Exact Mass: 692.4135
Exact Mass Matches: 692.4135
Found 368 metabolites which its exact mass value is equals to given mass value 692.4135
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
9,12,15-Octadecatrienoic acid 1-[(phosphonoxy)methyl]-1,2-ethanediyl ester
9,12,15-Octadecatrienoic acid 1-[(phosphonoxy)methyl]-1,2-ethanediyl ester is classified as a Natural Food Constituent (code WA) in the DF Classified as a Natural Food Constituent (code WA) in the DFC
Opiorphin
Opiorphin is an endogenous 5-residue opioid peptide (Gln-Arg-Phe-Ser-Arg) first isolated from human saliva. Initial research with mice shows the compound has a painkilling effect greater than that of morphine. It works by stopping the normal breakdown of enkephalins, natural pain-killing opioids in the spinal cord. Opiorphin originates from the N-terminal region of the protein PROL1 (proline rich, lacrimal 1) and inhibits three proteases: neutral ecto-endopeptidase (MME), ecto-aminopeptidase N (ANPEP) and a dipeptidyl peptidase DPP3. This protease inhibitory action extends the duration of enkephalins, which are natural pain killers that are released in response to specific potentially painful stimuli. Opiorphin, an opioid peptide, is a potent enkephalin-inactivating zinc ectopeptidases in human inhibitor. Opiorphin inhibits two enkephalin-catabolizing ectoenzymes, human neutral ecto-endopeptidase, hNEP (EC 3.4.24.11) with an IC50 value of 11 μM, and human ecto-aminopeptidase, hAP-N (EC 3.4.11.2). Opiorphin displays potent analgesic activity by activating endogenous opioid-dependent transmission[1][2].
PA(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
PA(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z))
PA(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of osbond acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z))
PA(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of clupanodonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))
PA(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z))
PA(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z))
PA(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z))
PA(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z))
PA(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z))
PA(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z))
PA(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z))
PA(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z))
PA(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z)), in particular, consists of one chain of osbond acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z))
PA(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z)), in particular, consists of one chain of clupanodonic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0)
PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
Concanamycin
PA(12:0/PGF1alpha)
PA(12:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/PGF1alpha), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGF1alpha/12:0)
PA(PGF1alpha/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/12:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(15:0/18:1(12Z)-2OH(9,10))
PA(15:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-2OH(9,10)/15:0)
PA(18:1(12Z)-2OH(9,10)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/15:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(a-15:0/18:1(12Z)-2OH(9,10))
PA(a-15:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-2OH(9,10)/a-15:0)
PA(18:1(12Z)-2OH(9,10)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/a-15:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-12:0/PGF1alpha)
PA(i-12:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/PGF1alpha), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGF1alpha/i-12:0)
PA(PGF1alpha/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/i-12:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-15:0/18:1(12Z)-2OH(9,10))
PA(i-15:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-2OH(9,10)/i-15:0)
PA(18:1(12Z)-2OH(9,10)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/i-15:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
[(2R,3R,4S,5S,6R)-3-acetyloxy-2-(acetyloxymethyl)-5-hexanoyloxy-6-[(2S,3R)-2,3,4-trihydroxybutoxy]oxan-4-yl] 14-hydroxytetradecanoate
16beta-acetoxy-3-O-beta-D-xylopyranosyl-22,25-epoxyholosta-9(11)-ene-3beta,12alpha,17alpha-triol|nobiliside C
(12R,20S)-12-O-(2-O-acetyl-beta-D-glucopyranosyl)-20-hydroxy-24-methylene-3,4-secodammar-4(28)-en-3-oic acid
Medicagenic acid 3-O-beta-D-glucoside dimethyl ester
3,23-(2-hydroxyethylidene)-3beta,19alpha,23-trihydroxyurs-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester|oblonganoside J
25-(acetyloxy)-2-(beta-D-glucopyranosyloxy)-3,16-dihydroxy-9-methyl-19-norlanosta-5,23-dien-22-one
2alpha,3beta,19alpha-trihydroxyurs-12-en-28-oic acid 28-O-6-O-acetyl-beta-D-glucopyranosyl ester|potentillanoside C
16,17-didehydro-23R,24R-O-acetylhydroshengmanol-3-O-beta-D-galactopyranoside
2alpha-acetoxyl-3beta,6beta-dihydroxylup-20(29)-en-28-oic acid beta-glucopyranosyl ester
3-O-beta-D-glucopyranosylplatycogenic acid A lactone methyl ester
3alpha-Methacryloyloxy-2beta-hydroxy-ent-labd-7-en-15-oic acid-2-O-beta-fucopyranoside methyl ester triacetate
24-O-acetyl-25-O-methyl-7,8-didehydrohydroshengmanol 3-O-beta-D-xylopyranoside
(3beta,5alpha,6beta,8beta,15alpha,16beta)-3-O-[2,4-Di-O-methyl-beta-D-xylopyranoside],15-sulfate,Cholestane-3,6,8,15,16-pentol
3-dodecanoyl-3-(2-methylbutanoyl)-4-(3-methylbutanoyl)sucrose
[(2R,3R,4S,5S,6R)-3-acetyloxy-2-(acetyloxymethyl)-5-hexanoyloxy-6-[(2S,3R)-2,3,4-trihydroxybutoxy]oxan-4-yl] 14-hydroxytetradecanoate
Monensin sodium salt
Monensin sodium salt is an antibiotic secreted by the bacteria Streptomyces cinnamonensis. Monensin sodium salt is an ionophore that mediates Na+/H+ exchange. Monensin sodium salt causes a marked enlargement of the multivesicular bodies (MVBs) and regulates exosome secretion[1][2][3][4].
