; 323(?):42-53. doi: 10.1016/j.jbiotec.2020.07.021. [PMID: 32739396]
  • Youyou Wang, Congying Zhang, Jiao Liang, Le Wang, Wenbin Gao, Jizhi Jiang, Ruixue Chang. Surfactin and fengycin B extracted from Bacillus pumilus W-7 provide protection against potato late blight via distinct and synergistic mechanisms. Applied microbiology and biotechnology. 2020 Sep; 104(17):7467-7481. doi: 10.1007/s00253-020-10773-y. [PMID: 32696296]
  • Nicolás D Franco-Sierra, Luisa F Posada, Germán Santa-María, Magally Romero-Tabarez, Valeska Villegas-Escobar, Javier C Álvarez. Bacillus subtilis EA-CB0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture. Functional & integrative genomics. 2020 Jul; 20(4):575-589. doi: 10.1007/s10142-020-00736-x. [PMID: 32198678]
  • Jesús Cámara-Almirón, Yurena Navarro, Luis Díaz-Martínez, María Concepción Magno-Pérez-Bryan, Carlos Molina-Santiago, John R Pearson, Antonio de Vicente, Alejandro Pérez-García, Diego Romero. Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane. Nature communications. 2020 04; 11(1):1859. doi: 10.1038/s41467-020-15758-z. [PMID: 32313019]
  • Asma Ait Kaki, Nicolas Smargiasso, Marc Ongena, Mounira Kara Ali, Nassim Moula, Edwin De Pauw, Noreddine Kacem Chaouche. Characterization of New Fengycin Cyclic Lipopeptide Variants Produced by Bacillus amyloliquefaciens (ET) Originating from a Salt Lake of Eastern Algeria. Current microbiology. 2020 Mar; 77(3):443-451. doi: 10.1007/s00284-019-01855-w. [PMID: 31894376]
  • Rafaela O Penha, Luciana P S Vandenberghe, Craig Faulds, Vanete T Soccol, Carlos R Soccol. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. Planta. 2020 Feb; 251(3):70. doi: 10.1007/s00425-020-03357-7. [PMID: 32086615]
  • Elisabeth Mantil, Iryna Buznytska, Grace Daly, Anatoli Ianoul, Tyler J Avis. Role of Lipid Composition in the Interaction and Activity of the Antimicrobial Compound Fengycin with Complex Membrane Models. The Journal of membrane biology. 2019 12; 252(6):627-638. doi: 10.1007/s00232-019-00100-6. [PMID: 31612244]
  • Maryam Jamshidi-Aidji, Ivica Dimkić, Petar Ristivojević, Slaviša Stanković, Gertrud E Morlock. Effect-directed screening of Bacillus lipopeptide extracts via hyphenated high-performance thin-layer chromatography. Journal of chromatography. A. 2019 Nov; 1605(?):460366. doi: 10.1016/j.chroma.2019.460366. [PMID: 31378526]
  • Anastasiia A Zakharova, Svetlana S Efimova, Valery V Malev, Olga S Ostroumova. Fengycin induces ion channels in lipid bilayers mimicking target fungal cell membranes. Scientific reports. 2019 11; 9(1):16034. doi: 10.1038/s41598-019-52551-5. [PMID: 31690786]
  • Khayalethu Ntushelo, Lesiba Klaas Ledwaba, Molemi Evelyn Rauwane, Oluwafemi Ayodeji Adebo, Patrick Berka Njobeh. The Mode of Action of Bacillus Species against Fusarium graminearum, Tools for Investigation, and Future Prospects. Toxins. 2019 10; 11(10):. doi: 10.3390/toxins11100606. [PMID: 31635255]
  • Ayaz Farzand, Anam Moosa, Muhammad Zubair, Abdur Rashid Khan, Venance Colman Massawe, Hafiz Abdul Samad Tahir, Taha Majid Mahmood Sheikh, Muhammad Ayaz, Xuewen Gao. Suppression of Sclerotinia sclerotiorum by the Induction of Systemic Resistance and Regulation of Antioxidant Pathways in Tomato Using Fengycin Produced by Bacillus amyloliquefaciens FZB42. Biomolecules. 2019 10; 9(10):. doi: 10.3390/biom9100613. [PMID: 31623124]
