Reaction Process: Plant Reactome:R-OSA-1119498

vitamin K1 related metabolites

find 16 related metabolites which is associated with chemical reaction(pathway) vitamin K1

ATP + CoA-SH + O-succinylbenzoate ⟶ 4-(2'-carboxyphenyl)-4-oxobutyryl-CoA + AMP + PPi

S-adenosylhomocysteine (SAH)

(2S)-2-Amino-4-({[(2S,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}sulphanyl)butanoic acid

C14H20N6O5S (384.12158300000004)


S-Adenosyl-L-homocysteine (SAH) is formed by the demethylation of S-adenosyl-L-methionine. S-Adenosylhomocysteine (AdoHcy or SAH) is also the immediate precursor of all of the homocysteine produced in the body. The reaction is catalyzed by S-adenosylhomocysteine hydrolase and is reversible with the equilibrium favoring formation of SAH. In vivo, the reaction is driven in the direction of homocysteine formation by the action of the enzyme adenosine deaminase which converts the second product of the S-adenosylhomocysteine hydrolase reaction, adenosine, to inosine. Except for methyl transfer from betaine and from methylcobalamin in the methionine synthase reaction, SAH is the product of all methylation reactions that involve S-adenosylmethionine (SAM) as the methyl donor. Methylation is significant in epigenetic regulation of protein expression via DNA and histone methylation. The inhibition of these SAM-mediated processes by SAH is a proven mechanism for metabolic alteration. Because the conversion of SAH to homocysteine is reversible, with the equilibrium favoring the formation of SAH, increases in plasma homocysteine are accompanied by an elevation of SAH in most cases. Disturbances in the transmethylation pathway indicated by abnormal SAH, SAM, or their ratio have been reported in many neurodegenerative diseases, such as dementia, depression, and Parkinsons disease (PMID:18065573, 17892439). Therefore, when present in sufficiently high levels, S-adenosylhomocysteine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of S-adenosylhomocysteine are associated with S-adenosylhomocysteine (SAH) hydrolase deficiency and adenosine deaminase deficiency. S-Adenosylhomocysteine forms when there are elevated levels of homocysteine and adenosine. S-Adenosyl-L-homocysteine is a potent inhibitor of S-adenosyl-L-methionine-dependent methylation reactions. It is toxic to immature lymphocytes and can lead to immunosuppression (PMID:221926). S-adenosylhomocysteine, also known as adohcy or sah, is a member of the class of compounds known as 5-deoxy-5-thionucleosides. 5-deoxy-5-thionucleosides are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. S-adenosylhomocysteine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). S-adenosylhomocysteine can be found in a number of food items such as rapini, european plum, rambutan, and pepper (c. pubescens), which makes S-adenosylhomocysteine a potential biomarker for the consumption of these food products. S-adenosylhomocysteine can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine, as well as throughout most human tissues. S-adenosylhomocysteine exists in all living species, ranging from bacteria to humans. In humans, S-adenosylhomocysteine is involved in several metabolic pathways, some of which include phosphatidylcholine biosynthesis PC(14:0/18:3(9Z,12Z,15Z)), phosphatidylcholine biosynthesis PC(22:4(7Z,10Z,13Z,16Z)/22:0), phosphatidylcholine biosynthesis PC(20:3(5Z,8Z,11Z)/22:2(13Z,16Z)), and phosphatidylcholine biosynthesis PC(18:3(6Z,9Z,12Z)/22:5(7Z,10Z,13Z,16Z,19Z)). S-adenosylhomocysteine is also involved in several metabolic disorders, some of which include 3-phosphoglycerate dehydrogenase deficiency, hawkinsinuria, non ketotic hyperglycinemia, and tyrosine hydroxylase deficiency. Moreover, S-adenosylhomocysteine is found to be associated with neurodegenerative disease and parkinsons disease. S-adenosylhomocysteine is a non-carcinogenic (not listed by IARC) potentially toxic compound. S-Adenosyl-L-homocysteine (SAH) is an amino acid derivative used in several metabolic pathways in most organisms. It is an intermediate in the synthesis of cysteine and adenosine . [Spectral] S-Adenosyl-L-homocysteine (exact mass = 384.12159) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] S-Adenosyl-L-homocysteine (exact mass = 384.12159) and Cytidine (exact mass = 243.08552) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS SAH (S-Adenosylhomocysteine) is an amino acid derivative and a modulartor in several metabolic pathways. It is an intermediate in the synthesis of cysteine and adenosine[1]. SAH is an inhibitor for METTL3-METTL14 heterodimer complex (METTL3-14) with an IC50 of 0.9 μM[2]. SAH (S-Adenosylhomocysteine) is an amino acid derivative and a modulartor in several metabolic pathways. It is an intermediate in the synthesis of cysteine and adenosine[1]. SAH is an inhibitor for METTL3-METTL14 heterodimer complex (METTL3-14) with an IC50 of 0.9 μM[2].

