Tauro-β-muricholic acid (BioDeep_00000018990)

Main id: BioDeep_00000003936

Secondary id: BioDeep_00001872429

human metabolite Endogenous Bile acids PANOMIX LipidSearch


代谢物信息卡片


2-[[(4R)-4-[(3R,5R,6S,7R,10R,13R,17R)-3,6,7-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid

化学式: C26H45NO7S (515.2917)
中文名称: 牛磺-β-鼠胆酸
谱图信息: 最多检出来源 Homo sapiens(plant) 9.1%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

Tauro-β-muricholic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/tauro-β-muricholic_acid (retrieved 2025-01-06) (BioDeep RN: BioDeep_00000018990). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1[C@@]2(C)[C@]([H])([C@@H](O)[C@@H](O)[C@@]3([H])[C@]4([H])CC[C@]([H])([C@H](C)CCC(=O)NCCS(O)(=O)=O)[C@@]4(C)CC[C@]23[H])C[C@H](O)C1
InChI: InChI=1S/C26H45NO7S/c1-15(4-7-21(29)27-12-13-35(32,33)34)17-5-6-18-22-19(9-11-25(17,18)2)26(3)10-8-16(28)14-20(26)23(30)24(22)31/h15-20,22-24,28,30-31H,4-14H2,1-3H3,(H,27,29)(H,32,33,34)/t15-,16-,17-,18+,19+,20+,22+,23-,24+,25-,26-/m1/s1

描述信息

Tauro-b-muricholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135).
Tauro-b-muricholic acid is a bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12.
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts
D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

同义名列表

24 个代谢物同义名

2-[[(4R)-4-[(3R,5R,6S,7R,10R,13R,17R)-3,6,7-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid; 2-[(4R)-4-[(2R,5R,7R,8S,9R,14R,15R)-5,8,9-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanamido]ethane-1-sulfonic acid; (4R)-N-(2-Sulphoethyl)-4-[(2R,5R,7R,8S,9R,14R,15R)-5,8,9-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanimidic acid; 2-[(4R)-4-[(2R,5R,7R,8S,9R,14R,15R)-5,8,9-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanamido]ethanesulfonic acid; (4R)-N-(2-Sulphoethyl)-4-[(2R,5R,7R,8S,9R,14R,15R)-5,8,9-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanimidate; (4R)-N-(2-Sulfoethyl)-4-[(2R,5R,7R,8S,9R,14R,15R)-5,8,9-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanimidate; N-(3alpha,6alpha,7alpha-Trihydroxy-5beta-cholan-24-oyl)-taurine; N-(3alpha,6alpha,7alpha-Trihydroxy-5beta-cholan-24-oyl)taurine; Tauromuricholic acid, (3alpha,5beta,6beta,7alpha)-isomer; N-(3a,6b,7b-Trihydroxy-5b-cholan-24-oyl)-taurine; Tauro-alpha-muricholic acid; Tauro-beta-muricholic acid; Tauro-b-muricholic acid; Tauro-alpha-muricholate; Tauro-beta-muricholate; Tauromuricholic acid; Taurohyocholic acid; Tauro-b-muricholate; Tauromuricholate; Taurohyocholate; ST 24:1;O5;T; T-alpha-MC; T-beta-MC; Tauro-β-muricholic acid (β-TMCA)