  • Yan Li, Marie-Claire Héloir, Xun Zhang, Mareen Geissler, Sophie Trouvelot, Lucile Jacquens, Marius Henkel, Xin Su, Xuewen Fang, Qi Wang, Marielle Adrian. Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation. Molecular plant pathology. 2019 08; 20(8):1037-1050. doi: 10.1111/mpp.12809. [PMID: 31104350]
  • Lianshuai Ding, Wenbin Guo, Xinhua Chen. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3. Applied microbiology and biotechnology. 2019 Jul; 103(13):5367-5377. doi: 10.1007/s00253-019-09792-1. [PMID: 31053917]
  • Muhammad Azeem, Marina Barba-Aliaga, Anna Karin Borg-Karlson, Olle Terenius, Anders Broberg, Gunaratna Kuttuva Rajarao. Heterobasidion-growth inhibiting Bacillus subtilis A18 exhibits medium- and age-dependent production of lipopeptides. Microbiological research. 2019 Jun; 223-225(?):129-136. doi: 10.1016/j.micres.2019.04.006. [PMID: 31178045]
  • Elisabeth Mantil, Trinda Crippin, Tyler J Avis. Supported lipid bilayers using extracted microbial lipids: domain redistribution in the presence of fengycin. Colloids and surfaces. B, Biointerfaces. 2019 Jun; 178(?):94-102. doi: 10.1016/j.colsurfb.2019.02.050. [PMID: 30844565]
  • Alvina Hanif, Feng Zhang, Pingping Li, Chuchu Li, Yujiao Xu, Muhammad Zubair, Mengxuan Zhang, Dandan Jia, Xiaozhen Zhao, Jingang Liang, Taha Majid, Jingyuau Yan, Ayaz Farzand, Huijun Wu, Qin Gu, Xuewen Gao. Fengycin Produced by Bacillus amyloliquefaciens FZB42 Inhibits Fusarium graminearum Growth and Mycotoxins Biosynthesis. Toxins. 2019 05; 11(5):. doi: 10.3390/toxins11050295. [PMID: 31137632]
  • Elisabeth Mantil, Trinda Crippin, Tyler J Avis. Domain redistribution within ergosterol-containing model membranes in the presence of the antimicrobial compound fengycin. Biochimica et biophysica acta. Biomembranes. 2019 04; 1861(4):738-747. doi: 10.1016/j.bbamem.2019.01.003. [PMID: 30639286]
  • Muhammad Fazle Rabbee, Md Sarafat Ali, Jinhee Choi, Buyng Su Hwang, Sang Chul Jeong, Kwang-Hyun Baek. Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules (Basel, Switzerland). 2019 Mar; 24(6):. doi: 10.3390/molecules24061046. [PMID: 30884857]
  • Bettina Bóka, László Manczinger, Sándor Kocsubé, Kadaikunnan Shine, Naiyf S Alharbi, Jamal M Khaled, Martin Münsterkötter, Csaba Vágvölgyi, László Kredics. Genome analysis of a Bacillus subtilis strain reveals genetic mutations determining biocontrol properties. World journal of microbiology & biotechnology. 2019 Mar; 35(3):52. doi: 10.1007/s11274-019-2625-x. [PMID: 30868269]
  • Jaivel Nanjundan, Rajesh Ramasamy, Sivakumar Uthandi, Marimuthu Ponnusamy. Antimicrobial activity and spectroscopic characterization of surfactin class of lipopeptides from Bacillus amyloliquefaciens SR1. Microbial pathogenesis. 2019 Mar; 128(?):374-380. doi: 10.1016/j.micpath.2019.01.037. [PMID: 30695712]
  • Paiboon Tunsagool, Wichitra Leelasuphakul, Janthima Jaresitthikunchai, Narumon Phaonakrop, Sittiruk Roytrakul, Warangkana Jutidamrongphan. Targeted transcriptional and proteomic studies explicate specific roles of Bacillus subtilis iturin A, fengycin, and surfactin on elicitation of defensive systems in mandarin fruit during stress. PloS one. 2019; 14(5):e0217202. doi: 10.1371/journal.pone.0217202. [PMID: 31120923]
