Exact Mass: 720.3721

Exact Mass Matches: 720.3721

Found 214 metabolites which its exact mass value is equals to given mass value 720.3721, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Voacorine

Epivoacorine

C43H52N4O6 (720.3887)


   

PA(13:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O12P (720.4213)


PA(13:0/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/6 keto-PGF1alpha), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/13:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O12P (720.4213)


PA(6 keto-PGF1alpha/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/13:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(13:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O12P (720.4213)


PA(13:0/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/TXB2), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/13:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O12P (720.4213)


PA(TXB2/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/13:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.4213)


PA(a-13:0/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/6 keto-PGF1alpha), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/a-13:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.4213)


PA(6 keto-PGF1alpha/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/a-13:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.4213)


PA(a-13:0/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/TXB2), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/a-13:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.4213)


PA(TXB2/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/a-13:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.4213)


PA(i-13:0/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/6 keto-PGF1alpha), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/i-13:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.4213)


PA(6 keto-PGF1alpha/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/i-13:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.4213)


PA(i-13:0/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/TXB2), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/i-13:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.4213)


PA(TXB2/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/i-13:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(2:0/LTE4)

(2-{[(2R)-3-(acetyloxy)-2-{[(2R)-2-amino-3-{[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulphanyl}propanoyl]oxy}propyl phosphonato]oxy}ethyl)trimethylazanium

C33H57N2O11PS (720.3421)


PC(2:0/LTE4) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/LTE4), in particular, consists of one chain of one acetyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(LTE4/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(2R)-2-amino-3-{[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulphanyl}propanoyl]oxy}propyl phosphonato]oxy}ethyl)trimethylazanium

C33H57N2O11PS (720.3421)


PC(LTE4/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(LTE4/2:0), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

Cucurbitacin B 2-O-beta-D-glucoside

Cucurbitacin B 2-O-beta-D-glucoside

C38H56O13 (720.3721)


   

25-O-Acetylbryoamaride

25-O-Acetylbryoamaride

C38H56O13 (720.3721)


   

19-20-Epoxyconoduramine

19-20-Epoxyconoduramine

C43H52N4O6 (720.3887)


   
   
   

Candicanoside A

Candicanoside A

C39H60O12 (720.4085)


   

Bafilomycin C1

Bafilomycin C1

C39H60O12 (720.4085)


   
   

Hebelomic acid B

Hebelomic acid B

C39H60O12 (720.4085)


   

MCULE-1828850748

MCULE-1828850748

C35H60O15 (720.3932)


   

19(S)-hydroxyconoduramine

19(S)-hydroxyconoduramine

C43H52N4O6 (720.3887)


   
   

16alpha-[(6-O-sulfo-beta-D-glucopyranosyl)oxy]pregn-5-en-20-ol-3beta-yl O-beta-D-oleandropyranoside

16alpha-[(6-O-sulfo-beta-D-glucopyranosyl)oxy]pregn-5-en-20-ol-3beta-yl O-beta-D-oleandropyranoside

C34H56O14S (720.3391)


   

briaexcavatolide R

briaexcavatolide R

C38H56O13 (720.3721)


   

3-O-(2-O-Methyl-beta-D-xylopyranoside),15-sulfate-(3beta,6beta,8beta,15alpha,16beta,24R)-Stigmast-4-ene-3,6,8,15,16,29-hexol

3-O-(2-O-Methyl-beta-D-xylopyranoside),15-sulfate-(3beta,6beta,8beta,15alpha,16beta,24R)-Stigmast-4-ene-3,6,8,15,16,29-hexol

C35H60O13S (720.3754)


   
   

(2beta,3beta,4alpha,16beta)-3-[(4-O-acetyl-6-O-methyl-beta-D-glucopyranuronosyl)oxy]-2,16-dihydroxy-15-oxo-28-norolean-12-en-23-oic acid

(2beta,3beta,4alpha,16beta)-3-[(4-O-acetyl-6-O-methyl-beta-D-glucopyranuronosyl)oxy]-2,16-dihydroxy-15-oxo-28-norolean-12-en-23-oic acid

C38H56O13 (720.3721)


   

12beta,25-O-diacetylcimigenol-3-O-beta-D-xylopyranoside|25-O-acetyl-12beta-acetoxycimigenol-3-O-beta-D-xylopyranoside

12beta,25-O-diacetylcimigenol-3-O-beta-D-xylopyranoside|25-O-acetyl-12beta-acetoxycimigenol-3-O-beta-D-xylopyranoside

C39H60O12 (720.4085)


   

datiscoside G

datiscoside G

C38H56O13 (720.3721)


   

19(R)-hydroxyconodurine

19(R)-hydroxyconodurine

C43H52N4O6 (720.3887)


   

3alpha-Angeloyloxy-2beta,15-dihydroxy-ent-labd-7-ene-2-O-alpha-rhamnopyranoside tetraacetate

3alpha-Angeloyloxy-2beta,15-dihydroxy-ent-labd-7-ene-2-O-alpha-rhamnopyranoside tetraacetate

C39H60O12 (720.4085)


   

sucrose ester MW 720

sucrose ester MW 720

C35H60O15 (720.3932)


   

javanicinoside E

javanicinoside E

C37H52O14 (720.3357)


   

deformylcoryzeylamine

deformylcoryzeylamine

C43H52N4O6 (720.3887)


   
   

Antibiotic A 54556E

Antibiotic A 54556E

C38H52N6O8 (720.3846)


   

(3R)-hydroxyconodurine

(3R)-hydroxyconodurine

C43H52N4O6 (720.3887)


   

3-hydroxyvoacamine

3-hydroxyvoacamine

C43H52N4O6 (720.3887)


   

fruticoside H|spirosta-5,25(27)-diene-1beta,3beta-diol-1-O-alpha-L-rhamnopyranosyl-(1?2)-beta-D-fucopyranoside

fruticoside H|spirosta-5,25(27)-diene-1beta,3beta-diol-1-O-alpha-L-rhamnopyranosyl-(1?2)-beta-D-fucopyranoside

C39H60O12 (720.4085)


   

cayaponoside A3

cayaponoside A3

C39H60O12 (720.4085)


   

2,3,4-tri-O-(5-methylhexanoyl)-alpha-D-glucopyranosyl 6-O-acetyl-beta-D-fructofuranoside

2,3,4-tri-O-(5-methylhexanoyl)-alpha-D-glucopyranosyl 6-O-acetyl-beta-D-fructofuranoside

C35H60O15 (720.3932)


   

beta-D-glucopyranosyl (3beta)-29-acetoxy-3-hydroxy-23-methoxy-23-oxoolean-12-en-28-oate|kalidiumoside B

beta-D-glucopyranosyl (3beta)-29-acetoxy-3-hydroxy-23-methoxy-23-oxoolean-12-en-28-oate|kalidiumoside B

C39H60O12 (720.4085)


   

3R/S-hydroxyvoacamine

3R/S-hydroxyvoacamine

C43H52N4O6 (720.3887)


   

His Trp Asp His Leu

His Trp Asp His Leu

C34H44N10O8 (720.3343)


   

Arvenin I

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R,17R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate

C38H56O13 (720.3721)


Arvenin I is a natural product found in Streptomyces, Helicteres angustifolia, and other organisms with data available.