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 3 AKR1D1, FASN, IFIT1
Peripheral membrane protein 1 CYP1B1
Endoplasmic reticulum membrane 2 CYP1B1, CYP7A1
Nucleus 1 NR1H4
cytosol 3 AKR1D1, FASN, IFIT1
nucleoplasm 1 NR1H4
RNA polymerase II transcription regulator complex 1 NR1H4
Multi-pass membrane protein 2 ABCC3, SLC25A13
Golgi apparatus 1 FASN
Golgi membrane 1 INS
mitochondrial inner membrane 1 SLC25A13
plasma membrane 4 ABCC3, FASN, GCG, SLC25A13
Membrane 3 ABCC3, CYP1B1, FASN
basolateral plasma membrane 1 ABCC3
extracellular exosome 1 FASN
extracellular space 2 GCG, INS
mitochondrion 3 ACSS1, CYP1B1, SLC25A13
intracellular membrane-bounded organelle 2 CYP1B1, CYP7A1
Microsome membrane 2 CYP1B1, CYP7A1
Secreted 2 GCG, INS
extracellular region 2 GCG, INS
Single-pass membrane protein 1 CYP7A1
Mitochondrion matrix 1 ACSS1
mitochondrial matrix 1 ACSS1
Mitochondrion inner membrane 1 SLC25A13
Mitochondrion intermembrane space 1 SLC25A13
mitochondrial intermembrane space 1 SLC25A13
receptor complex 1 NR1H4
chromatin 1 NR1H4
[Isoform 3]: Nucleus 1 NR1H4
Basolateral cell membrane 1 ABCC3
endosome lumen 1 INS
Melanosome 1 FASN
euchromatin 1 NR1H4
basal plasma membrane 1 ABCC3
secretory granule lumen 2 GCG, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 GCG, INS
transport vesicle 1 INS
host cell 1 IFIT1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
[Isoform 2]: Nucleus 1 NR1H4
[Isoform 1]: Nucleus 1 NR1H4
Basal cell membrane 1 ABCC3
[Isoform 4]: Nucleus 1 NR1H4
[Glucagon-like peptide 1]: Secreted 1 GCG
glycogen granule 1 FASN


