Reaction Process: WikiPathways:WP5169

Hemesynthesis defects and porphyrias related metabolites

find 15 related metabolites which is associated with chemical reaction(pathway) Hemesynthesis defects and porphyrias

protoporphyrin IX ⟶ Protoheme

5-Aminolevulinic acid

Bertek brand OF aminolevulinic acid hydrochloride

C5H9NO3 (131.0582)


5-Aminolevulinic acid, also known as 5-aminolevulinate or 5-amino-4-oxopentanoate, belongs to the class of organic compounds known as delta amino acids and derivatives. Delta amino acids and derivatives are compounds containing a carboxylic acid group and an amino group at the C5 carbon atom. 5-Aminolevulinic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 5-Aminolevulinic acid exists in all living species, ranging from bacteria to humans. 5-aminolevulinic acid can be biosynthesized from glycine and succinyl-CoA by the enzyme 5-aminolevulinate synthase. The simplest delta-amino acid in which the hydrogens at the gamma position are replaced by an oxo group. In humans, 5-aminolevulinic acid is involved in the metabolic disorder called the dimethylglycine dehydrogenase deficiency pathway. Outside of the human body, 5-Aminolevulinic acid has been detected, but not quantified in several different foods, such as american butterfish, vaccinium (blueberry, cranberry, huckleberry), amaranths, purple mangosteens, and garden cress. Used (in the form of the hydrochloride salt) in combination with blue light illumination for the treatment of minimally to moderately thick actinic keratosis of the face or scalp. It is metabolised to protoporphyrin IX, a photoactive compound which accumulates in the skin. An intermediate in heme synthesis. This is the first compound in the porphyrin synthesis pathway. It is produced by the enzyme ALA synthase, from glycine and succinyl CoA. This reaction is known as the Shemin pathway. Aminolevulinic acid plus blue light illumination using a blue light photodynamic therapy illuminator is indicated for the treatment of minimally to moderately thick actinic keratoses of the face or scalp. [HMDB]. 5-Aminolevulinic acid is found in many foods, some of which are fireweed, chia, sesbania flower, and taro. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy Acquisition and generation of the data is financially supported in part by CREST/JST. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents KEIO_ID A052

   

Porphobilinogen

3-[5-(aminomethyl)-4-(carboxymethyl)-1H-pyrrol-3-yl]propanoic acid

C10H14N2O4 (226.0954)


Porphobilinogen (PBG) is a pyrrole-containing intermediate in the biosynthesis of porphyrins. It is generated from aminolevulinate (ALA) by the enzyme ALA dehydratase. Porphobilinogen is then converted into hydroxymethylbilane by the enzyme porphobilinogen deaminase (also known as hydroxymethylbilane synthase). Under certain conditions, porphobilinogen can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Porphobilinogen is a pyrrole involved in porphyrin metabolism. -- Wikipedia; It consists of a pyrrole ring with acetyl, propionyl, and aminomethyl side chains; It is a key monopyrrolic intermediate in porphyrin, chlorophyll and vitamin B12 biosynthesis. Porphobilinogen is generated by the enzyme ALA dehydratase by combining two molecules of dALA together, and converted into hydroxymethyl bilane by the enzyme porphobilinogen deaminase. 4 molecules of porphobilinogen are condensed to form one molecule of uroporphyrinogen III, which is then converted successively to coproporphyrinogen III, protoporphyrin IX, and heme. Porphobilinogen is produced in excess and excreted in the urine in acute intermittent porphyria and several other porphyrias. [HMDB]. Porphobilinogen is found in many foods, some of which are strawberry guava, amaranth, parsnip, and ostrich fern.

   

Succinyl-CoA

4-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-4-oxobutanoic acid

C25H40N7O19P3S (867.1312)


Succinyl-CoA is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase (EC 1.2.4.2) through decarboxylation, and is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (EC 6.2.1.5). Succinyl-CoA may be an end product of peroxisomal beta-oxidation of dicarboxylic fatty acids; the identification of an apparently specific succinyl-CoA thioesterase (ACOT4, EC 3.1.2.3, hydrolyzes succinyl-CoA) in peroxisomes strongly suggests that succinyl-CoA is formed in peroxisomes. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A, thereby regulating levels of these compounds. (PMID: 16141203) [HMDB]. Succinyl-CoA is found in many foods, some of which are fruits, sea-buckthornberry, pomegranate, and sweet orange. Succinyl-CoA is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase (EC 1.2.4.2) through decarboxylation, and is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (EC 6.2.1.5). Succinyl-CoA may be an end product of peroxisomal beta-oxidation of dicarboxylic fatty acids; the identification of an apparently specific succinyl-CoA thioesterase (ACOT4, EC 3.1.2.3, hydrolyzes succinyl-CoA) in peroxisomes strongly suggests that succinyl-CoA is formed in peroxisomes. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A, thereby regulating levels of these compounds. (PMID: 16141203).