   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate

NCGC00347539-02![2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate

C35H60O15 (720.3932)


   

C38H56O13_(2S,4R,9beta,16alpha,17xi,23E)-2-(beta-D-Glucopyranosyloxy)-16,20-dihydroxy-9,10,14-trimethyl-1,11,22-trioxo-4,9-cyclo-9,10-secocholesta-5,23-dien-25-yl acetate

NCGC00385062-01_C38H56O13_(2S,4R,9beta,16alpha,17xi,23E)-2-(beta-D-Glucopyranosyloxy)-16,20-dihydroxy-9,10,14-trimethyl-1,11,22-trioxo-4,9-cyclo-9,10-secocholesta-5,23-dien-25-yl acetate

C38H56O13 (720.3721)


   

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate

C38H56O13 (720.3721)


   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate

C35H60O15 (720.3932)


   

3-oxotabernaelegantine B

3-oxotabernaelegantine B

C43H52N4O6 (720.3887)


   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_major

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_major

C35H60O15 (720.3932)


   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_22.6\\%

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_22.6\\%

C35H60O15 (720.3932)


   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_66.1\\%

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_66.1\\%

C35H60O15 (720.3932)


   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_35.8\\%

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_35.8\\%

C35H60O15 (720.3932)


   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_65.2\\%

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_65.2\\%

C35H60O15 (720.3932)


   

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate_major

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate_major

C38H56O13 (720.3721)


   

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate_minor

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate_minor

C38H56O13 (720.3721)


   

OHODA-PG

1-(9Z-octadecenoyl)-2-(9-hydroxy-12-oxo-10E-dodecenoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C36H65O12P (720.4213)


   

23R,24S-diacetoxy-3beta,15alpha,25-trihydroxy-cycloart-7-en-16-one-3-O-beta-D-xylopyranoside

23R,24S-diacetoxy-3beta,15alpha,25-trihydroxy-cyclo-lanost-7-en-16one-3- O-beta-D-xylopyranoside

C39H60O12 (720.4085)


   

Boc-Glu-Lys-Lys-AMC acetate salt

Boc-Glu-Lys-Lys-AMC acetate salt

C34H52N6O11 (720.3694)


   

bis[(benzo-15-crown-5)-15-ylmethyl] pimelate

bis[(benzo-15-crown-5)-15-ylmethyl] pimelate

C37H52O14 (720.3357)


   

N,N-diphenyl-N,N-bis(9,9-dimethylfluoren-2-yl)benzidine

N,N-diphenyl-N,N-bis(9,9-dimethylfluoren-2-yl)benzidine

C54H44N2 (720.3504)


   

Tirilazad mesylate

Tirilazad mesylate

C39H56N6O5S (720.4033)


D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D000975 - Antioxidants

   

Acylsucrose S4:23[1]*

Acylsucrose S4:23[1]*

C35H60O15 (720.3932)


   

PA(a-13:0/TXB2)

PA(a-13:0/TXB2)

C36H65O12P (720.4213)


   

PA(TXB2/a-13:0)

PA(TXB2/a-13:0)

C36H65O12P (720.4213)


   

PA(i-13:0/TXB2)

PA(i-13:0/TXB2)

C36H65O12P (720.4213)


   

PA(TXB2/i-13:0)

PA(TXB2/i-13:0)

C36H65O12P (720.4213)


   

PA(13:0/6 keto-PGF1alpha)

PA(13:0/6 keto-PGF1alpha)

C36H65O12P (720.4213)


   

PA(6 keto-PGF1alpha/13:0)

PA(6 keto-PGF1alpha/13:0)

C36H65O12P (720.4213)


   
   
   
   
   

PA(a-13:0/6 keto-PGF1alpha)

PA(a-13:0/6 keto-PGF1alpha)

C36H65O12P (720.4213)


   

PA(6 keto-PGF1alpha/a-13:0)

PA(6 keto-PGF1alpha/a-13:0)

C36H65O12P (720.4213)


   

PA(i-13:0/6 keto-PGF1alpha)

PA(i-13:0/6 keto-PGF1alpha)

C36H65O12P (720.4213)


   

PA(6 keto-PGF1alpha/i-13:0)

PA(6 keto-PGF1alpha/i-13:0)

C36H65O12P (720.4213)


   

2-[(2R,5R,8S,11R)-5,8-bis(2-amino-2-oxoethyl)-11-[(2R,4S,5E,7E,9E)-2,4-dihydroxypentadeca-5,7,9-trienyl]-3,6,9,13,17-pentaoxo-1,4,7,10,14-pentazacycloheptadec-2-yl]acetamide

2-[(2R,5R,8S,11R)-5,8-bis(2-amino-2-oxoethyl)-11-[(2R,4S,5E,7E,9E)-2,4-dihydroxypentadeca-5,7,9-trienyl]-3,6,9,13,17-pentaoxo-1,4,7,10,14-pentazacycloheptadec-2-yl]acetamide

C33H52N8O10 (720.3806)


   

Smgdg O-9:0_18:3

Smgdg O-9:0_18:3

C36H64O12S (720.4118)


   

Smgdg O-22:3_5:0

Smgdg O-22:3_5:0

C36H64O12S (720.4118)


   

Smgdg O-18:3_9:0

Smgdg O-18:3_9:0

C36H64O12S (720.4118)


   

Smgdg O-20:3_7:0

Smgdg O-20:3_7:0

C36H64O12S (720.4118)


   

Smgdg O-24:3_3:0

Smgdg O-24:3_3:0

C36H64O12S (720.4118)


   

Smgdg O-11:0_16:3

Smgdg O-11:0_16:3

C36H64O12S (720.4118)


   

Smgdg O-16:3_11:0

Smgdg O-16:3_11:0

C36H64O12S (720.4118)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] undecanoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] undecanoate

C36H65O12P (720.4213)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C36H65O12P (720.4213)


   

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C35H60O15 (720.3932)


   

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C35H60O15 (720.3932)


   

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C35H60O15 (720.3932)


   