PA(18:3/18:3)[U]
PA(18:3/18:3)
PA(18:3/18:3)[S]
PA(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))
PA(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z))
PA(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z))
PA(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z))
PA(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z))
PA(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z))
PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0)
PA(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
N,N-(methylenedi-p-phenylene)bis[N-[3-(triethoxysilyl)propyl]urea]
L-BETA,GAMMA-DIPALMITOYL-ALPHA-PHOSPHATIDIC ACID DISODIUM SALT
1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid sodium salt
Monensin Sodium
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D007476 - Ionophores > D061209 - Proton Ionophores D007476 - Ionophores > D061210 - Sodium Ionophores D049990 - Membrane Transport Modulators Monensin sodium salt is an antibiotic secreted by the bacteria Streptomyces cinnamonensis. Monensin sodium salt is an ionophore that mediates Na+/H+ exchange. Monensin sodium salt causes a marked enlargement of the multivesicular bodies (MVBs) and regulates exosome secretion[1][2][3][4].
3-Lauryl-3-(2-methylbutanoyl)-4-(isovaleryl)sucrose
2-[[(2R)-2-[(E)-7-carboxy-5-hydroxyhept-6-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate
[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexacos-15-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate
[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-octadec-9-enoate
[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-icos-11-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] heptadecanoate
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] pentadecanoate
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] hexadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-henicos-11-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-docos-13-enoate
[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (Z)-tetracos-13-enoate
[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-octadeca-9,12-dienoate
[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (Z)-octadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate
(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-octadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (11Z,14Z)-icosa-11,14-dienoate
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] pentadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] heptadecanoate
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] hexadecanoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-11-enoate
[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-9-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-hexadec-9-enoate
[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate
[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] octadec-17-enoate
[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate
[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-icos-13-enoate
[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-icos-13-enoate
[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-6-enoate
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-icos-11-enoate
[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate
[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-11-enoate
[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate
[1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[1-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] pentadecanoate
[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-13-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-4-enoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-4-enoate
[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate
[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate
[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-7-enoate
[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate
[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,11E)-octadeca-9,11-dienoate
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate
[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,11E)-octadeca-9,11-dienoate
[3-[2,3-bis[[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propoxy]-1-carboxypropyl]-trimethylazanium
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-13-enoate
[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-9-enoate
2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-icos-11-enoate
[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate
[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate
[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] octadec-17-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-heptadec-9-enoate
[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] pentadecanoate
[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate
[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-6-enoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-heptadec-9-enoate
[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate
[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate
[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate
[1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] hexadecanoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-7-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-hexadec-7-enoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] hexadecanoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-hexadec-7-enoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-hexadec-9-enoate
[1-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate
[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate
Opiorphin
Opiorphin, an opioid peptide, is a potent enkephalin-inactivating zinc ectopeptidases in human inhibitor. Opiorphin inhibits two enkephalin-catabolizing ectoenzymes, human neutral ecto-endopeptidase, hNEP (EC 3.4.24.11) with an IC50 value of 11 μM, and human ecto-aminopeptidase, hAP-N (EC 3.4.11.2). Opiorphin displays potent analgesic activity by activating endogenous opioid-dependent transmission[1][2].