  • Yimin Hu, Fang Nan, Sarah Wanjiku Maina, Jia Guo, Shenglu Wu, Zhihong Xin. Clone of plipastatin biosynthetic gene cluster by transformation-associated recombination technique and high efficient expression in model organism Bacillus subtilis. Journal of biotechnology. 2018 Dec; 288(?):1-8. doi: 10.1016/j.jbiotec.2018.10.006. [PMID: 30343036]
  • Yanglei Yi, Zhibo Li, Chunxu Song, Oscar P Kuipers. Exploring plant-microbe interactions of the rhizobacteria Bacillus subtilis and Bacillus mycoides by use of the CRISPR-Cas9 system. Environmental microbiology. 2018 12; 20(12):4245-4260. doi: 10.1111/1462-2920.14305. [PMID: 30051589]
  • Gabriela Mihalache, Tiberius Balaes, Irina Gostin, Marius Stefan, François Coutte, François Krier. Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environmental science and pollution research international. 2018 Oct; 25(30):29784-29793. doi: 10.1007/s11356-017-9162-7. [PMID: 28528498]
  • Lamia Abdellaziz, Marlène Chollet, Ahmed Abderrahmani, Max Béchet, Lamia Yaici, Gabrielle Chataigné, Anthony Arguelles Arias, Valérie Leclère, Philippe Jacques. Lipopeptide biodiversity in antifungal Bacillus strains isolated from Algeria. Archives of microbiology. 2018 Oct; 200(8):1205-1216. doi: 10.1007/s00203-018-1537-8. [PMID: 29947835]
  • Linlin Zhang, Chaomin Sun. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Applied and environmental microbiology. 2018 09; 84(18):. doi: 10.1128/aem.00445-18. [PMID: 29980550]
  • C W Bacon, D M Hinton, T R Mitchell. Screening of Bacillus mojavensis biofilms and biosurfactants using laser ablation electrospray ionization mass spectroscopy. Journal of applied microbiology. 2018 Sep; 125(3):867-875. doi: 10.1111/jam.13905. [PMID: 29729222]
  • Yazen Yaseen, Awa Diop, Frédérique Gancel, Max Béchet, Philippe Jacques, Djamel Drider. Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis. Archives of microbiology. 2018 Jul; 200(5):783-791. doi: 10.1007/s00203-018-1483-5. [PMID: 29423562]
  • Daniela C Sabaté, Carolina Pérez Brandan, Gabriela Petroselli, Rosa Erra-Balsells, M Carina Audisio. Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiological research. 2018 Jun; 211(?):21-30. doi: 10.1016/j.micres.2018.04.003. [PMID: 29705203]
  • Stefanie DeFilippi, Emma Groulx, Merna Megalla, Rowida Mohamed, Tyler J Avis. Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus subtilis Strain B9-5. Journal of chemical ecology. 2018 Apr; 44(4):374-383. doi: 10.1007/s10886-018-0938-0. [PMID: 29492723]
  • Yu Cao, Hualiang Pi, Pete Chandrangsu, Yongtao Li, Yuqi Wang, Han Zhou, Hanqin Xiong, John D Helmann, Yanfei Cai. Antagonism of Two Plant-Growth Promoting Bacillus velezensis Isolates Against Ralstonia solanacearum and Fusarium oxysporum. Scientific reports. 2018 03; 8(1):4360. doi: 10.1038/s41598-018-22782-z. [PMID: 29531357]
  • Theodorus Eko Pramudito, Delia Agustina, Thi Kim Ngan Nguyen, Antonius Suwanto. A Novel Variant of Narrow-Spectrum Antifungal Bacterial Lipopeptides That Strongly Inhibit Ganoderma boninense. Probiotics and antimicrobial proteins. 2018 03; 10(1):110-117. doi: 10.1007/s12602-017-9334-2. [PMID: 29101528]
  • Chih Lin, Chia-Hsin Tsai, Pi-Yu Chen, Chia-Yen Wu, Ya-Lin Chang, Yu-Liang Yang, Ying-Lien Chen. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PloS one. 2018; 13(4):e0196520. doi: 10.1371/journal.pone.0196520. [PMID: 29698535]
