NCBI Taxonomy: 2760757

core Goodeniaceae (ncbi_taxid: 2760757)

found 96 associated metabolites at clade taxonomy rank level.

Ancestor: Goodeniaceae

Child Taxonomies: Scaevola, Goodenia, Verreauxia, Coopernookia, LAD clade

Loganin

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid methyl ester

C17H26O10 (390.1525896)


Loganin is an iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. It has a role as a plant metabolite, a neuroprotective agent, an EC 3.4.23.46 (memapsin 2) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an anti-inflammatory agent and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. It is a cyclopentapyran, a beta-D-glucoside, an enoate ester, a monosaccharide derivative, an iridoid monoterpenoid, a methyl ester and a secondary alcohol. It is functionally related to a loganetin. Loganin is one of the best-known of the iridoid glycosides. It is named for the Loganiaceae, having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae),[1] a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America. Loganin is a natural product found in Strychnos axillaris, Lonicera japonica, and other organisms with data available. An iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. Loganin, also known as loganoside, is a member of the class of compounds known as iridoid o-glycosides. Iridoid o-glycosides are iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton. Thus, loganin is considered to be an isoprenoid lipid molecule. Loganin is soluble (in water) and a very weakly acidic compound (based on its pKa). Loganin can be found in a number of food items such as groundcherry, annual wild rice, muscadine grape, and broad bean, which makes loganin a potential biomarker for the consumption of these food products. Loganin is one of the best-known of the iridoid glycosides.It is named for the Loganiaceae,having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae), a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America . Loganin is formed from loganic acid by the enzyme loganic acid O-methyltransferase (LAMT). Loganin then becomes a substrate for the enzyme secologanin synthase (SLS) to form secologanin, a secoiridoid monoterpene found as part of ipecac and terpene indole alkaloids. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects.

   

Marmesin

(2S)-2-(2-hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one

C14H14O4 (246.0892044)


Marmesin is a member of psoralens and a tertiary alcohol. 2-(2-Hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one is a natural product found in Zanthoxylum beecheyanum, Zanthoxylum arnottianum, and other organisms with data available. Nodakenetin is found in wild celery. Nodakenetin is a constituent of Angelica species Constituent of Angelica subspecies Nodakenetin is found in wild celery. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. (+)-Marmesin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13849-08-6 (retrieved 2024-09-04) (CAS RN: 13849-08-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402172)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). Constituent of Taraxacum officinale (dandelion). Taraxerol is found in many foods, some of which are kiwi, scarlet bean, prairie turnip, and grapefruit/pummelo hybrid. Taraxerol is found in alcoholic beverages. Taraxerol is a constituent of Taraxacum officinale (dandelion)

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.386145)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Betulin

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.38106)


Betulin is found in black elderberry. Betulin is a constituent of Corylus avellana (filbert) and Vicia faba. Betulin (lup-20(29)-ene-3 ,28-diol) is an abundant naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30\\\\\% of the dry weight of the extractive. The purpose of the compound in the bark is not known. It can be converted to betulinic acid (the alcohol group replaced by a carboxylic acid group), which is biologically more active than betulin itself. Chemically, betulin is a triterpenoid of lupane structure. It has a pentacyclic ring structure, and hydroxyl groups in positions C3 and C28 Betulin is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. It has a role as a metabolite, an antiviral agent, an analgesic, an anti-inflammatory agent and an antineoplastic agent. It is a pentacyclic triterpenoid and a diol. It derives from a hydride of a lupane. Betulin is a natural product found in Diospyros morrisiana, Euonymus carnosus, and other organisms with data available. A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. Constituent of Corylus avellana (filbert) and Vicia faba Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.