文献列表

  • Zhifu Xie, Haowen Jiang, Wei Liu, Xinwen Zhang, Dakai Chen, Shuimei Sun, Chendong Zhou, Jia Liu, Sheng Bao, Xiachang Wang, Yinan Zhang, Jia Li, Lihong Hu, Jingya Li. The triterpenoid sapogenin (2α-OH-Protopanoxadiol) ameliorates metabolic syndrome via the intestinal FXR/GLP-1 axis through gut microbiota remodelling. Cell death & disease. 2020 09; 11(9):770. doi: 10.1038/s41419-020-02974-0. [PMID: 32943612]
  • Iván L Csanaky, Andrew J Lickteig, Youcai Zhang, Curtis D Klaassen. Effects of patent ductus venosus on bile acid homeostasis in aryl hydrocarbon receptor (AhR)-null mice. Toxicology and applied pharmacology. 2020 09; 403(?):115136. doi: 10.1016/j.taap.2020.115136. [PMID: 32679164]
  • Shogo Takahashi, Naoki Tanaka, Tatsuki Fukami, Cen Xie, Tomoki Yagai, Donghwan Kim, Thomas J Velenosi, Tingting Yan, Kristopher W Krausz, Moshe Levi, Frank J Gonzalez. Role of Farnesoid X Receptor and Bile Acids in Hepatic Tumor Development. Hepatology communications. 2018 Dec; 2(12):1567-1582. doi: 10.1002/hep4.1263. [PMID: 30556042]
  • Yongtao Xiao, Kejun Zhou, Ying Lu, Weihui Yan, Wei Cai, Ying Wang. Administration of antibiotics contributes to cholestasis in pediatric patients with intestinal failure via the alteration of FXR signaling. Experimental & molecular medicine. 2018 11; 50(12):1-14. doi: 10.1038/s12276-018-0181-3. [PMID: 30504803]
  • Evelyn Zöhrer, Katharina Meinel, Günter Fauler, Victor Aguiriano Moser, Theresa Greimel, Joachim Zobl, Axel Schlagenhauf, Jörg Jahnel. Neonatal sepsis leads to early rise of rare serum bile acid tauro-omega-muricholic acid (TOMCA). Pediatric research. 2018 07; 84(1):66-70. doi: 10.1038/s41390-018-0007-y. [PMID: 29795204]
  • Iván L Csanaky, Andrew J Lickteig, Curtis D Klaassen. Aryl hydrocarbon receptor (AhR) mediated short-term effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on bile acid homeostasis in mice. Toxicology and applied pharmacology. 2018 03; 343(?):48-61. doi: 10.1016/j.taap.2018.02.005. [PMID: 29452137]
  • Youcai Zhang, Andrew J Lickteig, Iván L Csanaky, Curtis D Klaassen. Activation of PPARα decreases bile acids in livers of female mice while maintaining bile flow and biliary bile acid excretion. Toxicology and applied pharmacology. 2018 01; 338(?):112-123. doi: 10.1016/j.taap.2017.11.014. [PMID: 29175453]
  • Dong-Sheng Zhao, Li-Long Jiang, Ya-Xi Fan, Lei-Chi Dong, Jiang Ma, Xin Dong, Xiao-Jun Xu, Ping Li, Hui-Jun Li. Identification of urine tauro-β-muricholic acid as a promising biomarker in Polygoni Multiflori Radix-induced hepatotoxicity by targeted metabolomics of bile acids. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2017 Oct; 108(Pt B):532-542. doi: 10.1016/j.fct.2017.02.030. [PMID: 28237774]
  • Annika Wahlström, Petia Kovatcheva-Datchary, Marcus Ståhlman, Muhammad-Tanweer Khan, Fredrik Bäckhed, Hanns-Ulrich Marschall. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota. Journal of lipid research. 2017 02; 58(2):412-419. doi: 10.1194/jlr.m072819. [PMID: 27956475]
  • Michael DiMarzio, Brigida Rusconi, Neela H Yennawar, Mark Eppinger, Andrew D Patterson, Edward G Dudley. Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA. PloS one. 2017; 12(9):e0183564. doi: 10.1371/journal.pone.0183564. [PMID: 28910295]
  • Monika Rau, Bruno Stieger, Maria J Monte, Johannes Schmitt, Daniel Jahn, Isabelle Frey-Wagner, Tina Raselli, Jose J G Marin, Beat Müllhaupt, Gerhard Rogler, Andreas Geier. Alterations in Enterohepatic Fgf15 Signaling and Changes in Bile Acid Composition Depend on Localization of Murine Intestinal Inflammation. Inflammatory bowel diseases. 2016 10; 22(10):2382-9. doi: 10.1097/mib.0000000000000879. [PMID: 27580383]
  • Daniël A Lionarons, Michal Heger, Rowan F van Golen, Lindy K Alles, Vincent A van der Mark, Jaap J Kloek, Dirk R de Waart, Hendrik A Marsman, Henny Rusch, Joanne Verheij, Ulrich Beuers, Coen C Paulusma, Thomas M van Gulik. Simple steatosis sensitizes cholestatic rats to liver injury and dysregulates bile salt synthesis and transport. Scientific reports. 2016 08; 6(?):31829. doi: 10.1038/srep31829. [PMID: 27535001]
  • K E R Gooijert, R Havinga, H Wolters, R Wang, V Ling, S Tazuma, H J Verkade. The mechanism of increased biliary lipid secretion in mice with genetic inactivation of bile salt export pump. American journal of physiology. Gastrointestinal and liver physiology. 2015 Mar; 308(5):G450-7. doi: 10.1152/ajpgi.00391.2014. [PMID: 25552583]