  • Haiyan Fan, Jinjiang Ru, Yuanyuan Zhang, Qi Wang, Yan Li. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiological research. 2017 Jun; 199(?):89-97. doi: 10.1016/j.micres.2017.03.004. [PMID: 28454713]
  • C P He, L Y Fan, W H Wu, Y Q Liang, R Li, W Tang, X L Zheng, Y N Xiao, Z X Liu, F C Zheng. Identification of lipopeptides produced by Bacillus subtilis Czk1 isolated from the aerial roots of rubber trees. Genetics and molecular research : GMR. 2017 Feb; 16(1):. doi: 10.4238/gmr16018710. [PMID: 28252162]
  • Augusto Etchegaray, François Coutte, Gabrielle Chataigné, Max Béchet, Ramon H Z Dos Santos, Valérie Leclère, Philippe Jacques. Production of Bacillus amyloliquefaciens OG and its metabolites in renewable media: valorisation for biodiesel production and p-xylene decontamination. Canadian journal of microbiology. 2017 Jan; 63(1):46-60. doi: 10.1139/cjm-2016-0288. [PMID: 27912317]
  • A A Blacutt, T R Mitchell, C W Bacon, S E Gold. Bacillus mojavensis RRC101 Lipopeptides Provoke Physiological and Metabolic Changes During Antagonism Against Fusarium verticilliodes. Molecular plant-microbe interactions : MPMI. 2016 Sep; 29(9):713-23. doi: 10.1094/mpmi-05-16-0093-r. [PMID: 29775248]
  • Gajender Aleti, Sylvia Lehner, Markus Bacher, Stéphane Compant, Branislav Nikolic, Maja Plesko, Rainer Schuhmacher, Angela Sessitsch, Günter Brader. Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environmental microbiology. 2016 09; 18(8):2634-45. doi: 10.1111/1462-2920.13405. [PMID: 27306252]
  • Leila Kalai-Grami, Ines Karkouch, Omar Naili, Imen Ben Slimene, Salem Elkahoui, Roudaina Ben Zekri, Ines Touati, Monia Mnari-Hattab, Mohamed Rabeh Hajlaoui, Ferid Limam. Production and identification of iturin A lipopeptide from Bacillus methyltrophicus TEB1 for control of Phoma tracheiphila. Journal of basic microbiology. 2016 Aug; 56(8):864-71. doi: 10.1002/jobm.201500683. [PMID: 27125201]
  • B Jasim, K S Sreelakshmi, Jyothis Mathew, E K Radhakrishnan. Surfactin, Iturin, and Fengycin Biosynthesis by Endophytic Bacillus sp. from Bacopa monnieri. Microbial ecology. 2016 07; 72(1):106-119. doi: 10.1007/s00248-016-0753-5. [PMID: 27021396]
  • Huafei Zhou, Chuping Luo, Xianwen Fang, Yaping Xiang, Xiaoyu Wang, Rongsheng Zhang, Zhiyi Chen. Loss of GltB Inhibits Biofilm Formation and Biocontrol Efficiency of Bacillus subtilis Bs916 by Altering the Production of γ-Polyglutamate and Three Lipopeptides. PloS one. 2016; 11(5):e0156247. doi: 10.1371/journal.pone.0156247. [PMID: 27223617]
  • Asma Kefi, Imen Ben Slimene, Ines Karkouch, Christophe Rihouey, Sana Azaeiz, Marwa Bejaoui, Rania Belaid, Pascal Cosette, Thierry Jouenne, Ferid Limam. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World journal of microbiology & biotechnology. 2015 Dec; 31(12):1967-76. doi: 10.1007/s11274-015-1943-x. [PMID: 26347324]
  • Sebastian Fiedler, Heiko Heerklotz. Vesicle Leakage Reflects the Target Selectivity of Antimicrobial Lipopeptides from Bacillus subtilis. Biophysical journal. 2015 Nov; 109(10):2079-89. doi: 10.1016/j.bpj.2015.09.021. [PMID: 26588567]
  • Hae-Min Kim, Kui-Jae Lee, Jong-Chan Chae. Postharvest Biological Control of Colletotrichum acutatum on Apple by Bacillus subtilis HM1 and the Structural Identification of Antagonists. Journal of microbiology and biotechnology. 2015 Nov; 25(11):1954-9. doi: 10.4014/jmb.1507.07100. [PMID: 26428548]
