Reaction Process: Reactome:R-DME-69278
Cell Cycle, Mitotic related metabolites
find 15 related metabolites which is associated with chemical reaction(pathway) Cell Cycle, Mitotic
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
Niacinamide
Nicotinamide is a white powder. (NTP, 1992) Nicotinamide is a pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. It has a role as an EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor, a metabolite, a cofactor, an antioxidant, a neuroprotective agent, an EC 3.5.1.98 (histone deacetylase) inhibitor, an anti-inflammatory agent, a Sir2 inhibitor, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a geroprotector. It is a vitamin B3, a pyridinecarboxamide and a pyridine alkaloid. It is functionally related to a nicotinic acid. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Nicotinamide is a natural product found in Mus musculus, Euonymus grandiflorus, and other organisms with data available. Niacinamide is the active form of vitamin B3 and a component of the coenzyme nicotinamide adenine dinucleotide (NAD). Niacinamide acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. This agent also inhibits poly(ADP-ribose) polymerases, enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy. Nicotinamide is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Niacinamide or vitamin B3 is an important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is used to increase the effect of radiation therapy on tumor cells. Niacin (nicotinic acid) and niacinamide, while both labeled as vitamin B3 also have different applications. Niacinamide is useful in arthritis and early-onset type I diabetes while niacin is an effective reducer of high cholesterol levels. Niacinamide is a metabolite found in or produced by Saccharomyces cerevisiae. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. See also: Adenosine; Niacinamide (component of); Dapsone; niacinamide (component of); Adenosine; Niacinamide; Titanium Dioxide (component of) ... View More ... Niacinamide, also known as nicotinamide (NAM), is a form of vitamin B3 found in food and used as a dietary supplement and medication. Niacinamide belongs to the class of organic compounds known as nicotinamides. These are heterocyclic aromatic compounds containing a pyridine ring substituted at position 3 by a carboxamide group. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It is an amide of nicotinic acid. As an aromatic compound, it undergoes electrophilic substitution reactions and transformations of its two functional groups. Niacinamide and phosphoribosyl pyrophosphate can be converted into nicotinic acid mononucleotide and phosphate by the enzyme nicotinamide phosphoribosyltransferase. In humans, niacinamide is involved in the metabolic disorder called the nad+ signalling pathway (cancer). Niacinamide is an odorless tasting compound. Outside of the human body, niacinamide is found, on average, in the highest concentration within a few different foods, such as common sages, cow milk, and cocoa beans and in a lower concentration in common pea. Niacinamide has also been detected, but not quantified in several different foods, such as yardlong beans, roselles, apples, oyster mushrooms, and swiss chards. Niacinamide occurs in trace amounts mainly in meat, fish, nuts, and mushrooms, as well as to a lesser extent in some vegetables. It is commonly added to cereals and other foods. Many multivitamins contain 20–30 mg of vitamin B3 and it is also available in higher doses. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. Widespread in plants, e.g. rice, yeast and fungi. Dietary supplement, may be used in infant formulas Nicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-92-0 (retrieved 2024-07-01) (CAS RN: 98-92-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].
Water
Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .
Oxygen
Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131) [HMDB]. Oxygen is found in many foods, some of which are soy bean, watermelon, sweet basil, and spinach. Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131). V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases
Carbon dioxide
Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases
Formaldehyde
Formaldehyde is a highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. In solution, it has a wide range of uses: in the manufacture of resins and textiles, as a disinfectant, and as a laboratory fixative or preservative. Formaldehyde solution (formalin) is considered a hazardous compound, and its vapor toxic. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p717) -- Pubchem; The chemical compound formaldehyde (also known as methanal), is a gas with a pungent smell. It is the simplest aldehyde. Its chemical formula is H2CO. Formaldehyde was first synthesized by the Russian chemist Aleksandr Butlerov in 1859 but was conclusively identified by August Wilhelm van Hofmann in 1867. Although formaldehyde is a gas at room temperature, it is readily soluble in water, and it is most commonly sold as a 37\\% solution in water called by trade names such as formalin or formol. In water, formaldehyde polymerizes, and formalin actually contains very little formaldehyde in the form of H2CO monomer. Usually, these solutions contain a few percent methanol to limit the extent of polymerization. Formaldehyde exhibits most of the general chemical properties of the aldehydes, except that is generally more reactive than other aldehydes. Formaldehyde is a potent electrophile. It can participate in electrophilic aromatic substitution reactions with aromatic compounds and can undergo electrophilic addition reactions with alkenes. In the presence of basic catalysts, formaldehyde undergoes a Cannizaro reaction to produce formic acid and methanol. Because formaldehyde resins are used in many construction materials, including plywood, carpet, and spray-on insulating foams, and because these resins slowly give off formaldehyde over time, formaldehyde is one of the more common indoor air pollutants. At concentrations above 0.1 mg/kg in air, inhaled formaldehyde can irritate the eyes and mucous membranes, resulting in watery eyes, headache, a burning sensation in the throat, and difficulty breathing. -- Wikipedia. A highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. Formaldehyde is found in many foods, some of which are ginseng, lentils, coriander, and allspice. D000890 - Anti-Infective Agents D004202 - Disinfectants D005404 - Fixatives
Methanol
Methanol, also known as columbian spirit or CH3OH, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). The target of methanol in the eye is the retina, specifically the optic disk and optic nerve. Toxicity is due to the metabolic products of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase. Methanol exists in all living organisms, ranging from bacteria to humans. Methanol is an alcoholic tasting compound. Outside of the human body, Methanol is found, on average, in the highest concentration within cow milk and sweet oranges. Methanol has also been detected, but not quantified in several different foods, such as prairie turnips, mountain yams, mentha (mint), watermelons, and pasta. Methanol is responsible for accidental, suicidal, and epidemic poisonings, resulting in death or permanent sequelae. Methanol is a potentially toxic compound. Visual disturbances develop between 18h to 48h after ingestion and range from mild photophobia and blurred vision to markedly reduced visual acuity and complete blindness. Methanol is metabolized to formaldehyde by alcohol dehydrogenase, then from that to formate by formaldehyde dehydrogenase, and then to carbon dioxide by limited H4 folate. It is the simplest alcohol, and is a light, volatile, colourless, flammable, poisonous liquid with a distinctive odor that is somewhat milder and sweeter than ethanol. Present in various wines and spirits. It is used as a solvent for the preparation of modified hop extracts and spice oleoresins D012997 - Solvents
O-acetyl-ADP-ribose
C17H25N5O15P2 (601.0822360000001)
O-acetyl-adp-ribose is part of the Amphetamine addiction pathway. It is a substrate for: NAD-dependent protein deacetylase sirtuin-1, NAD-dependent protein deacetylase sirtuin-2, NAD-dependent protein deacetylase sirtuin-3, mitochondrial, NAD-dependent protein deacetylase sirtuin-4, NAD-dependent protein deacetylase sirtuin-6, and NAD-dependent protein deacetylase sirtuin-7. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Nicotinamide adenine dinucleotide
C21H26N7O14P2- (662.1012936000001)
COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Deoxyadenosine-triphosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS