Clindamycin phosphate (BioDeep_00000008832)

   


代谢物信息卡片


[(2R,3R,4S,5R,6R)-6-[(1S,2S)-2-chloro-1-[[(2S,4R)-1-methyl-4-propylpyrrolidine-2-carbonyl]amino]propyl]-4,5-dihydroxy-2-methylsulfanyloxan-3-yl] dihydrogen phosphate

化学式: C18H34ClN2O8PS (504.1462)
中文名称: 克林霉素磷酸酯
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCC1CC(C(=O)NC(C(C)Cl)C2OC(SC)C(OP(=O)(O)O)C(O)C2O)N(C)C1
InChI: InChI=1S/C18H34ClN2O8PS/c1-5-6-10-7-11(21(3)8-10)17(24)20-12(9(2)19)15-13(22)14(23)16(18(28-15)31-4)29-30(25,26)27/h9-16,18,22-23H,5-8H2,1-4H3,(H,20,24)(H2,25,26,27)

描述信息

D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D055231 - Lincosamides
C784 - Protein Synthesis Inhibitor > C82922 - Lincosamide Antibiotic
C254 - Anti-Infective Agent > C258 - Antibiotic
Same as: D01073

同义名列表

4 个代谢物同义名

(2S,4R)-N-{2-chloro-1-[(2R,3R,4S,5R,6R)-3,4-dihydroxy-6-(methylsulfanyl)-5-(phosphonooxy)oxan-2-yl]propyl}-1-methyl-4-propylpyrrolidine-2-carboximidic acid; Clindamycin phosphate; [(2R,3R,4S,5R,6R)-6-[(1S,2S)-2-chloro-1-[[(2S,4R)-1-methyl-4-propylpyrrolidine-2-carbonyl]amino]propyl]-4,5-dihydroxy-2-methylsulfanyloxan-3-yl] dihydrogen phosphate; Clindamycin phosphate