  • Peipei Wang, Qinggang Guo, Yinan Ma, Shezeng Li, Xiuyun Lu, Xiaoyun Zhang, Ping Ma. DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2. Microbiological research. 2015 Sep; 178(?):42-50. doi: 10.1016/j.micres.2015.06.006. [PMID: 26302846]
  • Shengye Guo, Xingyu Li, Pengfei He, Honhing Ho, Yixin Wu, Yueqiu He. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. Journal of industrial microbiology & biotechnology. 2015 Jun; 42(6):925-37. doi: 10.1007/s10295-015-1612-y. [PMID: 25860123]
  • S Yamamoto, S Shiraishi, S Suzuki. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides?. Letters in applied microbiology. 2015 Apr; 60(4):379-86. doi: 10.1111/lam.12382. [PMID: 25511625]
  • Giovanni Farace, Olivier Fernandez, Lucile Jacquens, François Coutte, François Krier, Philippe Jacques, Christophe Clément, Essaid Ait Barka, Cédric Jacquard, Stéphan Dorey. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Molecular plant pathology. 2015 Feb; 16(2):177-87. doi: 10.1111/mpp.12170. [PMID: 25040001]
  • An-Dong Gong, He-Ping Li, Qing-Song Yuan, Xiu-Shi Song, Wei Yao, Wei-Jie He, Jing-Bo Zhang, Yu-Cai Liao. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PloS one. 2015; 10(2):e0116871. doi: 10.1371/journal.pone.0116871. [PMID: 25689464]
  • Cody Wise, Justin Falardeau, Ingrid Hagberg, Tyler J Avis. Cellular Lipid Composition Affects Sensitivity of Plant Pathogens to Fengycin, an Antifungal Compound Produced by Bacillus subtilis Strain CU12. Phytopathology. 2014 Oct; 104(10):1036-41. doi: 10.1094/phyto-12-13-0336-r. [PMID: 24679152]
  • Marc Eeman, Gerd Olofsson, Emma Sparr, Mehmet Nail Nasir, Tommy Nylander, Magali Deleu. Interaction of fengycin with stratum corneum mimicking model membranes: a calorimetry study. Colloids and surfaces. B, Biointerfaces. 2014 Sep; 121(?):27-35. doi: 10.1016/j.colsurfb.2014.05.019. [PMID: 24929530]
  • Houda Zeriouh, Antonio de Vicente, Alejandro Pérez-García, Diego Romero. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environmental microbiology. 2014 Jul; 16(7):2196-211. doi: 10.1111/1462-2920.12271. [PMID: 24308294]
  • Qinggang Guo, Weixin Dong, Shezeng Li, Xiuyun Lu, Peipei Wang, Xiaoyun Zhang, Ye Wang, Ping Ma. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiological research. 2014 Jul; 169(7-8):533-40. doi: 10.1016/j.micres.2013.12.001. [PMID: 24380713]
  • Pengchao Zhao, Chunshan Quan, Yingguo Wang, Jianhua Wang, Shengdi Fan. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. Journal of basic microbiology. 2014 May; 54(5):448-56. doi: 10.1002/jobm.201200414. [PMID: 23553741]
  • L Kalai-Grami, I Ben Slimane, M Mnari-Hattab, S Rezgui, M A Aouani, M R Hajlaoui, F Limam. Protective effect of Bacillus amyloliquefaciens against infections of Citrus aurantium seedlings by Phoma tracheiphila. World journal of microbiology & biotechnology. 2014 Feb; 30(2):529-38. doi: 10.1007/s11274-013-1471-5. [PMID: 23990072]
  • Ian W Hamley, Ashkan Dehsorkhi, Paula Jauregi, Jani Seitsonen, Janne Ruokolainen, François Coutte, Gabrielle Chataigné, Philippe Jacques. Self-assembly of three bacterially-derived bioactive lipopeptides. Soft matter. 2013 Oct; 9(40):9572-8. doi: 10.1039/c3sm51514a. [PMID: 26029764]