[3,4,5-trihydroxy-6-[2-[(Z)-tetradec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(Z)-tetradec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C36H64O12S (720.4118)


   

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C35H61O13P (720.385)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C35H61O13P (720.385)


   

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C35H61O13P (720.385)


   

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C35H61O13P (720.385)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

C39H61O10P (720.4002)


   

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C36H64O12S (720.4118)


   

[1-[(E)-dec-4-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[(E)-dec-4-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C35H61O13P (720.385)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C36H64O12S (720.4118)


   

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C36H64O12S (720.4118)


   

[1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C35H61O13P (720.385)


   
   

DGDG O-20:3;O

DGDG O-20:3;O

C35H60O15 (720.3932)


   
   
   
   
   
   
   
   
   

PG P-18:0/12:3;O3

PG P-18:0/12:3;O3

C36H65O12P (720.4213)


   

PG P-18:1/12:2;O3

PG P-18:1/12:2;O3

C36H65O12P (720.4213)


   

PG 18:0/12:3;O2

PG 18:0/12:3;O2

C36H65O12P (720.4213)


   

PG 18:1/11:3;O3

PG 18:1/11:3;O3

C35H61O13P (720.385)


   

PG 18:1/12:2;O2

PG 18:1/12:2;O2

C36H65O12P (720.4213)


   
   

PG 22:1/7:3;O3

PG 22:1/7:3;O3

C35H61O13P (720.385)


   
   

PG 22:2/7:2;O3

PG 22:2/7:2;O3

C35H61O13P (720.385)


   
   
   
   
   
   
   
   
   
   

PI P-16:0/9:4;O2

PI P-16:0/9:4;O2

C34H57O14P (720.3486)


   

PI P-18:0/8:3;O

PI P-18:0/8:3;O

C35H61O13P (720.385)


   

PI P-18:1/7:3;O2

PI P-18:1/7:3;O2

C34H57O14P (720.3486)


   

PI P-18:1/8:2;O

PI P-18:1/8:2;O

C35H61O13P (720.385)


   

PI P-20:1/6:2;O

PI P-20:1/6:2;O

C35H61O13P (720.385)


   
   
   
   
   
   
   

HSDVHK-NH2

HSDVHK-NH2

C30H48N12O9 (720.3667)


HSDVHK-NH2 is an antagonist of the integrin αvβ3-vitronectin interaction, with an IC50 of 1.74 pg/mL (2.414 pM)[1][2].

   

methyl (1r,15r,17s,18s)-6-[(1r,12s,14s,15e,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-17-[(1s)-1-hydroxyethyl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1r,15r,17s,18s)-6-[(1r,12s,14s,15e,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-17-[(1s)-1-hydroxyethyl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O6 (720.3887)


   

(2s,3s,4as,5r,8as)-5-[(3s)-5-(acetyloxy)-3-methylpentyl]-1,1,4a,6-tetramethyl-3-{[(2r,3r,4r,5s,6s)-3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}-2,3,4,5,8,8a-hexahydronaphthalen-2-yl (2z)-2-methylbut-2-enoate

(2s,3s,4as,5r,8as)-5-[(3s)-5-(acetyloxy)-3-methylpentyl]-1,1,4a,6-tetramethyl-3-{[(2r,3r,4r,5s,6s)-3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}-2,3,4,5,8,8a-hexahydronaphthalen-2-yl (2z)-2-methylbut-2-enoate

C39H60O12 (720.4085)


   

(2s)-4-{[(1r,3as,5ar,7r,8r,9as,11s,11ar)-7,11-bis(acetyloxy)-1-[(2s,3r,6s)-2-hydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-8-yl]oxy}-2-hydroxy-2-methyl-4-oxobutanoic acid

(2s)-4-{[(1r,3as,5ar,7r,8r,9as,11s,11ar)-7,11-bis(acetyloxy)-1-[(2s,3r,6s)-2-hydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-8-yl]oxy}-2-hydroxy-2-methyl-4-oxobutanoic acid

C39H60O12 (720.4085)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2r,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-6a,6b,9,12a-tetramethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2r,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-6a,6b,9,12a-tetramethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C39H60O12 (720.4085)


   

methyl (1s)-17-ethyl-5-[(1s)-17-ethyl-6-methoxy-1-(methoxycarbonyl)-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraen-5-yl]-6-hydroxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1s)-17-ethyl-5-[(1s)-17-ethyl-6-methoxy-1-(methoxycarbonyl)-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraen-5-yl]-6-hydroxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O6 (720.3887)


   

(1s,2s,6s,7s,9r,11s,13r,14r,16r,17s)-4-methoxy-2,6,14,17-tetramethyl-3-oxo-14-[(3s)-5-oxooxolane-3-carbonyl]-11-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-oxatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadec-4-en-16-yl (2e)-2-methylbut-2-enoate

(1s,2s,6s,7s,9r,11s,13r,14r,16r,17s)-4-methoxy-2,6,14,17-tetramethyl-3-oxo-14-[(3s)-5-oxooxolane-3-carbonyl]-11-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-oxatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadec-4-en-16-yl (2e)-2-methylbut-2-enoate

C37H52O14 (720.3357)


   

(3e,6r)-6-hydroxy-2-methyl-5-oxo-6-[(3s,5r,6s,7s,8r,10r,12s,14r,15r,18r,19r,20r,22s,23s)-3,6,7,20-tetrahydroxy-8-(hydroxymethyl)-2,2,15,18,22-pentamethyl-16-oxo-4,9,11-trioxahexacyclo[12.11.0.0³,¹².0⁵,¹⁰.0¹⁵,²³.0¹⁸,²²]pentacos-1(25)-en-19-yl]hept-3-en-2-yl acetate

(3e,6r)-6-hydroxy-2-methyl-5-oxo-6-[(3s,5r,6s,7s,8r,10r,12s,14r,15r,18r,19r,20r,22s,23s)-3,6,7,20-tetrahydroxy-8-(hydroxymethyl)-2,2,15,18,22-pentamethyl-16-oxo-4,9,11-trioxahexacyclo[12.11.0.0³,¹².0⁵,¹⁰.0¹⁵,²³.0¹⁸,²²]pentacos-1(25)-en-19-yl]hept-3-en-2-yl acetate

C38H56O13 (720.3721)


   

[3,4,5-trihydroxy-6-({7-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-1-(1-hydroxyethyl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl}oxy)oxan-2-yl]methoxysulfonic acid

[3,4,5-trihydroxy-6-({7-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-1-(1-hydroxyethyl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl}oxy)oxan-2-yl]methoxysulfonic acid

C34H56O14S (720.3391)


   