   

1,4-Dihydroxy-2-naphthoic acid

1,4-dihydroxynaphthalene-2-carboxylic acid

C11H8O4 (204.0422568)


1,4-dihydroxy-2-naphthoate, also known as 1,4-dihydroxy-2-naphthalenecarboxylic acid, is a member of the class of compounds known as naphthalenecarboxylic acids. Naphthalenecarboxylic acids are compounds containing a naphthalene moiety, which bears a carboxylic acid group one or more positions. Naphthalene is a bicyclic compound that is made up of two fused benzene ring. 1,4-dihydroxy-2-naphthoate is practically insoluble (in water) and a moderately acidic compound (based on its pKa). 1,4-dihydroxy-2-naphthoate can be synthesized from 2-naphthoic acid. 1,4-dihydroxy-2-naphthoate can also be synthesized into 1,4-dihydroxy-2-naphthoyl-CoA. 1,4-dihydroxy-2-naphthoate can be found in a number of food items such as rowal, cinnamon, breadfruit, and horseradish, which makes 1,4-dihydroxy-2-naphthoate a potential biomarker for the consumption of these food products.

   

Chorismate

(3R,4R)-3-[(1-carboxyeth-1-en-1-yl)oxy]-4-hydroxycyclohexa-1,5-diene-1-carboxylic acid

C10H10O6 (226.04773600000001)


Chorismic acid, more commonly known as its anionic form chorismate, is an important biochemical intermediate in plants and microorganisms. It is a precursor for the aromatic amino acids phenylalanine and tyrosine,indole, indole derivatives and tryptophan,2,3-dihydroxybenzoic acid (DHB) used for enterobactin biosynthesis,the plant hormone salicylic acid and many alkaloids and other aromatic metabolites. -- Wikipedia [HMDB]. Chorismate is found in many foods, some of which are pigeon pea, ucuhuba, beech nut, and fireweed. Chorismic acid, more commonly known as its anionic form chorismate, is an important biochemical intermediate in plants and microorganisms. It is a precursor for the aromatic amino acids phenylalanine and tyrosine,indole, indole derivatives and tryptophan,2,3-dihydroxybenzoic acid (DHB) used for enterobactin biosynthesis,the plant hormone salicylic acid and many alkaloids and other aromatic metabolites. -- Wikipedia. CONFIDENCE standard compound; INTERNAL_ID 114

   

isochorismate

(5S,6S)-5-[(1-carboxyeth-1-en-1-yl)oxy]-6-hydroxycyclohexa-1,3-diene-1-carboxylic acid

C10H10O6 (226.04773600000001)


Isochorismate, also known as isochorismic acid, belongs to beta hydroxy acids and derivatives class of compounds. Those are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. Isochorismate is soluble (in water) and a weakly acidic compound (based on its pKa). Isochorismate can be found in a number of food items such as cucurbita (gourd), cherry tomato, chinese chestnut, and chinese water chestnut, which makes isochorismate a potential biomarker for the consumption of these food products. Isochorismate may be a unique E.coli metabolite.

   

Water

oxidane

H2O (18.0105642)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Carbon dioxide

Carbonic acid anhydride

CO2 (43.98983)


Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Phytyl diphosphate

{[hydroxy({[(2E)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy})phosphoryl]oxy}phosphonic acid

C20H42O7P2 (456.2405642)


Phytyl diphosphate participates in biosynthesis of steroids as well as porphyrin and metabolism. Phytyl diphosphate is produced from Geranylgeranyl diphosphate in biosynthesis of steroids. [HMDB]. Phytyl diphosphate is found in many foods, some of which are highbush blueberry, wild leek, evergreen huckleberry, and allium (onion). Phytyl diphosphate participates in biosynthesis of steroids as well as porphyrin and metabolism. Phytyl diphosphate is produced from Geranylgeranyl diphosphate in biosynthesis of steroids.

   

(1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate

(1R,6R)-2-(3-carboxypropanoyl)-6-hydroxycyclohexa-2,4-diene-1-carboxylic acid

C11H12O6 (240.0633852)


(1r,6r)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate, also known as shchc, belongs to gamma-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the C4 carbon atom (1r,6r)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). (1r,6r)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate can be found in a number of food items such as kiwi, muskmelon, purple laver, and lima bean, which makes (1r,6r)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate a potential biomarker for the consumption of these food products (1r,6r)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate may be a unique E.coli metabolite.

   

Demethylphylloquinone

2-[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]-1,4-dihydronaphthalene-1,4-dione

C30H44O2 (436.3341124)


Demethylphylloquinone is a form of vitamin K that occurs in nature as part of a series of compounds with a common 2-methyl-1,4 naphthoquinone nucleus and differing isoprenoid side chains at the 3 position. Vitamin K forms comprise a single major plant form, phylloquinone with a phytyl side chain and a family of bacterially synthesized menaquinones (MKs) with multiprenyl side chains. Bacterially produced menaquinones are biologically active forms of vitamin K that are present in high concentrations in the human lower bowel. Both phylloquinone and menaquinones are bioactive in hepatic gamma-carboxylation but long-chain MKs are less well absorbed. Liver stores of vitamin K are relatively small. The hepatic reserves of phylloquinone (approximately 10\\% of the total) are labile and turn over at a faster rate than menaquinones. Vitamin K is recognised as a factor required for normal blood coagulation, and in relation to its role in bone metabolism. Vitamin K is a substrate for a liver microsomal enzyme that catalyzes the conversion of specific glutamyl residues to gamma-carboxyglutamyl residues in a limited number of proteins. These include the vitamin K-dependent clotting factors: prothrombin (factor II), factor VII, factor IX, and factor X. In the absence of vitamin K, nonfunctional clotting factors are synthesized and hemorrhage can result. Vitamin K is a coenzyme for glutamate carboxylase, which mediates the conversion of glutamate to gamma-carboxyglutamate (Gla). There are at least three Gla proteins associated with bone tissue, of which osteocalcin is the most abundant and best known. Trabecular and cortical bone appear to contain substantial concentrations of both phylloquinone and menaquinones. (PMID: 8642453, 8527227, 15018483, 1573141) [HMDB] Demethylphylloquinone is a form of vitamin K that occurs in nature as part of a series of compounds with a common 2-methyl-1,4 naphthoquinone nucleus and differing isoprenoid side chains at the 3 position. Vitamin K forms comprise a single major plant form, phylloquinone with a phytyl side chain and a family of bacterially synthesized menaquinones (MKs) with multiprenyl side chains. Bacterially produced menaquinones are biologically active forms of vitamin K that are present in high concentrations in the human lower bowel. Both phylloquinone and menaquinones are bioactive in hepatic gamma-carboxylation but long-chain MKs are less well absorbed. Liver stores of vitamin K are relatively small. The hepatic reserves of phylloquinone (approximately 10\\% of the total) are labile and turn over at a faster rate than menaquinones. Vitamin K is recognised as a factor required for normal blood coagulation, and in relation to its role in bone metabolism. Vitamin K is a substrate for a liver microsomal enzyme that catalyzes the conversion of specific glutamyl residues to gamma-carboxyglutamyl residues in a limited number of proteins. These include the vitamin K-dependent clotting factors: prothrombin (factor II), factor VII, factor IX, and factor X. In the absence of vitamin K, nonfunctional clotting factors are synthesized and hemorrhage can result. Vitamin K is a coenzyme for glutamate carboxylase, which mediates the conversion of glutamate to gamma-carboxyglutamate (Gla). There are at least three Gla proteins associated with bone tissue, of which osteocalcin is the most abundant and best known. Trabecular and cortical bone appear to contain substantial concentrations of both phylloquinone and menaquinones. (PMID: 8642453, 8527227, 15018483, 1573141).