  • Yunpeng Qi, Changtao Jiang, Jie Cheng, Kristopher W Krausz, Tiangang Li, Jessica M Ferrell, Frank J Gonzalez, John Y L Chiang. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochimica et biophysica acta. 2015 Jan; 1851(1):19-29. doi: 10.1016/j.bbalip.2014.04.008. [PMID: 24796972]
  • Benjamin L Woolbright, Feng Li, Yuchao Xie, Anwar Farhood, Peter Fickert, Michael Trauner, Hartmut Jaeschke. Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice. Toxicology letters. 2014 Jul; 228(1):56-66. doi: 10.1016/j.toxlet.2014.04.001. [PMID: 24742700]
  • Fei Li, Changtao Jiang, Kristopher W Krausz, Yunfei Li, Istvan Albert, Haiping Hao, Kristin M Fabre, James B Mitchell, Andrew D Patterson, Frank J Gonzalez. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nature communications. 2013; 4(?):2384. doi: 10.1038/ncomms3384. [PMID: 24064762]
  • Tsutomu Matsubara, Naoki Tanaka, Misako Sato, Dong Wook Kang, Kristopher W Krausz, Kathleen C Flanders, Kazuo Ikeda, Hans Luecke, Lalage M Wakefield, Frank J Gonzalez. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury. Journal of lipid research. 2012 Dec; 53(12):2698-707. doi: 10.1194/jlr.m031773. [PMID: 23034213]
  • Juan C García-Cañaveras, M Teresa Donato, José V Castell, Agustín Lahoz. Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. Journal of lipid research. 2012 Oct; 53(10):2231-2241. doi: 10.1194/jlr.d028803. [PMID: 22822028]
  • Youcai Zhang, Iván L Csanaky, Xingguo Cheng, Lois D Lehman-McKeeman, Curtis D Klaassen. Organic anion transporting polypeptide 1a1 null mice are sensitive to cholestatic liver injury. Toxicological sciences : an official journal of the Society of Toxicology. 2012 Jun; 127(2):451-62. doi: 10.1093/toxsci/kfs123. [PMID: 22461449]
  • Youcai Zhang, Ji-Young Hong, Cheryl E Rockwell, Bryan L Copple, Hartmut Jaeschke, Curtis D Klaassen. Effect of bile duct ligation on bile acid composition in mouse serum and liver. Liver international : official journal of the International Association for the Study of the Liver. 2012 Jan; 32(1):58-69. doi: 10.1111/j.1478-3231.2011.02662.x. [PMID: 22098667]
  • Youcai Zhang, Iván L Csanaky, Lois D Lehman-McKeeman, Curtis D Klaassen. Loss of organic anion transporting polypeptide 1a1 increases deoxycholic acid absorption in mice by increasing intestinal permeability. Toxicological sciences : an official journal of the Society of Toxicology. 2011 Dec; 124(2):251-60. doi: 10.1093/toxsci/kfr236. [PMID: 21914718]
  • Y Asamoto, S Tazuma, H Ochi, K Chayama, H Suzuki. Bile-salt hydrophobicity is a key factor regulating rat liver plasma-membrane communication: relation to bilayer structure, fluidity and transporter expression and function. The Biochemical journal. 2001 Nov; 359(Pt 3):605-10. doi: 10.1042/0264-6021:3590605. [PMID: 11672435]
  • K Uchida, T Satoh, S Narushima, K Itoh, H Takase, K Kuruma, H Nakao, N Yamaga, K Yamada. Transformation of bile acids and sterols by clostridia (fusiform bacteria) in Wistar rats. Lipids. 1999 Mar; 34(3):269-73. doi: 10.1007/s11745-999-0363-y. [PMID: 10230721]
  • K Kitani, S Kanai, Y Sato, M Ohta. Tauro alpha-muricholate is as effective as tauro beta-muricholate and tauroursodeoxycholate in preventing taurochenodeoxycholate-induced liver damage in the rat. Hepatology (Baltimore, Md.). 1994 Apr; 19(4):1007-12. doi: . [PMID: 8138240]
  • M B Thompson, D G Davis, R W Morris. Taurine conjugate of 3 alpha,6 beta,7 beta-trihydroxy-5 beta,22-cholen-24-oic acid (tauro-delta 22-beta-muricholate): the major bile acid in the serum of female rats treated with alpha-naphthylisothiocyanate and its secretion by liver slices. Journal of lipid research. 1993 Apr; 34(4):553-61. doi: NULL. [PMID: 8496661]
  • D G Davis, M B Thompson. Nuclear magnetic resonance identification of the taurine conjugate of 3 alpha,6 beta,7 beta-trihydroxy-5 beta,22-cholen-24-oic acid (tauro-delta 22-beta-muricholate) in the serum of female rats treated with alpha-naphthylisothiocyanate. Journal of lipid research. 1993 Apr; 34(4):651-61. doi: NULL. [PMID: 8388431]
  • T B Cooper, G M Simpson. Plasma/blood level monitoring techniques in psychiatry. Psychopharmacology bulletin. 1975 Oct; 11(4):18-20. doi: NULL. [PMID: 713]