(2r,3r,4s,5r,6r)-2-{[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-3,5-bis({[(2r)-2-methylbutanoyl]oxy})-6-({[(2r)-2-methylbutanoyl]oxy}methyl)oxan-4-yl octanoate

(2r,3r,4s,5r,6r)-2-{[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-3,5-bis({[(2r)-2-methylbutanoyl]oxy})-6-({[(2r)-2-methylbutanoyl]oxy}methyl)oxan-4-yl octanoate

C35H60O15 (720.3932)


   

18,24:20,24-diepoxycycloartane-3,15,16,25-tetrol; (3β,15β,16β,20s,24r)-form,3-o-beta-d-xylopyranoside,15,16-di-ac

NA

C39H60O12 (720.4085)


{"Ingredient_id": "HBIN002079","Ingredient_name": "18,24:20,24-diepoxycycloartane-3,15,16,25-tetrol; (3\u03b2,15\u03b2,16\u03b2,20s,24r)-form,3-o-beta-d-xylopyranoside,15,16-di-ac","Alias": "NA","Ingredient_formula": "C39H60O12","Ingredient_Smile": "NA","Ingredient_weight": "0","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "9259","PubChem_id": "NA","DrugBank_id": "NA"}

   

19'(s)-hydroxyconoduramine

NA

C43H52N4O6 (720.3887)


{"Ingredient_id": "HBIN002219","Ingredient_name": "19'(s)-hydroxyconoduramine","Alias": "NA","Ingredient_formula": "C43H52N4O6","Ingredient_Smile": "CC=C1CN(C2CC3=C(C(CC1C2C(=O)OC)C4=C(C=C5C(=C4)C6=C(N5)C7(CC8CC(C7N(C8)CC6)C(C)O)C(=O)OC)OC)NC9=CC=CC=C39)C","Ingredient_weight": "720.9 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "9932","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101254411","DrugBank_id": "NA"}

   

19'(s)-hydroxyconodurine

NA

C43H52N4O6 (720.3887)


{"Ingredient_id": "HBIN002220","Ingredient_name": "19'(s)-hydroxyconodurine","Alias": "NA","Ingredient_formula": "C43H52N4O6","Ingredient_Smile": "CC=C1CN(C2CC3=C(C(CC1C2C(=O)OC)C4=C(C=CC5=C4NC6=C5CCN7CC8CC(C7C6(C8)C(=O)OC)C(C)O)OC)NC9=CC=CC=C39)C","Ingredient_weight": "720.9 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "9933","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "12112928","DrugBank_id": "NA"}

   

25-o-acetylbryoamaride

NA

C38H56O13 (720.3721)


{"Ingredient_id": "HBIN004698","Ingredient_name": "25-o-acetylbryoamaride","Alias": "NA","Ingredient_formula": "C38H56O13","Ingredient_Smile": "CC(=O)OC(C)(C)CCC(=O)C(C)(C1C(CC2(C1(CC(=O)C3(C2CC=C4C3C=C(C(=O)C4(C)C)OC5C(C(C(C(O5)CO)O)O)O)C)C)C)O)O","Ingredient_weight": "720.8 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "339","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101306926","DrugBank_id": "NA"}

   

beesioside i

NA

C39H60O12 (720.4085)


{"Ingredient_id": "HBIN017683","Ingredient_name": "beesioside i","Alias": "NA","Ingredient_formula": "C39H60O12","Ingredient_Smile": "CC(=O)OC1C2C3(CCC(O3)(OCC24CCC56CC57CCC(C(C7CCC6C4(C1OC(=O)C)C)(C)C)OC8C(C(C(CO8)O)O)O)C(C)(C)O)C","Ingredient_weight": "720.9 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2200","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "15908521","DrugBank_id": "NA"}

   

methyl (1s,15r,17s,18s)-17-ethyl-5-[(1s,12r,14s,15z,18s)-15-ethylidene-18-(hydroxymethyl)-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-hydroxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1s,15r,17s,18s)-17-ethyl-5-[(1s,12r,14s,15z,18s)-15-ethylidene-18-(hydroxymethyl)-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-hydroxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O6 (720.3887)


   

(3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid

(3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid

C35H56N6O10 (720.4058)


   

10-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-9-(hydroxymethyl)-6a,6b,9,12a-tetramethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-9-(hydroxymethyl)-6a,6b,9,12a-tetramethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C39H60O12 (720.4085)


   

6-hydroxy-6-(2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl)-2-methyl-5-oxohept-3-en-2-yl acetate

6-hydroxy-6-(2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl)-2-methyl-5-oxohept-3-en-2-yl acetate

C38H56O13 (720.3721)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,2r,3as,3bs,7s,9ar,9bs,11as)-7-{[(2r,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methoxysulfonic acid

[(2r,3s,4s,5r,6r)-6-{[(1s,2r,3as,3bs,7s,9ar,9bs,11as)-7-{[(2r,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methoxysulfonic acid

C34H56O14S (720.3391)


   

2-({[6-hydroxy-10-methoxy-2-(8-methoxy-8-oxooctyl)-9-methyl-3-oxo-1,4,8-trioxaspiro[4.5]decan-7-yl]oxy}methyl)-13-isopropyl-5-methyltetracyclo[7.4.0.0²,¹¹.0⁴,⁸]tridec-12-ene-1,9-dicarboxylic acid

2-({[6-hydroxy-10-methoxy-2-(8-methoxy-8-oxooctyl)-9-methyl-3-oxo-1,4,8-trioxaspiro[4.5]decan-7-yl]oxy}methyl)-13-isopropyl-5-methyltetracyclo[7.4.0.0²,¹¹.0⁴,⁸]tridec-12-ene-1,9-dicarboxylic acid

C38H56O13 (720.3721)


   

methyl (1r,15s,17r,18r)-6-[(1s,12r,14r,15z,18r)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-17-[(1r)-1-hydroxyethyl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1r,15s,17r,18r)-6-[(1s,12r,14r,15z,18r)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-17-[(1r)-1-hydroxyethyl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O6 (720.3887)


   

4-methoxy-2,6,14,17-tetramethyl-3-oxo-14-(5-oxooxolane-3-carbonyl)-11-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-oxatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadec-4-en-16-yl 2-methylbut-2-enoate

4-methoxy-2,6,14,17-tetramethyl-3-oxo-14-(5-oxooxolane-3-carbonyl)-11-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-oxatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadec-4-en-16-yl 2-methylbut-2-enoate

C37H52O14 (720.3357)


   

(1r,2r,3as,3bs,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-2-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-8-yl acetate

(1r,2r,3as,3bs,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-2-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-8-yl acetate

C38H56O13 (720.3721)


   