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 BGLAP, BRAF, EGFR, HMMR, OAZ1, POMC, RREB1, XDH
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 2 EGFR, PON1
Nucleus 4 BRAF, EGFR, OAZ1, RREB1
cytosol 5 BRAF, HMMR, OAZ1, RND1, XDH
dendrite 1 BGLAP
nuclear body 1 RREB1
centrosome 1 HMMR
Cell membrane 5 BRAF, EGFR, RHOJ, RND1, TNF
Lipid-anchor 2 RHOJ, RND1
Cytoplasmic side 2 RHOJ, RND1
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
cell junction 1 EGFR
cell surface 4 EGFR, HMMR, MSLN, TNF
glutamatergic synapse 2 BRAF, EGFR
Golgi apparatus 1 MSLN
Golgi membrane 2 EGFR, INS
neuronal cell body 1 TNF
postsynapse 1 BRAF
Presynapse 1 BRAF
endosome 1 EGFR
plasma membrane 8 BRAF, EGFR, HMMR, IFNLR1, MSLN, RHOJ, RND1, TNF
Membrane 4 EGFR, HMMR, IFNLR1, MSLN
apical plasma membrane 1 EGFR
basolateral plasma membrane 1 EGFR
extracellular exosome 4 BMP3, PON1, RHOJ, RREB1
extracellular space 12 BGLAP, BMP3, BMP7, EGFR, IL5, IL6, INS, POMC, PON1, PTH, TNF, XDH
perinuclear region of cytoplasm 1 EGFR
adherens junction 1 RND1
mitochondrion 1 BRAF
protein-containing complex 1 EGFR
intracellular membrane-bounded organelle 2 BRAF, RND1
Single-pass type I membrane protein 2 EGFR, IFNLR1
Secreted 7 BGLAP, BMP3, BMP7, IL5, IL6, INS, POMC
extracellular region 11 BGLAP, BMP3, BMP7, IL5, IL6, INS, MSLN, POMC, PON1, PTH, TNF
nuclear membrane 1 EGFR
external side of plasma membrane 1 TNF
high-density lipoprotein particle 1 PON1
actin cytoskeleton 1 RND1
perikaryon 1 BGLAP
microtubule cytoskeleton 1 HMMR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 2 BGLAP, BMP7
Membrane raft 2 EGFR, TNF
Cytoplasm, cytoskeleton 1 RND1
Cytoplasm, cytoskeleton, spindle 1 HMMR
focal adhesion 1 EGFR
spindle 1 HMMR
Peroxisome 1 XDH
intracellular vesicle 1 EGFR
sarcoplasmic reticulum 1 XDH
collagen-containing extracellular matrix 1 BMP7
secretory granule 1 POMC
nuclear speck 1 RREB1
receptor complex 1 EGFR
neuron projection 1 BRAF
phagocytic cup 1 TNF
cytoskeleton 1 HMMR
blood microparticle 1 PON1
fibrillar center 1 RREB1
endosome lumen 1 INS
Nucleus speckle 1 RREB1
cell body 1 BRAF
side of membrane 1 MSLN
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
secretory granule lumen 2 INS, POMC
Golgi lumen 2 BGLAP, INS
endoplasmic reticulum lumen 4 BGLAP, IL6, INS, MSLN
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
clathrin-coated endocytic vesicle membrane 1 EGFR
spherical high-density lipoprotein particle 1 PON1
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Lei Li, Xing-Fei Zhang, Guo-Ping Yang, Jie Huang, Xiao-Yan Yang, Ling Ye, Can Guo, Shuang Yang, Xiao-Min Wang. Safety, Tolerability, and Pharmacokinetics of Tazarotene Clindamycin Cream: A Single-Dose, 3-Period Crossover Study. Clinical pharmacology in drug development. 2021 06; 10(6):598-606. doi: 10.1002/cpdd.890. [PMID: 33241616]
  • Rasoul Shakiba, Mohammad Ali Nilforoushzadeh, Fataneh Hashem-Dabaghian, Bagher Minaii Zangii, Ali Ghobadi, Laila Shirbeigi, Jale Aliasl, Mahdad Shakiba, Roshanak Ghods. Effect of Cedar (Ziziphus spina-christi) topical solution in mild to moderate acne vulgaris: a randomized clinical study. The Journal of dermatological treatment. 2021 Mar; 32(2):197-202. doi: 10.1080/09546634.2019.1692125. [PMID: 31760846]
  • M K Watson, M G Papich, S K Chinnadurai. Pharmacokinetics of intravenous clindamycin phosphate in captive Bennett's wallabies (Macropus rufogriseus). Journal of veterinary pharmacology and therapeutics. 2017 Dec; 40(6):682-686. doi: 10.1111/jvp.12421. [PMID: 28568310]
  • Jennifer M Auchtung, Catherine D Robinson, Kylie Farrell, Robert A Britton. MiniBioReactor Arrays (MBRAs) as a Tool for Studying C. difficile Physiology in the Presence of a Complex Community. Methods in molecular biology (Clifton, N.J.). 2016; 1476(?):235-58. doi: 10.1007/978-1-4939-6361-4_18. [PMID: 27507346]
  • Manjunath D Meti, Kirthi S Byadagi, Sharanappa T Nandibewoor, Shivamurti A Chimatadar. Multi-spectral characterization & effect of metal ions on the binding of bovine serum albumin upon interaction with a lincosamide antibiotic drug, clindamycin phosphate. Journal of photochemistry and photobiology. B, Biology. 2014 Sep; 138(?):324-30. doi: 10.1016/j.jphotobiol.2014.05.024. [PMID: 25033467]
  • Feixia Duan, Xiaohong Li, Suping Cai, Guang Xin, Yanyan Wang, Dan Du, Shiliang He, Baozhan Huang, Xiurong Guo, Hang Zhao, Rui Zhang, Limei Ma, Yan Liu, Qigen Du, Zeliang Wei, Zhihua Xing, Yong Liang, Xiaohua Wu, Chengzhong Fan, Chengjie Ji, Dequan Zeng, Qianming Chen, Yang He, Xuyang Liu, Wen Huang. Haloemodin as novel antibacterial agent inhibiting DNA gyrase and bacterial topoisomerase I. Journal of medicinal chemistry. 2014 May; 57(9):3707-14. doi: 10.1021/jm401685f. [PMID: 24588790]
  • Esra Bayram Dilek, Ömer İrfan Küfrevioğlu, Şükrü Beydemir. Impacts of some antibiotics on human serum paraoxonase 1 activity. Journal of enzyme inhibition and medicinal chemistry. 2013 Aug; 28(4):758-64. doi: 10.3109/14756366.2012.681653. [PMID: 22591317]