   

Uroporphyrinogen III

3-[9,14,20-tris(2-carboxyethyl)-5,10,15,19-tetrakis(carboxymethyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C40H44N4O16 (836.2752)


Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Protoporphyrinogen IX

3-[20-(2-carboxyethyl)-9,14-diethenyl-5,10,15,19-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C34H40N4O4 (568.3049)


Protoporphyrinogen IX is an intermediate in heme biosynthesis. It is a porphyrinogen in which two pyrrole rings each have one methyl and one propionate side chain, and the other two pyrrole rings each have one methyl and one vinyl side chain. Fifteen isomers are possible but only one, type IX, occurs naturally. Protoporphyrinogen is produced by oxidative decarboxylation of coproporphyrinogen. Under certain conditions, protoporphyrinogen IX can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). In particular, protoporphyrinogen IX is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Protoporphyrinogen IX is an intermediate in heme biosynthesis. It is a porphyrinogen in which 2 pyrrole rings each have one methyl and one propionate side chain and the other two pyrrole rings each have one methyl and one vinyl side chain. 15 isomers are possible but only one, type IX, occurs naturally. Protoporphyrinogen is produced by oxidative decarboxylation of coproporphyrinogen. [HMDB]. Protoporphyrinogen IX is found in many foods, some of which are elderberry, grapefruit, green vegetables, and pepper (c. annuum). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Coproporphyrinogen III

3-[9,14,20-tris(2-carboxyethyl)-5,10,15,19-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C36H44N4O8 (660.3159)


Coproporphyrinogen III is a porphyrin metabolite arising from heme synthesis. Porphyrins are pigments found in both animal and plant life. Coproporphyrinogen III is a tetrapyrrole dead-end product resulting from the spontaneous oxidation of the methylene bridges of coproporphyrinogen arising from heme synthesis. It is secreted in feces and urine. Coproporphyrinogen III is biosynthesized from the tetrapyrrole hydroxymethylbilane, which is converted by the action of uroporphyrinogen III synthase to uroporphyrinogen III. Uroporphyrinogen III is subsequently converted into coproporphyrinogen III through a series of four decarboxylations. Increased levels of coproporphyrinogens can indicate congenital erythropoietic porphyria or sideroblastic anemia, which are inherited disorders. Porphyria is a pathological state characterized by abnormalities of porphyrin metabolism and results in the excretion of large quantities of porphyrins in the urine and in extreme sensitivity to light. A large number of factors are capable of increasing porphyrin excretion, owing to different and multiple causes and etiologies: (1) the main site of the chronic hepatic porphyria disease process concentrates on the liver, (2) a functional and morphologic liver injury is almost regularly associated with this chronic porphyria, and (3) the toxic form due to occupational and environmental exposure takes mainly a subclinical course. Hepatic factors include disturbance in coproporphyrinogen metabolism, which results from inhibition of coproporphyrinogen oxidase as well as from the rapid loss and diminished utilization of coproporphyrinogen in the hepatocytes. This may also explain why coproporphyrin, its autoxidation product, predominates physiologically in the urine. Decreased biliary excretion of coproporphyrin leading to a compensatory urinary excretion. Therefore, the coproporphyrin ring isomer ratio (1:III) becomes a sensitive index for impaired liver function, intrahepatic cholestasis, and disturbed activity of hepatic uroporphyrinogen decarboxylase. In itself, secondary coproporphyrinuria is not associated with porphyria symptoms of a hepatologic-gastroenterologic, neurologic, or dermatologic order, even though coproporphyrinuria can occur with such symptoms (PMID: 3327428). Under certain conditions, coproporphyrinogen III can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, hereditary coproporphyria (HCP), congenital erythropoietic porphyria, and sideroblastic anemia. In particular, coproporphyrinogen III is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Coproporphyrinogen III oxidase is deficient in hereditary coproporphyria. These persons usually have enhanced excretion even in a subclinical state of the disease.(PubMed ID 14605502 ) [HMDB]. Coproporphyrinogen III is found in many foods, some of which are cucumber, climbing bean, horseradish, and pepper (c. frutescens). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Uroporphyrinogen I

3-[9,14,19-tris(2-carboxyethyl)-5,10,15,20-tetrakis(carboxymethyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C40H44N4O16 (836.2752)


Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction. [HMDB]. Uroporphyrinogen I is found in many foods, some of which are great horned owl, nutmeg, lime, and cascade huckleberry. Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction.