2-[(2-{[12,21-dimethyl-20-(2-methylprop-1-en-1-yl)-18,23-dioxahexacyclo[17.3.1.0³,¹⁶.0⁴,¹³.0⁷,¹².0¹⁶,²²]tricos-6-en-9-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(2-{[12,21-dimethyl-20-(2-methylprop-1-en-1-yl)-18,23-dioxahexacyclo[17.3.1.0³,¹⁶.0⁴,¹³.0⁷,¹².0¹⁶,²²]tricos-6-en-9-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C39H60O12 (720.4085)


   

(2e)-4-{[(2r,4s,5r,6s)-4-hydroxy-2-[(2s,3r,4s)-3-hydroxy-4-[(3s,4e,6e,9s,10r,11r,12e,14e)-10-hydroxy-3,15-dimethoxy-7,9,11,13-tetramethyl-16-oxo-1-oxacyclohexadeca-4,6,12,14-tetraen-2-yl]pentan-2-yl]-6-isopropyl-5-methyloxan-2-yl]oxy}-4-oxobut-2-enoic acid

(2e)-4-{[(2r,4s,5r,6s)-4-hydroxy-2-[(2s,3r,4s)-3-hydroxy-4-[(3s,4e,6e,9s,10r,11r,12e,14e)-10-hydroxy-3,15-dimethoxy-7,9,11,13-tetramethyl-16-oxo-1-oxacyclohexadeca-4,6,12,14-tetraen-2-yl]pentan-2-yl]-6-isopropyl-5-methyloxan-2-yl]oxy}-4-oxobut-2-enoic acid

C39H60O12 (720.4085)


   

5-[5-(acetyloxy)-3-methylpentyl]-1,1,4a,6-tetramethyl-3-{[3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}-2,3,4,5,8,8a-hexahydronaphthalen-2-yl 2-methylbut-2-enoate

5-[5-(acetyloxy)-3-methylpentyl]-1,1,4a,6-tetramethyl-3-{[3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}-2,3,4,5,8,8a-hexahydronaphthalen-2-yl 2-methylbut-2-enoate

C39H60O12 (720.4085)


   

(3e)-6-hydroxy-6-(2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl)-2-methyl-5-oxohept-3-en-2-yl acetate

(3e)-6-hydroxy-6-(2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl)-2-methyl-5-oxohept-3-en-2-yl acetate

C38H56O13 (720.3721)


   

methyl (1'r,2r,3s,12'r,14's,18's)-12'-[(1r,15s,17r,18r)-17-ethyl-6-methoxy-1-(methoxycarbonyl)-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraen-7-yl]-3,17'-dimethyl-10',17'-diazaspiro[oxirane-2,15'-tetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadecane]-3'(11'),4',6',8'-tetraene-18'-carboxylate

methyl (1'r,2r,3s,12'r,14's,18's)-12'-[(1r,15s,17r,18r)-17-ethyl-6-methoxy-1-(methoxycarbonyl)-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraen-7-yl]-3,17'-dimethyl-10',17'-diazaspiro[oxirane-2,15'-tetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadecane]-3'(11'),4',6',8'-tetraene-18'-carboxylate

C43H52N4O6 (720.3887)


   

2,7,9-tris(acetyloxy)-10-(butanoyloxy)-4,8,12,17-tetramethyl-16-oxo-15,18-dioxatetracyclo[12.4.0.0¹,¹⁷.0³,⁸]octadec-12-en-5-yl octanoate

2,7,9-tris(acetyloxy)-10-(butanoyloxy)-4,8,12,17-tetramethyl-16-oxo-15,18-dioxatetracyclo[12.4.0.0¹,¹⁷.0³,⁸]octadec-12-en-5-yl octanoate

C38H56O13 (720.3721)


   

1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-8-yl acetate

1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-8-yl acetate

C38H56O13 (720.3721)


   

(4ar,6ar,6bs,8as,9s,10r,12as,12bs,14br)-10-{[(2r,3s,4r,5s)-4,5-dihydroxy-3-{[(2r,3s,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-6a,6b,9,12a-tetramethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,6ar,6bs,8as,9s,10r,12as,12bs,14br)-10-{[(2r,3s,4r,5s)-4,5-dihydroxy-3-{[(2r,3s,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-6a,6b,9,12a-tetramethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C39H60O12 (720.4085)


   

6-({5-[(acetyloxy)methyl]-3,4-dihydroxy-2-(hydroxymethyl)oxolan-2-yl}oxy)-2-(hydroxymethyl)-4,5-bis[(5-methylhexanoyl)oxy]oxan-3-yl 5-methylhexanoate

6-({5-[(acetyloxy)methyl]-3,4-dihydroxy-2-(hydroxymethyl)oxolan-2-yl}oxy)-2-(hydroxymethyl)-4,5-bis[(5-methylhexanoyl)oxy]oxan-3-yl 5-methylhexanoate

C35H60O15 (720.3932)


   

methyl 4'-[(13e)-13-ethylidene-18-(methoxycarbonyl)-4-oxo-8,15-diazapentacyclo[10.5.1.0¹,⁹.0²,⁷.0⁹,¹⁵]octadeca-2,5,7-trien-5-yl]-5'-methoxy-3,8'-dimethyl-8',15'-diazaspiro[oxirane-2,13'-pentacyclo[10.5.1.0¹,⁹.0²,⁷.0¹⁰,¹⁵]octadecane]-2'(7'),3',5'-triene-18'-carboxylate

methyl 4'-[(13e)-13-ethylidene-18-(methoxycarbonyl)-4-oxo-8,15-diazapentacyclo[10.5.1.0¹,⁹.0²,⁷.0⁹,¹⁵]octadeca-2,5,7-trien-5-yl]-5'-methoxy-3,8'-dimethyl-8',15'-diazaspiro[oxirane-2,13'-pentacyclo[10.5.1.0¹,⁹.0²,⁷.0¹⁰,¹⁵]octadecane]-2'(7'),3',5'-triene-18'-carboxylate

C42H48N4O7 (720.3523)


   

5-({5-[(1,5-dihydroxy-3-methylpent-2-en-1-ylidene)amino]-2-[(1-hydroxyethylidene)amino]pentanoyl}oxy)-n-[3-(5-{3-[(1,5-dihydroxy-3-methylpent-2-en-1-ylidene)amino]propyl}-3,6-dihydroxy-2,5-dihydropyrazin-2-yl)propyl]-3-methylpent-2-enimidic acid