   

Vitamin K1

MIXTURE OF THE TRANS (E) AND CIS (Z) ISOMERS CONTAINING NOT LESS THAN 75\\% OF TRANS-PHYTOMENADIONE

C31H46O2 (450.34976159999997)


Phylloquinone is a member of the class of phylloquinones that consists of 1,4-naphthoquinone having methyl and phytyl groups at positions 2 and 3 respectively. The parent of the class of phylloquinones. It has a role as a cofactor, a plant metabolite and a human metabolite. It is a vitamin K and a member of phylloquinones. Vitamin K1, also called phylloquinone or phytonadione, is a fat soluble vitamin. Phylloquinone is a cofactor of the enzyme γ-carboxylase, which modifies and activates precursors to coagulation factors II, VII, IX, and X. It is indicated in the treatment of coagulation disorders due to faulty formation of coagulation factors II, VII, IX, and X caused by deficiency or interference in the activity of vitamin K. Phylloquinone has been synthesized since at least 1939, and was approved by the FDA prior to 1955. Vitamin K1 is a natural product found in Coffea arabica, Stachys annua, and other organisms with data available. Phytonadione is an analogue of the naphthoquinone vitamin K found in plants. The vitamins K are essential for blood coagulation as it is necessary for the hepatic synthesis of the coagulation factors II, VII, IX, and X; deficiency results in a bleeding diathesis. These vitamins are lipo-soluble; absorption via intestinal lymphatics requires the presence of bile salts. (NCI04) Phylloquinone is often called vitamin K1. It is a fat-soluble vitamin that is stable to air and moisture but decomposes in sunlight. It is found naturally in a wide variety of green plants. Phylloquinone is also an antidote for coumatetralyl. Vitamin K is needed for the posttranslational modification of certain proteins, mostly required for blood coagulation. A family of phylloquinones that contains a ring of 2-methyl-1,4-naphthoquinone and an isoprenoid side chain. Members of this group of vitamin K 1 have only one double bond on the proximal isoprene unit. Rich sources of vitamin K 1 include green plants, algae, and photosynthetic bacteria. Vitamin K1 has antihemorrhagic and prothrombogenic activity. See also: Broccoli (part of); Kale, cooked (part of); Cholecalciferol; phytonadione (component of) ... View More ... Vitamin K1, also known as phylloquinone or phytonadione, is a polycyclic aromatic ketone, based on 1,4-naphthoquinone, with 2-methyl and 3-phytyl substituents. Vitamin K is a family of phylloquinones that contain a ring of 2-methyl-1,4-naphthoquinone and an isoprenoid side chain. Several forms of vitamin K have been identified: vitamin K1 derived from plants, vitamin K2 (menaquinone) from bacteria and synthetic naphthoquinone provitamins, and vitamin K3 (menadione). Vitamin K1 has only one double bond on the proximal isoprene unit. Vitamin K1 possesses the same type and degree of activity as does naturally-occurring vitamin K, which is necessary for the production via the liver of active prothrombin (factor II), proconvertin (factor VII), plasma thromboplastin component (factor IX), and Stuart factor (factor X). Rich sources of vitamin K1 include green plants, algae, and photosynthetic bacteria. Vitamin K1 has antihemorrhagic and prothrombogenic activity. Vitamin K1 is a fat-soluble vitamin that is stable to air and moisture but decomposes in sunlight. Vitamin K1 is an antidote for coumatetralyl. A member of the class of phylloquinones that consists of 1,4-naphthoquinone having methyl and phytyl groups at positions 2 and 3 respectively. The parent of the class of phylloquinones. B - Blood and blood forming organs > B02 - Antihemorrhagics > B02B - Vitamin k and other hemostatics > B02BA - Vitamin k D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D050299 - Fibrin Modulating Agents > D000933 - Antifibrinolytic Agents D018977 - Micronutrients > D014815 - Vitamins Vitamin K1 a naturally occurring vitamin required for blood coagulation and bone and vascular metabolism. Vitamin K1 a naturally occurring vitamin required for blood coagulation and bone and vascular metabolism.