   

Betulinic acid

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.36032579999994)


Betulinic acid is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an anti-HIV agent, an antimalarial, an anti-inflammatory agent, an antineoplastic agent and a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of a lupane. Betulinic Acid has been used in trials studying the treatment of Dysplastic Nevus Syndrome. Betulinic acid is a natural product found in Ficus auriculata, Gladiolus italicus, and other organisms with data available. Betulinic Acid is a pentacyclic lupane-type triterpene derivative of betulin (isolated from the bark of Betula alba, the common white birch) with antiinflammatory, anti-HIV and antineoplastic activities. Betulinic acid induces apoptosis through induction of changes in mitochondrial membrane potential, production of reactive oxygen species, and opening of mitochondrial permeability transition pores, resulting in the release of mitochondrial apogenic factors, activation of caspases, and DNA fragmentation. Although originally thought to exhibit specific cytotoxicity against melanoma cells, this agent has been found to be cytotoxic against non-melanoma tumor cell types including neuroectodermal and brain tumor cells. A lupane-type triterpene derivative of betulin which was originally isolated from BETULA or birch tree. It has anti-inflammatory, anti-HIV and antineoplastic activities. See also: Jujube fruit (part of); Paeonia lactiflora root (part of). Betulinic acid is found in abiyuch. Betulinic acid is a naturally occurring pentacyclic triterpenoid which has anti-retroviral, anti-malarial, and anti-inflammatory properties, as well as a more recently discovered potential as an anticancer agent, by inhibition of topoisomerase. It is found in the bark of several species of plants, principally the white birch (Betula pubescens) from which it gets its name, but also the Ber tree (Ziziphus mauritiana), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas a member of the persimmon family, Tetracera boiviniana, the jambul (Syzygium formosanum), flowering quince (Chaenomeles sinensis), Rosemary, and Pulsatilla chinensis. Controversial is a role of p53 in betulinic acid-induced apoptosis. Fulda suggested p53-independent mechanism of the apoptosis, basing on fact of no accumulation of wild-type p53 detected upon treatment with the betulinic acid, whereas wild-type p53 protein strongly increased after treatment with doxorubicin. The suggestion is supported by study of Raisova. On the other hand Rieber suggested that betulinic acid exerts its inhibitory effect on human metastatic melanoma partly by increasing p53 A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Epibetulinic acid exhibits potent inhibitory effects on NO and prostaglandin E2 (PGE2) production in mouse macrophages (RAW 264.7) stimulated with bacterial endotoxin with IC50s of 0.7 and 0.6 μM, respectively. Anti-inflammatory activity[1].

   

Squalene

InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24

C30H50 (410.39123)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Oleic acid

Emersol 221 low titer white oleic acid

C18H34O2 (282.2558664)


Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Xanthyletin

8,8-dimethyl-2H,8H-pyrano[3,2-g]chromen-2-one

C14H12O3 (228.0786402)


Xanthyletin is a member of the class of compounds known as linear pyranocoumarins. Linear pyranocoumarins are organic compounds containing a pyran (or a hydrogenated derivative) linearly fused to a coumarin moiety. Xanthyletin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Xanthyletin can be found in lemon, lime, mandarin orange (clementine, tangerine), and sweet orange, which makes xanthyletin a potential biomarker for the consumption of these food products.

   

Hentriacontane

N-Hentriacontane

C31H64 (436.5007744)


Hentriacontane is found in black elderberry. Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers.

   

Cantleyine

(6S,7R)-6-hydroxy-7-methyl-6,7-dihydro-5H-cyclopenta[d]pyridine-4-carboxylic acid methyl ester

C11H13NO3 (207.0895388)


   

Acetylursolic acid

10-acetyloxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C32H50O4 (498.37089000000003)


Isolated from various plants, e.g. Leptospermum scoparium (red tea). Acetylursolic acid is found in many foods, some of which are common verbena, rosemary, tea, and japanese persimmon. Acetylursolic acid is found in common sage. Acetylursolic acid is isolated from various plants, e.g. Leptospermum scoparium (red tea Ursolic acid acetate (Acetylursolic acid), isolated from the aerial roots of Ficus microcarpa, exhibits cytotoxicity against KB cells with IC50 of 8.4 μM[1]. Ursolic acid acetate (Acetylursolic acid), isolated from the aerial roots of Ficus microcarpa, exhibits cytotoxicity against KB cells with IC50 of 8.4 μM[1].