   

Coproporphyrinogen I

3-[9,14,19-tris(2-carboxyethyl)-5,10,15,20-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C36H44N4O8 (660.3159)


Coproporphyrinogen I is a porphyrin metabolite arising from heme synthesis. Porphyrins are pigments found in both animal and plant life. Coproporphyrinogen I is a tetrapyrrole dead-end product resulting from the spontaneous oxidation of the methylene bridges of coproporphyrinogen arising from heme synthesis. It is secreted in feces and urine. Coproporphyrinogen I is biosynthesized from the tetrapyrrole hydroxymethylbilane, which is converted by the action of uroporphyrinogen synthase to uroporphyrinogen I. Uroporphyrinogen I is subsequently converted into coproporphyrinogen I through a series of four decarboxylations. Increased levels of coproporphyrinogens can indicate congenital erythropoietic porphyria or sideroblastic anemia, which are inherited disorders. Porphyria is a pathological state characterized by abnormalities of porphyrin metabolism and results in the excretion of large quantities of porphyrins in the urine and in extreme sensitivity to light. A large number of factors are capable of increasing porphyrin excretion, owing to different and multiple causes and etiologies: (1) the main site of the chronic hepatic porphyria disease process concentrates on the liver, (2) a functional and morphologic liver injury is almost regularly associated with this chronic porphyria, and (3) the toxic form due to occupational and environmental exposure takes mainly a subclinical course. Hepatic factors include disturbance in coproporphyrinogen metabolism, which results from inhibition of coproporphyrinogen oxidase as well as from the rapid loss and diminished utilization of coproporphyrinogen in the hepatocytes. This may also explain why coproporphyrin, its autoxidation product, predominates physiologically in the urine. Decreased biliary excretion of coproporphyrin leading to a compensatory urinary excretion. Therefore, the coproporphyrin ring isomer ratio becomes a sensitive index for impaired liver function, intrahepatic cholestasis, and disturbed activity of hepatic uroporphyrinogen decarboxylase. In itself, secondary coproporphyrinuria is not associated with porphyria symptoms of a hepatologic-gastroenterologic, neurologic, or dermatologic order, even though coproporphyrinuria can occur with such symptoms (PMID: 3327428). Under certain conditions, coproporphyrinogen I can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, hereditary coproporphyria (HCP), congenital erythropoietic porphyria, and sideroblastic anemia. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Coproporphyrinogen I can be found in a number of food items, including cascade huckleberry, hyacinth bean, horseradish tree, and watercress. Formed by Uroporphyrinogen decarboxylase from Uroporphyrinogen I by decarboxylation of 4 acetates. [HMDB]. Coproporphyrinogen I is found in many foods, some of which are alpine sweetvetch, japanese persimmon, komatsuna, and celery leaves.

   

Pentacarboxyl porphyrinogen III

3-[(12Z,17Z)-10,15,20-tris(2-carboxyethyl)-19-(carboxymethyl)-5,9,14-trimethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1,3(24),4,8,10,12,14,16(22),17,19-decaen-4-yl]propanoic acid

C37H40N4O10 (700.2744)


Substrate for erythrocyte uroporphyrinogen decarboxylase in patients with porphyria cutanea tarda (PubNed ID 1610684 ) [HMDB] Substrate for erythrocyte uroporphyrinogen decarboxylase in patients with porphyria cutanea tarda (PubNed ID 1610684 ).

   

Pentacarboxyporphyrin

Pentacarboxyporphyrin

C37H38N4O10 (698.2588)


   

Hexacarboxylporphyrin III

Hexacarboxylporphyrin III

C38H38N4O12 (742.2486)


   

Preuroporphyrinogen(8-)

Preuroporphyrinogen(8-)

C40H38N4O17-8 (846.2232)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

Heptacarboxyporphyrin III

Heptacarboxyporphyrin III

C40H40N4O14 (800.2541)


   

3-[7,12,17-Tris(2-carboxyethyl)-8,13,18-tris(carboxymethyl)-3-methyl-23,24-dihydroporphyrin-2-yl]propanoic acid

3-[7,12,17-Tris(2-carboxyethyl)-8,13,18-tris(carboxymethyl)-3-methyl-23,24-dihydroporphyrin-2-yl]propanoic acid

C39H38N4O14 (786.2384)