   

S-Adenosylmethionine

[(3S)-3-amino-3-carboxypropyl]({[(2S,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl})methylsulfanium

C15H23N6O5S+ (399.1450568)


S-adenosylmethionine, also known as sam or adomet, is a member of the class of compounds known as 5-deoxy-5-thionucleosides. 5-deoxy-5-thionucleosides are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. S-adenosylmethionine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). S-adenosylmethionine can be found in a number of food items such as common grape, half-highbush blueberry, jerusalem artichoke, and thistle, which makes S-adenosylmethionine a potential biomarker for the consumption of these food products. S-adenosylmethionine can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine, as well as throughout most human tissues. S-adenosylmethionine exists in all eukaryotes, ranging from yeast to humans. In humans, S-adenosylmethionine is involved in several metabolic pathways, some of which include phosphatidylcholine biosynthesis PC(22:1(13Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), phosphatidylcholine biosynthesis PC(22:0/18:3(9Z,12Z,15Z)), phosphatidylcholine biosynthesis PC(24:0/24:0), and phosphatidylcholine biosynthesis PC(20:5(5Z,8Z,11Z,14Z,17Z)/20:0). S-adenosylmethionine is also involved in several metabolic disorders, some of which include methylenetetrahydrofolate reductase deficiency (MTHFRD), 3-phosphoglycerate dehydrogenase deficiency, monoamine oxidase-a deficiency (MAO-A), and aromatic l-aminoacid decarboxylase deficiency. Moreover, S-adenosylmethionine is found to be associated with diabetes mellitus type 2 and neurodegenerative disease. S-adenosylmethionine is a non-carcinogenic (not listed by IARC) potentially toxic compound. S-Adenosyl methionine is a common cosubstrate involved in methyl group transfers, transsulfuration, and aminopropylation. Although these anabolic reactions occur throughout the body, most SAM-e is produced and consumed in the liver. More than 40 methyl transfers from SAM-e are known, to various substrates such as nucleic acids, proteins, lipids and secondary metabolites. It is made from adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase (EC 2.5.1.6). SAM was first discovered by Giulio Cantoni in 1952 . Significant first-pass metabolism in the liver. Approximately 50\\\% of S-Adenosylmethionine (SAMe) is metabolized in the liver. SAMe is metabolized to S-adenosylhomocysteine, which is then metabolized to homocysteine. Homocysteine can either be metabolized to cystathionine and then cysteine or to methionine. The cofactor in the metabolism of homocysteine to cysteine is vitamin B6. Cofactors for the metabolism of homocysteine to methionine are folic acid, vitamin B12 and betaine (T3DB). S-Adenosylmethionine (CAS: 29908-03-0), also known as SAM or AdoMet, is a physiologic methyl radical donor involved in enzymatic transmethylation reactions and present in all living organisms. It possesses anti-inflammatory activity and has been used in the treatment of chronic liver disease (From Merck, 11th ed). S-Adenosylmethionine is a natural substance present in the cells of the body. It plays a crucial biochemical role by donating a one-carbon methyl group in a process called transmethylation. S-Adenosylmethionine, formed from the reaction of L-methionine and adenosine triphosphate catalyzed by the enzyme S-adenosylmethionine synthetase, is the methyl-group donor in the biosynthesis of both DNA and RNA nucleic acids, phospholipids, proteins, epinephrine, melatonin, creatine, and other molecules.

   

Pyruvate

Pyruvate

C3H3O3- (87.00821880000001)


A 2-oxo monocarboxylic acid anion that is the conjugate base of pyruvic acid, arising from deprotonation of the carboxy group.

   

[Hydroxy(oxido)phosphoryl] phosphate

[Hydroxy(oxido)phosphoryl] phosphate

HO7P2-3 (174.9197556)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

coenzyme A(4-)

coenzyme A(4-)

C21H32N7O16P3S-4 (763.0839062)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Thiamine(1+) diphosphate(3-)

Thiamine(1+) diphosphate(3-)

C12H16N4O7P2S-2 (422.0214926)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Succinatobenzoate

2-Succinatobenzoate

C11H8O5-2 (220.0371718)