5-({5-[(1,5-dihydroxy-3-methylpent-2-en-1-ylidene)amino]-2-[(1-hydroxyethylidene)amino]pentanoyl}oxy)-n-[3-(5-{3-[(1,5-dihydroxy-3-methylpent-2-en-1-ylidene)amino]propyl}-3,6-dihydroxy-2,5-dihydropyrazin-2-yl)propyl]-3-methylpent-2-enimidic acid

C35H56N6O10 (720.4058)


   

(3e,6r)-6-[(1r,2r,3as,3bs,8s,9ar,9br,11ar)-2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

(3e,6r)-6-[(1r,2r,3as,3bs,8s,9ar,9br,11ar)-2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C38H56O13 (720.3721)


   

methyl (13e)-13-ethylidene-4-[15-ethylidene-18-(hydroxymethyl)-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-10-hydroxy-8-methyl-8,15-diazapentacyclo[10.5.1.0¹,⁹.0²,⁷.0⁹,¹⁵]octadeca-2,4,6-triene-18-carboxylate

methyl (13e)-13-ethylidene-4-[15-ethylidene-18-(hydroxymethyl)-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-10-hydroxy-8-methyl-8,15-diazapentacyclo[10.5.1.0¹,⁹.0²,⁷.0⁹,¹⁵]octadeca-2,4,6-triene-18-carboxylate

C43H52N4O6 (720.3887)


   

(3e,6r)-6-hydroxy-2-methyl-5-oxo-6-[(3s,5r,6s,7s,8r,10s,12s,14r,15r,18r,19r,20r,22s,23s)-3,6,7,20-tetrahydroxy-8-(hydroxymethyl)-2,2,15,18,22-pentamethyl-16-oxo-4,9,11-trioxahexacyclo[12.11.0.0³,¹².0⁵,¹⁰.0¹⁵,²³.0¹⁸,²²]pentacos-1(25)-en-19-yl]hept-3-en-2-yl acetate

(3e,6r)-6-hydroxy-2-methyl-5-oxo-6-[(3s,5r,6s,7s,8r,10s,12s,14r,15r,18r,19r,20r,22s,23s)-3,6,7,20-tetrahydroxy-8-(hydroxymethyl)-2,2,15,18,22-pentamethyl-16-oxo-4,9,11-trioxahexacyclo[12.11.0.0³,¹².0⁵,¹⁰.0¹⁵,²³.0¹⁸,²²]pentacos-1(25)-en-19-yl]hept-3-en-2-yl acetate

C38H56O13 (720.3721)


   

(2e)-4-{[(2r,4r,5s,6r)-2-hydroxy-2-[(2s,3r,4s)-3-hydroxy-4-[(3s,4z,6e,9s,10s,11r,12e,14z)-10-hydroxy-3,15-dimethoxy-7,9,11,13-tetramethyl-16-oxo-1-oxacyclohexadeca-4,6,12,14-tetraen-2-yl]pentan-2-yl]-6-isopropyl-5-methyloxan-4-yl]oxy}-4-oxobut-2-enoic acid

(2e)-4-{[(2r,4r,5s,6r)-2-hydroxy-2-[(2s,3r,4s)-3-hydroxy-4-[(3s,4z,6e,9s,10s,11r,12e,14z)-10-hydroxy-3,15-dimethoxy-7,9,11,13-tetramethyl-16-oxo-1-oxacyclohexadeca-4,6,12,14-tetraen-2-yl]pentan-2-yl]-6-isopropyl-5-methyloxan-4-yl]oxy}-4-oxobut-2-enoic acid

C39H60O12 (720.4085)


   

6-hydroxy-6-(2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthren-1-yl)-2-methyl-5-oxoheptan-2-yl acetate

6-hydroxy-6-(2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthren-1-yl)-2-methyl-5-oxoheptan-2-yl acetate

C38H56O13 (720.3721)


   

2-{[3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-3,5-bis[(2-methylbutanoyl)oxy]-6-{[(2-methylbutanoyl)oxy]methyl}oxan-4-yl octanoate

2-{[3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-3,5-bis[(2-methylbutanoyl)oxy]-6-{[(2-methylbutanoyl)oxy]methyl}oxan-4-yl octanoate

C35H60O15 (720.3932)


   

methyl (1s,15r,17s,18s)-5-[(1s,12r,14r,15z,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-17-[(1s)-1-hydroxyethyl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1s,15r,17s,18s)-5-[(1s,12r,14r,15z,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-17-[(1s)-1-hydroxyethyl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O6 (720.3887)


   

methyl (13e)-13-ethylidene-4-[(15e)-15-ethylidene-18-(hydroxymethyl)-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-10-hydroxy-8-methyl-8,15-diazapentacyclo[10.5.1.0¹,⁹.0²,⁷.0⁹,¹⁵]octadeca-2,4,6-triene-18-carboxylate

methyl (13e)-13-ethylidene-4-[(15e)-15-ethylidene-18-(hydroxymethyl)-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-10-hydroxy-8-methyl-8,15-diazapentacyclo[10.5.1.0¹,⁹.0²,⁷.0⁹,¹⁵]octadeca-2,4,6-triene-18-carboxylate

C43H52N4O6 (720.3887)


   

2-{[3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-3-[(2-methylbutanoyl)oxy]-5-[(3-methylbutanoyl)oxy]-6-{[(2-methylbutanoyl)oxy]methyl}oxan-4-yl octanoate

2-{[3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-3-[(2-methylbutanoyl)oxy]-5-[(3-methylbutanoyl)oxy]-6-{[(2-methylbutanoyl)oxy]methyl}oxan-4-yl octanoate

C35H60O15 (720.3932)


   

6-hydroxy-2-methyl-5-oxo-6-[3,6,7,20-tetrahydroxy-8-(hydroxymethyl)-2,2,15,18,22-pentamethyl-16-oxo-4,9,11-trioxahexacyclo[12.11.0.0³,¹².0⁵,¹⁰.0¹⁵,²³.0¹⁸,²²]pentacos-1(25)-en-19-yl]hept-3-en-2-yl acetate

6-hydroxy-2-methyl-5-oxo-6-[3,6,7,20-tetrahydroxy-8-(hydroxymethyl)-2,2,15,18,22-pentamethyl-16-oxo-4,9,11-trioxahexacyclo[12.11.0.0³,¹².0⁵,¹⁰.0¹⁵,²³.0¹⁸,²²]pentacos-1(25)-en-19-yl]hept-3-en-2-yl acetate

C38H56O13 (720.3721)


   

(2r,3r,4s,5r,6r)-2-{[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-5-[(3-methylbutanoyl)oxy]-3-{[(2r)-2-methylbutanoyl]oxy}-6-({[(2r)-2-methylbutanoyl]oxy}methyl)oxan-4-yl octanoate