   

Myricadiol

8a-(hydroxymethyl)-4,4,6a,11,11,12b,14b-heptamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O2 (442.38106)


Myricadiol is a constituent of Lithocarpus cornea, Myrica species, Scaevola frutescens and others [CCD] Constituent of Lithocarpus cornea, Myrica subspecies, Scaevola frutescens and others [CCD]

   

alpha-Amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Epi-alpha-amyrin, also known as epi-α-amyrin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Epi-alpha-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Epi-alpha-amyrin can be found in herbs and spices, pomes, and rosemary, which makes epi-alpha-amyrin a potential biomarker for the consumption of these food products.

   

Friedelin

4,4a,6b,8a,11,11,12b,14a-octamethyl-docosahydropicen-3-one

C30H50O (426.386145)


Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as apple, pear, mammee apple, and sugar apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Lupenone

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one

C30H48O (424.37049579999996)


1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. 1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one is an extremely weak basic (essentially neutral) compound (based on its pKa). This compound has been identified in human blood as reported by (PMID: 31557052 ). Lupenone is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Lupenone is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.

   

Taraxerone

4,4,6a,8a,11,11,12b,14b-Octamethyl-1,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-octadecahydro-3(2H)-picenone

C30H48O (424.37049579999996)


   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.386145)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402172)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Squalene

InChI=1\C30H50\c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4\h15-18,23-24H,9-14,19-22H2,1-8H3\b27-17+,28-18+,29-23+,30-24

C30H50 (410.39123)


Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Lupenone

(1R,3aR,4S,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-one

C30H48O (424.37049579999996)


Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   
   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). A pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15.

   

betulinic acid

betulinic acid

C30H48O3 (456.36032579999994)


Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].

   

Myricadiol

4A(2H)-PICENEMETHANOL, 1,3,4,5,6B,7,8,8A,9,10,11,12,12A,12B,13,14,14A,14B-OCTADECAHYDRO-10-HYDROXY-2,2,6B,9,9,12A,14A-HEPTAMETHYL-, (4AS-(4A.ALPHA.,6B.ALPHA.,8A.BETA.,10.ALPHA.,12A.ALPHA.,12B.BETA.,14A.BETA.,14B.ALPHA.))-

C30H50O2 (442.38106)


(3S,4aR,6aR,6aS,8aS,12aS,14aR,14bR)-8a-(hydroxymethyl)-4,4,6a,6a,11,11,14b-heptamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol is a natural product found in Tamarix aphylla, Scaevola spinescens, and other organisms with data available. See also: Myrica cerifera root bark (part of).

   

Loganic acid

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid

C16H24O10 (376.13694039999996)


8-Epiloganic acid is a natural product found in Plantago atrata, Lonicera japonica, and other organisms with data available. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].

   

Oleic acid

cis-9-Octadecenoic acid

C18H34O2 (282.2558664)


An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Betulin

NCGC00168803-04_C30H50O2_Lup-20(29)-ene-3,28-diol, (3beta)-

C30H50O2 (442.38106)


Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.

   
   

Hexadecanoic acid

Hexadecanoic acid

C16H32O2 (256.2402172)


   

Acetylursolic acid

10-(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C32H50O4 (498.37089000000003)


Ursolic acid acetate (Acetylursolic acid), isolated from the aerial roots of Ficus microcarpa, exhibits cytotoxicity against KB cells with IC50 of 8.4 μM[1]. Ursolic acid acetate (Acetylursolic acid), isolated from the aerial roots of Ficus microcarpa, exhibits cytotoxicity against KB cells with IC50 of 8.4 μM[1].