  • Min J Chang, Hyunguk Namgung, Hye D Choi, Young R Song, Sung G Kim, Jung M Oh, Wan G Shin. Pharmacokinetics of clindamycin in the plasma and dialysate after intraperitoneal administration of clindamycin phosphoester to patients on continuous ambulatory peritoneal dialysis: an open-label, prospective, single-dose, two-institution study. Basic & clinical pharmacology & toxicology. 2012 Jun; 110(6):504-9. doi: 10.1111/j.1742-7843.2011.00842.x. [PMID: 22151828]
  • Feray Kockar, Selma Sinan, Hatice Yildirim, Oktay Arslan. Differential effects of some antibiotics on paraoxonase enzyme activity on human hepatoma cells (HepG2) in vitro. Journal of enzyme inhibition and medicinal chemistry. 2010 Oct; 25(5):715-9. doi: 10.3109/14756360903555266. [PMID: 20429781]
  • Srinivasan Shanmugam, Chung-Kil Song, Santhoshkumar Nagayya-Sriraman, Rengarajan Baskaran, Chul-Soon Yong, Han-Gon Choi, Dae-Duk Kim, Jong Soo Woo, Bong-Kyu Yoo. Physicochemical characterization and skin permeation of liposome formulations containing clindamycin phosphate. Archives of pharmacal research. 2009 Jul; 32(7):1067-75. doi: 10.1007/s12272-009-1713-0. [PMID: 19641889]
  • Selma Sinan, Feray Kockar, Nahit Gencer, Hatice Yildirim, Oktay Arslan. Effects of some antibiotics on paraoxonase from human serum in vitro and from mouse serum and liver in vivo. Biological & pharmaceutical bulletin. 2006 Aug; 29(8):1559-63. doi: 10.1248/bpb.29.1559. [PMID: 16880604]
  • A Leelarasamee, W Tatong, N Kasattut, T Sriboonruang, D Panomvana Na Ayudhya. Bioequivalence study of clindamycin phosphate injection (Clinott-P) in Thai healthy volunteers. Journal of the Medical Association of Thailand = Chotmaihet thangphaet. 2006 May; 89(5):683-9. doi: NULL. [PMID: 16756056]
  • R Saul Levinson, Steven J Mitan, Jana I Steinmetz, David J Gattermeir, Robert J Schumacher, James L Joffrion. An open-label, two-period, crossover study of the systemic bioavailability in healthy women of clindamycin phosphate from two vaginal cream formulations. Clinical therapeutics. 2005 Dec; 27(12):1894-900. doi: 10.1016/j.clinthera.2005.12.006. [PMID: 16507375]
  • K Wasson, J M Criley, M B Clabaugh, M A Koch, R L Peper. Therapeutic efficacy of oral lactobacillus preparation for antibiotic-associated enteritis in guinea pigs. Contemporary topics in laboratory animal science. 2000 Jan; 39(1):32-8. doi: . [PMID: 11178313]
  • P Villa, C L Shaklee, C Meazza, D Agnello, P Ghezzi, G Senaldi. Granulocyte colony-stimulating factor and antibiotics in the prophylaxis of a murine model of polymicrobial peritonitis and sepsis. The Journal of infectious diseases. 1998 Aug; 178(2):471-7. doi: 10.1086/515643. [PMID: 9697729]
  • C M Liu, Y K Chen, T H Yang, S Y Hsieh, M H Hung, E T Lin. High-performance liquid chromatographic determination of clindamycin in human plasma or serum: application to the bioequivalency study of clindamycin phosphate injections. Journal of chromatography. B, Biomedical sciences and applications. 1997 Aug; 696(2):298-302. doi: 10.1016/s0378-4347(97)00241-7. [PMID: 9323551]
  • J J Shelley, G L Shipman, R C Hecht. Adverse reaction to ibuprofen overdose. General dentistry. 1994 Sep; 42(5):414-6. doi: NULL. [PMID: 7489872]
  • S C Budsberg, D T Kemp, N Wolski. Pharmacokinetics of clindamycin phosphate in dogs after single intravenous and intramuscular administrations. American journal of veterinary research. 1992 Dec; 53(12):2333-6. doi: NULL. [PMID: 1476318]
  • M T Schwartz, S F Kowalsky, E M McCormick, M A Parker, R M Echols. Clindamycin phosphate kinetics in subjects undergoing CAPD. Clinical nephrology. 1986 Dec; 26(6):303-6. doi: . [PMID: 3802597]
  • T Obata, J Sasaki, K Takahashi, M Eguchi, Y Yamamoto, K Deguchi, S Fukayama, Y Nishimura. [Studies on antimicrobial concentration of clindamycin phosphate in serum, pelvic dead space exudate, and pelvic organs/tissues]. The Japanese journal of antibiotics. 1986 Feb; 39(2):317-25. doi: . [PMID: 3712747]
  • M J Bell, P Shackelford, R Smith, K Schroeder. Pharmacokinetics of clindamycin phosphate in the first year of life. The Journal of pediatrics. 1984 Sep; 105(3):482-6. doi: 10.1016/s0022-3476(84)80033-5. [PMID: 6470871]
  • T A Golper, D L Sewell, P B Fisher, M Wolfson. Incomplete activation of intraperitoneal clindamycin phosphate during peritoneal dialysis. American journal of nephrology. 1984; 4(1):38-42. doi: 10.1159/000166770. [PMID: 6731498]
  • M Barza, J A Goldstein, A Kane, D S Feingold, P E Pochi. Systemic absorption of clindamycin hydrochloride after topical application. Journal of the American Academy of Dermatology. 1982 Aug; 7(2):208-14. doi: 10.1016/s0190-9622(82)70109-4. [PMID: 6215432]
  • D L Kaminski, M Jellinek, E J Mueller. The effect of antibiotics on hepatic lipid metabolism following small bowel bypass. The Journal of surgical research. 1980 Feb; 28(2):97-102. doi: 10.1016/0022-4804(80)90151-1. [PMID: 6102179]
  • J A Mohr, R M Clark, T C Waack, R Whang. Nafcillin-associated hypokalemia. JAMA. 1979 Aug; 242(6):544. doi: NULL. [PMID: 448989]