(2r,3r,4s,5r,6r)-2-{[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-5-[(3-methylbutanoyl)oxy]-3-{[(2r)-2-methylbutanoyl]oxy}-6-({[(2r)-2-methylbutanoyl]oxy}methyl)oxan-4-yl octanoate

C35H60O15 (720.3932)


   

n-[10-benzyl-1,8,11-trihydroxy-3-(1h-indol-3-ylmethyl)-6,13-dimethyl-4,14-dioxo-3h,6h,7h,10h,13h,16h,17h,18h,18ah-pyrrolo[2,1-f]1-oxa-4,7,10,13-tetraazacyclohexadecan-7-yl]-2-phenylethanimidic acid

n-[10-benzyl-1,8,11-trihydroxy-3-(1h-indol-3-ylmethyl)-6,13-dimethyl-4,14-dioxo-3h,6h,7h,10h,13h,16h,17h,18h,18ah-pyrrolo[2,1-f]1-oxa-4,7,10,13-tetraazacyclohexadecan-7-yl]-2-phenylethanimidic acid

C40H44N6O7 (720.3271)


   

methyl 17-ethyl-5-[17-ethyl-6-methoxy-1-(methoxycarbonyl)-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraen-5-yl]-6-hydroxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl 17-ethyl-5-[17-ethyl-6-methoxy-1-(methoxycarbonyl)-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraen-5-yl]-6-hydroxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O6 (720.3887)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3s,4r,9s,12r,13s,16r,19s,20s,21s,22r)-12,21-dimethyl-20-(2-methylprop-1-en-1-yl)-18,23-dioxahexacyclo[17.3.1.0³,¹⁶.0⁴,¹³.0⁷,¹².0¹⁶,²²]tricos-6-en-9-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3s,4r,9s,12r,13s,16r,19s,20s,21s,22r)-12,21-dimethyl-20-(2-methylprop-1-en-1-yl)-18,23-dioxahexacyclo[17.3.1.0³,¹⁶.0⁴,¹³.0⁷,¹².0¹⁶,²²]tricos-6-en-9-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H60O12 (720.4085)


   

(6r)-6-[(1r,2r,3as,3bs,9ar,9br,11ar)-2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-2-methyl-5-oxoheptan-2-yl acetate

(6r)-6-[(1r,2r,3as,3bs,9ar,9br,11ar)-2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-2-methyl-5-oxoheptan-2-yl acetate

C38H56O13 (720.3721)


   

(2e)-4-[(2-hydroxy-2-{3-hydroxy-4-[(4e,6e,12e,14z)-10-hydroxy-3,15-dimethoxy-7,9,11,13-tetramethyl-16-oxo-1-oxacyclohexadeca-4,6,12,14-tetraen-2-yl]pentan-2-yl}-6-isopropyl-5-methyloxan-4-yl)oxy]-4-oxobut-2-enoic acid

(2e)-4-[(2-hydroxy-2-{3-hydroxy-4-[(4e,6e,12e,14z)-10-hydroxy-3,15-dimethoxy-7,9,11,13-tetramethyl-16-oxo-1-oxacyclohexadeca-4,6,12,14-tetraen-2-yl]pentan-2-yl}-6-isopropyl-5-methyloxan-4-yl)oxy]-4-oxobut-2-enoic acid

C39H60O12 (720.4085)


   

(1r,2s,4r,5r,8r,9s,11r)-2-({[(2s,5r,6r,7r,9r,10r)-6-hydroxy-10-methoxy-2-(8-methoxy-8-oxooctyl)-9-methyl-3-oxo-1,4,8-trioxaspiro[4.5]decan-7-yl]oxy}methyl)-13-isopropyl-5-methyltetracyclo[7.4.0.0²,¹¹.0⁴,⁸]tridec-12-ene-1,9-dicarboxylic acid

(1r,2s,4r,5r,8r,9s,11r)-2-({[(2s,5r,6r,7r,9r,10r)-6-hydroxy-10-methoxy-2-(8-methoxy-8-oxooctyl)-9-methyl-3-oxo-1,4,8-trioxaspiro[4.5]decan-7-yl]oxy}methyl)-13-isopropyl-5-methyltetracyclo[7.4.0.0²,¹¹.0⁴,⁸]tridec-12-ene-1,9-dicarboxylic acid

C38H56O13 (720.3721)


   

methyl (1s,15r,17s,18s)-17-ethyl-5-[(1s,15r,17s,18s)-17-ethyl-6-methoxy-1-(methoxycarbonyl)-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraen-5-yl]-6-hydroxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1s,15r,17s,18s)-17-ethyl-5-[(1s,15r,17s,18s)-17-ethyl-6-methoxy-1-(methoxycarbonyl)-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraen-5-yl]-6-hydroxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O6 (720.3887)


   

methyl (1r,9s,10s,12r,13e,18r)-13-ethylidene-4-[(1s,12r,14s,15e,18s)-15-ethylidene-18-(hydroxymethyl)-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-10-hydroxy-8-methyl-8,15-diazapentacyclo[10.5.1.0¹,⁹.0²,⁷.0⁹,¹⁵]octadeca-2,4,6-triene-18-carboxylate

methyl (1r,9s,10s,12r,13e,18r)-13-ethylidene-4-[(1s,12r,14s,15e,18s)-15-ethylidene-18-(hydroxymethyl)-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-10-hydroxy-8-methyl-8,15-diazapentacyclo[10.5.1.0¹,⁹.0²,⁷.0⁹,¹⁵]octadeca-2,4,6-triene-18-carboxylate

C43H52N4O6 (720.3887)


   

(2e)-5-{[(2s)-5-{[(2e)-1,5-dihydroxy-3-methylpent-2-en-1-ylidene]amino}-2-[(1-hydroxyethylidene)amino]pentanoyl]oxy}-n-{3-[(2s,5s)-5-(3-{[(2e)-1,5-dihydroxy-3-methylpent-2-en-1-ylidene]amino}propyl)-3,6-dihydroxy-2,5-dihydropyrazin-2-yl]propyl}-3-methylpent-2-enimidic acid

(2e)-5-{[(2s)-5-{[(2e)-1,5-dihydroxy-3-methylpent-2-en-1-ylidene]amino}-2-[(1-hydroxyethylidene)amino]pentanoyl]oxy}-n-{3-[(2s,5s)-5-(3-{[(2e)-1,5-dihydroxy-3-methylpent-2-en-1-ylidene]amino}propyl)-3,6-dihydroxy-2,5-dihydropyrazin-2-yl]propyl}-3-methylpent-2-enimidic acid

C35H56N6O10 (720.4058)


   