   

Epi-a-amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


   

HENTRIACONTANE

HENTRIACONTANE

C31H64 (436.5007744)


   

Marmesin

7H-Furo[3,2g][1]-benzopyran-7-one, (-2,3-dihydro-2-(1-hydroxy-1-hydroxymethylethyl)-, (R)

C14H14O4 (246.0892044)


Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin. Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available. A marmesin with R-configuration. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.

   

threo-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[-(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol

threo-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[-(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol

C20H24O7 (376.1521954)


A member of the class of propane-1,3-diols that is propane-1,3-diol substituted at position 1 by a 4-hydroxy-3-methoxyphenyl and at position 2 by a 4-[(1E)-3-hydroxyprop-1-en-1-yl]-2-methoxyphenoxy group (the 1R,2R stereoisomer). It is isolated from the whole plant of Lepisorus contortus.

   

4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 1-methyl-2,7-naphthyridine-4-carboxylate

4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 1-methyl-2,7-naphthyridine-4-carboxylate

C21H23N3O4 (381.16884780000004)


   

(4as,6s,7r,7as)-4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl pyridine-3-carboxylate

(4as,6s,7r,7as)-4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl pyridine-3-carboxylate

C17H20N2O4 (316.14230000000003)


   

(3r,4ar,6ar,8ar,12ar,12bs,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,11,11,12b,14b-heptamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

(3r,4ar,6ar,8ar,12ar,12bs,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,11,11,12b,14b-heptamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

C30H50O2 (442.38106)


   

methyl (4as,6s,7r,7as)-6-hydroxy-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridine-4-carboxylate

methyl (4as,6s,7r,7as)-6-hydroxy-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridine-4-carboxylate

C11H17NO3 (211.1208372)


   

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-ol

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.386145)


   

4-(methoxycarbonyl)-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-6-yl 5-ethenyl-4-(2-oxoethyl)-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate

4-(methoxycarbonyl)-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-6-yl 5-ethenyl-4-(2-oxoethyl)-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate

C33H46O19 (746.2633166)


   

methyl 2-methyl-3-oxa-9-azatricyclo[4.4.0.0²,⁴]deca-1(6),7,9-triene-7-carboxylate

methyl 2-methyl-3-oxa-9-azatricyclo[4.4.0.0²,⁴]deca-1(6),7,9-triene-7-carboxylate

C11H11NO3 (205.0738896)


   

methyl 6-hydroxy-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridine-4-carboxylate

methyl 6-hydroxy-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridine-4-carboxylate

C11H17NO3 (211.1208372)


   

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.38106)


   

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-yl acetate

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967092)


   

4-({6-hydroxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-5-yl}methoxy)-4-oxobutanoic acid

4-({6-hydroxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-5-yl}methoxy)-4-oxobutanoic acid

C24H36O5 (404.2562606)


   

(3s,14br)-8a-(hydroxymethyl)-4,4,6a,11,11,12b,14b-heptamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

(3s,14br)-8a-(hydroxymethyl)-4,4,6a,11,11,12b,14b-heptamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

C30H50O2 (442.38106)


   

methyl 7-hydroxy-7-methylcyclopenta[c]pyridine-4-carboxylate

methyl 7-hydroxy-7-methylcyclopenta[c]pyridine-4-carboxylate

C11H11NO3 (205.0738896)


   

(4as,6s,7r,7as)-1-hydroxy-4-(methoxycarbonyl)-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 1-methyl-2,7-naphthyridine-4-carboxylate

(4as,6s,7r,7as)-1-hydroxy-4-(methoxycarbonyl)-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 1-methyl-2,7-naphthyridine-4-carboxylate

C21H21N3O5 (395.14811360000004)


   

(3r,4as,6ar,6bs,8ar,11r,12s,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

(3r,4as,6ar,6bs,8ar,11r,12s,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O (426.386145)