  • Joshua N Horn, Aaron Cravens, Alan Grossfield. Interactions between fengycin and model bilayers quantified by coarse-grained molecular dynamics. Biophysical journal. 2013 Oct; 105(7):1612-23. doi: 10.1016/j.bpj.2013.08.034. [PMID: 24094402]
  • K V Pathak, H Keharia. Characterization of fungal antagonistic bacilli isolated from aerial roots of banyan (Ficus benghalensis) using intact-cell MALDI-TOF mass spectrometry (ICMS). Journal of applied microbiology. 2013 May; 114(5):1300-10. doi: 10.1111/jam.12161. [PMID: 23387377]
  • Valeska Villegas-Escobar, Isabel Ceballos, John J Mira, Luz Edith Argel, Sergio Orduz Peralta, Magally Romero-Tabarez. Fengycin C produced by Bacillus subtilis EA-CB0015. Journal of natural products. 2013 Apr; 76(4):503-9. doi: 10.1021/np300574v. [PMID: 23461648]
  • Natalia Malfanova, Laurent Franzil, Ben Lugtenberg, Vladimir Chebotar, Marc Ongena. Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Archives of microbiology. 2012 Nov; 194(11):893-9. doi: 10.1007/s00203-012-0823-0. [PMID: 22648052]
  • Venant Nihorimbere, Hélène Cawoy, Alexandre Seyer, Alain Brunelle, Philippe Thonart, Marc Ongena. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS microbiology ecology. 2012 Jan; 79(1):176-91. doi: 10.1111/j.1574-6941.2011.01208.x. [PMID: 22029651]
  • F Alvarez, M Castro, A Príncipe, G Borioli, S Fischer, G Mori, E Jofré. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Journal of applied microbiology. 2012 Jan; 112(1):159-74. doi: 10.1111/j.1365-2672.2011.05182.x. [PMID: 22017648]
  • Houda Zeriouh, Diego Romero, Laura Garcia-Gutierrez, Francisco M Cazorla, Antonio de Vicente, Alejandro Perez-Garcia. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Molecular plant-microbe interactions : MPMI. 2011 Dec; 24(12):1540-52. doi: 10.1094/mpmi-06-11-0162. [PMID: 22066902]
  • Hiren Patel, Clemens Tscheka, Katarina Edwards, Göran Karlsson, Heiko Heerklotz. All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochimica et biophysica acta. 2011 Aug; 1808(8):2000-8. doi: 10.1016/j.bbamem.2011.04.008. [PMID: 21545788]
  • Jun Liu, Ting Zhou, Dan He, Xiu-zhen Li, Huijun Wu, Wenzhe Liu, Xuewen Gao. Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. Journal of molecular microbiology and biotechnology. 2011; 20(1):43-52. doi: 10.1159/000323501. [PMID: 21335978]
  • F Coutte, V Leclère, M Béchet, J-S Guez, D Lecouturier, M Chollet-Imbert, P Dhulster, P Jacques. Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. Journal of applied microbiology. 2010 Aug; 109(2):480-491. doi: 10.1111/j.1365-2672.2010.04683.x. [PMID: 20148996]
  • E Arrebola, R Jacobs, L Korsten. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of applied microbiology. 2010 Feb; 108(2):386-95. doi: 10.1111/j.1365-2672.2009.04438.x. [PMID: 19674188]
  • Minakshi Grover, Lata Nain, Shashi Bala Singh, Anil Kumar Saxena. Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24. Current microbiology. 2010 Feb; 60(2):99-106. doi: 10.1007/s00284-009-9508-6. [PMID: 19777301]
  • Pyoung Il Kim, Jaewon Ryu, Young Hwan Kim, Youn-Tae Chi. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. Journal of microbiology and biotechnology. 2010 Jan; 20(1):138-45. doi: . [PMID: 20134245]