(2r,3r,4s,5r,6r)-6-{[(2s,3s,4s,5r)-5-[(acetyloxy)methyl]-3,4-dihydroxy-2-(hydroxymethyl)oxolan-2-yl]oxy}-2-(hydroxymethyl)-4,5-bis[(5-methylhexanoyl)oxy]oxan-3-yl 5-methylhexanoate

(2r,3r,4s,5r,6r)-6-{[(2s,3s,4s,5r)-5-[(acetyloxy)methyl]-3,4-dihydroxy-2-(hydroxymethyl)oxolan-2-yl]oxy}-2-(hydroxymethyl)-4,5-bis[(5-methylhexanoyl)oxy]oxan-3-yl 5-methylhexanoate

C35H60O15 (720.3932)


   

(3e,6r)-6-[(1r,2r,3as,3bs,8r,9ar,9br,11ar)-2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

(3e,6r)-6-[(1r,2r,3as,3bs,8r,9ar,9br,11ar)-2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C38H56O13 (720.3721)


   

(2r,3r,4s,5s,6r,9r,11s,14r,16s,19s,22s)-4-(acetyloxy)-22-(2-hydroxypropan-2-yl)-1,5,10,10-tetramethyl-11-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-21,25-dioxaheptacyclo[20.2.1.0²,¹⁹.0⁵,¹⁹.0⁶,¹⁶.0⁹,¹⁴.0¹⁴,¹⁶]pentacosan-3-yl acetate

(2r,3r,4s,5s,6r,9r,11s,14r,16s,19s,22s)-4-(acetyloxy)-22-(2-hydroxypropan-2-yl)-1,5,10,10-tetramethyl-11-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-21,25-dioxaheptacyclo[20.2.1.0²,¹⁹.0⁵,¹⁹.0⁶,¹⁶.0⁹,¹⁴.0¹⁴,¹⁶]pentacosan-3-yl acetate

C39H60O12 (720.4085)


   

(3e,6r)-6-[(1r,2r,3as,3bs,8s,9ar,9br,11ar)-2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[(2r,3r,4r,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

(3e,6r)-6-[(1r,2r,3as,3bs,8s,9ar,9br,11ar)-2-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-8-{[(2r,3r,4r,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C38H56O13 (720.3721)


   

(1s,2r,3r,4s,5s,6r,9r,11s,14r,16s,19s,22s)-4-(acetyloxy)-22-(2-hydroxypropan-2-yl)-1,5,10,10-tetramethyl-11-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-21,25-dioxaheptacyclo[20.2.1.0²,¹⁹.0⁵,¹⁹.0⁶,¹⁶.0⁹,¹⁴.0¹⁴,¹⁶]pentacosan-3-yl acetate

(1s,2r,3r,4s,5s,6r,9r,11s,14r,16s,19s,22s)-4-(acetyloxy)-22-(2-hydroxypropan-2-yl)-1,5,10,10-tetramethyl-11-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-21,25-dioxaheptacyclo[20.2.1.0²,¹⁹.0⁵,¹⁹.0⁶,¹⁶.0⁹,¹⁴.0¹⁴,¹⁶]pentacosan-3-yl acetate

C39H60O12 (720.4085)


   

(2r,3r,4s,5r,6r)-2-{[(2s,3r,4s,5s)-4-hydroxy-2,5-bis(hydroxymethyl)-3-[(3-methylbutanoyl)oxy]oxolan-2-yl]oxy}-6-(hydroxymethyl)-4,5-bis[(2-methylpropanoyl)oxy]oxan-3-yl decanoate

(2r,3r,4s,5r,6r)-2-{[(2s,3r,4s,5s)-4-hydroxy-2,5-bis(hydroxymethyl)-3-[(3-methylbutanoyl)oxy]oxolan-2-yl]oxy}-6-(hydroxymethyl)-4,5-bis[(2-methylpropanoyl)oxy]oxan-3-yl decanoate

C35H60O15 (720.3932)


   

(2s,3s,4as,5r,8as)-5-[(3s)-5-(acetyloxy)-3-methylpentyl]-1,1,4a,6-tetramethyl-3-{[(2r,3s,4r,5r,6s)-3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}-2,3,4,5,8,8a-hexahydronaphthalen-2-yl (2z)-2-methylbut-2-enoate

(2s,3s,4as,5r,8as)-5-[(3s)-5-(acetyloxy)-3-methylpentyl]-1,1,4a,6-tetramethyl-3-{[(2r,3s,4r,5r,6s)-3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}-2,3,4,5,8,8a-hexahydronaphthalen-2-yl (2z)-2-methylbut-2-enoate

C39H60O12 (720.4085)


   

(1r,2r,3r,4s,5r,7r,8s,9s,10r,12z,14r,17s)-2,7,9-tris(acetyloxy)-10-(butanoyloxy)-4,8,12,17-tetramethyl-16-oxo-15,18-dioxatetracyclo[12.4.0.0¹,¹⁷.0³,⁸]octadec-12-en-5-yl octanoate

(1r,2r,3r,4s,5r,7r,8s,9s,10r,12z,14r,17s)-2,7,9-tris(acetyloxy)-10-(butanoyloxy)-4,8,12,17-tetramethyl-16-oxo-15,18-dioxatetracyclo[12.4.0.0¹,¹⁷.0³,⁸]octadec-12-en-5-yl octanoate

C38H56O13 (720.3721)


   

(2s,3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid

(2s,3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid

C35H56N6O10 (720.4058)


   

methyl (1s,15r,17s,18s)-17-ethyl-5-[(1s,12r,14s,15e,18s)-15-ethylidene-18-(hydroxymethyl)-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-hydroxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1s,15r,17s,18s)-17-ethyl-5-[(1s,12r,14s,15e,18s)-15-ethylidene-18-(hydroxymethyl)-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-hydroxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O6 (720.3887)


   

n-[(3s,6r,7s,10r,13r,18as)-10-benzyl-1,8,11-trihydroxy-3-(1h-indol-3-ylmethyl)-6,13-dimethyl-4,14-dioxo-3h,6h,7h,10h,13h,16h,17h,18h,18ah-pyrrolo[2,1-f]1-oxa-4,7,10,13-tetraazacyclohexadecan-7-yl]-2-phenylethanimidic acid

n-[(3s,6r,7s,10r,13r,18as)-10-benzyl-1,8,11-trihydroxy-3-(1h-indol-3-ylmethyl)-6,13-dimethyl-4,14-dioxo-3h,6h,7h,10h,13h,16h,17h,18h,18ah-pyrrolo[2,1-f]1-oxa-4,7,10,13-tetraazacyclohexadecan-7-yl]-2-phenylethanimidic acid

C40H44N6O7 (720.3271)