   

methyl (7r)-7-hydroxy-7-methylcyclopenta[c]pyridine-4-carboxylate

methyl (7r)-7-hydroxy-7-methylcyclopenta[c]pyridine-4-carboxylate

C11H11NO3 (205.0738896)


   

methyl 1,6-dihydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 1,6-dihydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C11H16O5 (228.0997686)


   

1-hydroxy-4-(methoxycarbonyl)-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl pyridine-3-carboxylate

1-hydroxy-4-(methoxycarbonyl)-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl pyridine-3-carboxylate

C17H18N2O5 (330.1215658)


   

(4as,6s,7r,7as)-1-hydroxy-4-(methoxycarbonyl)-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl pyridine-3-carboxylate

(4as,6s,7r,7as)-1-hydroxy-4-(methoxycarbonyl)-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl pyridine-3-carboxylate

C17H18N2O5 (330.1215658)


   

(2s)-2-(prop-1-en-2-yl)-2h,3h-furo[3,2-g]chromen-7-one

(2s)-2-(prop-1-en-2-yl)-2h,3h-furo[3,2-g]chromen-7-one

C14H12O3 (228.0786402)


   

(3s,4ar,6ar,8ar,12ar,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-yl acetate

(3s,4ar,6ar,8ar,12ar,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967092)


   

(1s,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

(1s,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C32H50O4 (498.37089000000003)


   

4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl pyridine-3-carboxylate

4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl pyridine-3-carboxylate

C17H20N2O4 (316.14230000000003)


   

methyl 7-methyl-5h-cyclopenta[c]pyridine-4-carboxylate

methyl 7-methyl-5h-cyclopenta[c]pyridine-4-carboxylate

C11H11NO2 (189.0789746)


   

(6s,7r)-6-hydroxy-7-methyl-1h,2h,3h,4h,5h,6h,7h-cyclopenta[c]pyridine-4-carboxylic acid

(6s,7r)-6-hydroxy-7-methyl-1h,2h,3h,4h,5h,6h,7h-cyclopenta[c]pyridine-4-carboxylic acid

C10H15NO3 (197.105188)


   

(6s,7r)-4-(methoxycarbonyl)-7-methyl-5h,6h,7h-cyclopenta[c]pyridin-6-yl (1r)-1-methyl-1,2-dihydro-2,7-naphthyridine-4-carboxylate

(6s,7r)-4-(methoxycarbonyl)-7-methyl-5h,6h,7h-cyclopenta[c]pyridin-6-yl (1r)-1-methyl-1,2-dihydro-2,7-naphthyridine-4-carboxylate

C21H21N3O4 (379.15319860000005)


   

(4as,6s,7r,7as)-4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl (1s)-1-methyl-1,2-dihydro-2,7-naphthyridine-4-carboxylate

(4as,6s,7r,7as)-4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl (1s)-1-methyl-1,2-dihydro-2,7-naphthyridine-4-carboxylate

C21H25N3O4 (383.184497)


   

methyl (2s,4r)-2-methyl-3-oxa-9-azatricyclo[4.4.0.0²,⁴]deca-1(6),7,9-triene-7-carboxylate

methyl (2s,4r)-2-methyl-3-oxa-9-azatricyclo[4.4.0.0²,⁴]deca-1(6),7,9-triene-7-carboxylate

C11H11NO3 (205.0738896)


   

(4s,4as,6s,7r,7as)-4-(methoxycarbonyl)-7-methyl-1-oxo-hexahydro-3h-cyclopenta[c]pyran-6-yl (4s,5r,6s)-5-ethenyl-4-(2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate

(4s,4as,6s,7r,7as)-4-(methoxycarbonyl)-7-methyl-1-oxo-hexahydro-3h-cyclopenta[c]pyran-6-yl (4s,5r,6s)-5-ethenyl-4-(2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate

C27H36O14 (584.2104956000001)