  • Anthony Arguelles-Arias, Marc Ongena, Badre Halimi, Yannick Lara, Alain Brans, Bernard Joris, Patrick Fickers. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial cell factories. 2009 Nov; 8(?):63. doi: 10.1186/1475-2859-8-63. [PMID: 19941639]
  • E Jourdan, G Henry, F Duby, J Dommes, J P Barthélemy, P Thonart, M Ongena. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Molecular plant-microbe interactions : MPMI. 2009 Apr; 22(4):456-68. doi: 10.1094/mpmi-22-4-0456. [PMID: 19271960]
  • M Eeman, G Francius, Y F Dufrêne, K Nott, M Paquot, M Deleu. Effect of cholesterol and fatty acids on the molecular interactions of fengycin with Stratum corneum mimicking lipid monolayers. Langmuir : the ACS journal of surfaces and colloids. 2009 Mar; 25(5):3029-39. doi: 10.1021/la803439n. [PMID: 19437771]
  • Magali Deleu, Michel Paquot, Tommy Nylander. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophysical journal. 2008 Apr; 94(7):2667-79. doi: 10.1529/biophysj.107.114090. [PMID: 18178659]
  • Liang Bin Hu, Zhi Qi Shi, Ting Zhang, Zhi Min Yang. Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS microbiology letters. 2007 Jul; 272(1):91-8. doi: 10.1111/j.1574-6968.2007.00743.x. [PMID: 17490402]
  • Rajesh Ramarathnam, Shen Bo, Yu Chen, W G Dilantha Fernando, Gao Xuewen, Teresa de Kievit. Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Canadian journal of microbiology. 2007 Jul; 53(7):901-11. doi: 10.1139/w07-049. [PMID: 17898845]
  • Marc Ongena, Emmanuel Jourdan, Akram Adam, Michel Paquot, Alain Brans, Bernard Joris, Jean-Louis Arpigny, Philippe Thonart. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental microbiology. 2007 Apr; 9(4):1084-90. doi: 10.1111/j.1462-2920.2006.01202.x. [PMID: 17359279]
  • Diego Romero, Antonio de Vicente, Rivo H Rakotoaly, Samuel E Dufour, Jan-Willem Veening, Eva Arrebola, Francisco M Cazorla, Oscar P Kuipers, Michel Paquot, Alejandro Pérez-García. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular plant-microbe interactions : MPMI. 2007 Apr; 20(4):430-40. doi: 10.1094/mpmi-20-4-0430. [PMID: 17427813]
  • Marc Ongena, Philippe Jacques, Yacine Touré, Jacqueline Destain, Abdelhamid Jabrane, Philippe Thonart. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied microbiology and biotechnology. 2005 Nov; 69(1):29-38. doi: 10.1007/s00253-005-1940-3. [PMID: 15742166]
  • Magali Deleu, Michel Paquot, Tommy Nylander. Fengycin interaction with lipid monolayers at the air-aqueous interface-implications for the effect of fengycin on biological membranes. Journal of colloid and interface science. 2005 Mar; 283(2):358-65. doi: 10.1016/j.jcis.2004.09.036. [PMID: 15721905]
  • Y Touré, M Ongena, P Jacques, A Guiro, P Thonart. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of applied microbiology. 2004; 96(5):1151-60. doi: 10.1111/j.1365-2672.2004.02252.x. [PMID: 15078533]
  • Valentina Tosato, Alessandra M Albertini, Michela Zotti, Sabrina Sonda, Carlo V Bruschi. Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology (Reading, England). 1997 Nov; 143 ( Pt 11)(?):3443-3450. doi: 10.1099/00221287-143-11-3443. [PMID: 9387222]
  • N Vanittanakom, W Loeffler, U Koch, G Jung. Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. The Journal of antibiotics. 1986 Jul; 39(7):888-901. doi: 10.7164/antibiotics.39.888. [PMID: 3093430]