3-(Phosphonooxy)-1,2-propanediyl bis((9Z,12Z,15Z)-9,12,15-octadecatrienoate)
1-oleoyl-2-lauroyl-sn-glycero-3-phospho-(1-sn-glycerol)
A 1,2-diacyl-sn-glycero-3-phospho-(1-sn-glycerol) in which the phosphatidyl acyl groups at positions 1 and 2 are specified as oleoyl and lauroyl respectively.
lejimalide B
A macrolide that is isolated from the marine tunicate Eudistoma cf. rigida and exhibits potent in vitro cytotoxic activity.
MGDG(30:5)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
LBPA(30:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
[(4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carbonyloxy]acetic acid
(6r)-6-[(1e,3r,5e,7e,9s,11r,12s,13s)-12-{[(2r,3s,4r,5s,6r)-5-{[(2r,4s,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-3,7,9,11,13-pentamethyl-10-oxohexadeca-1,5,7-trien-1-yl]-5,6-dihydropyran-2-one
(1s,3r,6r,8r,12s,13r,15r,16r,17r)-15-[(2r,5r)-5,6-dihydroxy-6-methyl-4-oxoheptan-2-yl]-13-hydroxy-7,7,12,16-tetramethyl-14-oxo-6-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-10-en-17-yl acetate
(6s,6ar,10as,14r)-12-hexanoyl-10a,13-dihydroxy-6-isopropyl-2,2,4,4,8,8,10,10-octamethyl-14-(2-methylpropyl)-6a,14-dihydro-6h-5,11-dioxapentaphene-1,3,7,9-tetrone
(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10ar,10bs)-8-(acetyloxy)-3,4,6-tris(butanoyloxy)-7-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl butanoate
(2r,3s)-3-methyl-1-{[(2r,3s)-3-methyl-1-{[(2r,3s)-3-methyl-1-{[(2r,3s)-3-methyl-1-oxo-1-[(2r,3s)-2,3,4-trihydroxybutoxy]pentan-2-yl]oxy}-1-oxopentan-2-yl]oxy}-1-oxopentan-2-yl]oxy}-1-oxopentan-2-yl (2r,3s)-2-hydroxy-3-methylpentanoate
4,8a-dimethyl 2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylate
methyl (1s,12r,14s,15e,18s)-15-ethylidene-12-[(1r,15s,17s,18r)-17-[(1s)-1-hydroxyethyl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraen-5-yl]-18-(hydroxymethyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate
6-[12-({5-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-3,4-dihydroxy-6-methyloxan-2-yl}oxy)-3,7,9,11,13-pentamethyl-10-oxohexadeca-1,5,7-trien-1-yl]-5,6-dihydropyran-2-one
(6r)-6-[(1e,3s,5e,7e,9r,11s,12r,13s)-12-{[(2r,3r,4s,5r,6r)-5-{[(2s,4s,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-3,7,9,11,13-pentamethyl-10-oxohexadeca-1,5,7-trien-1-yl]-5,6-dihydropyran-2-one
4,8a-dimethyl (2s,3r,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylate
(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10as,10br)-8-(acetyloxy)-3,4,6-tris(butanoyloxy)-7-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl butanoate
15-(5,6-dihydroxy-6-methyl-4-oxoheptan-2-yl)-13-hydroxy-7,7,12,16-tetramethyl-14-oxo-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-10-en-17-yl acetate
1-{10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-13-en-8-yl}-2-methoxy-2-methylpropyl acetate
(1r,3as,5ar,7s,9as,11ar)-1-[(2r,5s)-5-(acetyloxy)-5,6-dimethylheptan-2-yl]-6,6,9a,11a-tetramethyl-7-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid
1-[5-(acetyloxy)-5,6-dimethylheptan-2-yl]-6,6,9a,11a-tetramethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid
3-O-(6-O-methyl-β-D-glucuronopyranosyl)methyl asiatate
{"Ingredient_id": "HBIN009015","Ingredient_name": "3-O-(6-O-methyl-\u03b2-D-glucuronopyranosyl)methyl asiatate","Alias": "NA","Ingredient_formula": "C38H60O11","Ingredient_Smile": "NA","Ingredient_weight": "692.88","OB_score": "20.33901891","CAS_id": "140366-50-3","SymMap_id": "SMIT03061","TCMID_id": "NA","TCMSP_id": "MOL000462","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}