   

2-(prop-1-en-2-yl)-2h,3h-furo[3,2-g]chromen-7-one

2-(prop-1-en-2-yl)-2h,3h-furo[3,2-g]chromen-7-one

C14H12O3 (228.0786402)


   

1-hydroxy-4-(methoxycarbonyl)-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-6-yl 5-formyl-4-(2-methoxy-2-oxoethyl)-6-methyl-5,6-dihydro-4h-pyran-3-carboxylate

1-hydroxy-4-(methoxycarbonyl)-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-6-yl 5-formyl-4-(2-methoxy-2-oxoethyl)-6-methyl-5,6-dihydro-4h-pyran-3-carboxylate

C22H28O10 (452.16823880000004)


   

(4ar,6ar,6bs,8ar,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,13,14,14a-dodecahydro-1h-picen-3-one

(4ar,6ar,6bs,8ar,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,13,14,14a-dodecahydro-1h-picen-3-one

C30H48O (424.37049579999996)


   

4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 1-methyl-1,2-dihydro-2,7-naphthyridine-4-carboxylate

4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 1-methyl-1,2-dihydro-2,7-naphthyridine-4-carboxylate

C21H25N3O4 (383.184497)


   

(1r,4as,6s,7r,7as)-1-hydroxy-4-(methoxycarbonyl)-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-6-yl (4s,5r,6s)-5-ethenyl-4-(2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate

(1r,4as,6s,7r,7as)-1-hydroxy-4-(methoxycarbonyl)-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-6-yl (4s,5r,6s)-5-ethenyl-4-(2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate

C27H36O14 (584.2104956000001)


   

(3r,4ar,6ar,6bs,8ar,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-yl acetate

(3r,4ar,6ar,6bs,8ar,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967092)


   

4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,13,14,14a-dodecahydro-1h-picen-3-one

4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,13,14,14a-dodecahydro-1h-picen-3-one

C30H48O (424.37049579999996)


   

(4ar,6ar,8ar,12as,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-2,4a,5,6,8,9,10,12,12a,13,14,14a-dodecahydro-1h-picen-3-one

(4ar,6ar,8ar,12as,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-2,4a,5,6,8,9,10,12,12a,13,14,14a-dodecahydro-1h-picen-3-one

C30H48O (424.37049579999996)


   

methyl (4as,6s,7r,7as)-1,6-dihydroxy-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridine-4-carboxylate

methyl (4as,6s,7r,7as)-1,6-dihydroxy-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridine-4-carboxylate

C11H15NO4 (225.100103)


   

(4r,4as,6ar,6br,8ar,12as,12bs,14as,14br)-4,4a,6b,8a,11,11,12b,14a-octamethyl-tetradecahydro-1h-picen-3-one

(4r,4as,6ar,6br,8ar,12as,12bs,14as,14br)-4,4a,6b,8a,11,11,12b,14a-octamethyl-tetradecahydro-1h-picen-3-one

C30H50O (426.386145)


   

(4as,6s,7r,7as)-4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 1-methyl-2,7-naphthyridine-4-carboxylate

(4as,6s,7r,7as)-4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 1-methyl-2,7-naphthyridine-4-carboxylate

C21H23N3O4 (381.16884780000004)


   

1-hydroxy-4-(methoxycarbonyl)-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 1-methyl-2,7-naphthyridine-4-carboxylate

1-hydroxy-4-(methoxycarbonyl)-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 1-methyl-2,7-naphthyridine-4-carboxylate

C21H21N3O5 (395.14811360000004)


   

methyl (4as)-1,6-dihydroxy-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridine-4-carboxylate

methyl (4as)-1,6-dihydroxy-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridine-4-carboxylate

C11H15NO4 (225.100103)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

(3s,4ar,6ar,6bs,8ar,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-yl acetate

(3s,4ar,6ar,6bs,8ar,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967092)


   

methyl (1r,4as,6s,7r,7as)-1,6-dihydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1r,4as,6s,7r,7as)-1,6-dihydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C11H16O5 (228.0997686)


   

(3s,4ar,6ar,8ar,12ar,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-yl acetate

(3s,4ar,6ar,8ar,12ar,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967092)


   

(1s,2r,4as,6as,6br,10s,12ar,12br,14bs)-10-(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

(1s,2r,4as,6as,6br,10s,12ar,12br,14bs)-10-(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C32H50O4 (498.37089000000003)


   

methyl 6-hydroxy-7-methyl-5h,6h,7h-cyclopenta[c]pyridine-4-carboxylate

methyl 6-hydroxy-7-methyl-5h,6h,7h-cyclopenta[c]pyridine-4-carboxylate

C11H13NO3 (207.0895388)


   

4-{[(1s,4s,5s,6r,9s,10s,13r)-6-hydroxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-5-yl]methoxy}-4-oxobutanoic acid

4-{[(1s,4s,5s,6r,9s,10s,13r)-6-hydroxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-5-yl]methoxy}-4-oxobutanoic acid

C24H36O5 (404.2562606)


   

(4as,6s,7r,7as)-4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 5-ethenylpyridine-3-carboxylate

(4as,6s,7r,7as)-4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 5-ethenylpyridine-3-carboxylate

C19H22N2O4 (342.1579492)


   

(3r,4r,4as,6as,6br,8ar,12ar,12bs,14as,14bs)-4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicen-3-ol

(3r,4r,4as,6as,6br,8ar,12ar,12bs,14as,14bs)-4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicen-3-ol

C30H52O (428.4017942)


   

methyl 1,6-dihydroxy-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridine-4-carboxylate

methyl 1,6-dihydroxy-7-methyl-4ah,5h,6h,7h,7ah-cyclopenta[c]pyridine-4-carboxylate

C11H15NO4 (225.100103)


   

4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 5-ethenylpyridine-3-carboxylate

4-(methoxycarbonyl)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridin-6-yl 5-ethenylpyridine-3-carboxylate

C19H22N2O4 (342.1579492)


   

4-(methoxycarbonyl)-7-methyl-5h,6h,7h-cyclopenta[c]pyridin-6-yl 1-methyl-1,2-dihydro-2,7-naphthyridine-4-carboxylate

4-(methoxycarbonyl)-7-methyl-5h,6h,7h-cyclopenta[c]pyridin-6-yl 1-methyl-1,2-dihydro-2,7-naphthyridine-4-carboxylate

C21H21N3O4 (379.15319860000005)


   

(3r,4ar,6ar,8as,12as,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

(3r,4ar,6ar,8as,12as,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.386145)


   

(1r,4as,6s,7r,7as)-1-hydroxy-4-(methoxycarbonyl)-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-6-yl (4s,5s,6s)-5-formyl-4-(2-methoxy-2-oxoethyl)-6-methyl-5,6-dihydro-4h-pyran-3-carboxylate

(1r,4as,6s,7r,7as)-1-hydroxy-4-(methoxycarbonyl)-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-6-yl (4s,5s,6s)-5-formyl-4-(2-methoxy-2-oxoethyl)-6-methyl-5,6-dihydro-4h-pyran-3-carboxylate

C22H28O10 (452.16823880000004)


   

(1r)-1-[(3r,4as,6as,7s,10ar,10bs)-7-(hydroxymethyl)-3,4a,7,10a-tetramethyl-octahydro-1h-naphtho[2,1-b]pyran-3-yl]ethane-1,2-diol

(1r)-1-[(3r,4as,6as,7s,10ar,10bs)-7-(hydroxymethyl)-3,4a,7,10a-tetramethyl-octahydro-1h-naphtho[2,1-b]pyran-3-yl]ethane-1,2-diol

C20H36O4 (340.2613456)