NCBI Taxonomy: 111567

Magnolia kachirachirai (ncbi_taxid: 111567)

found 97 associated metabolites at species taxonomy rank level.

Ancestor: Magnolia

Child Taxonomies: none taxonomy data.

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Santamarin

NAPHTHO(1,2-B)FURAN-2(3H)-ONE, 3A,4,5,5A,6,7,9A,9B-OCTAHYDRO-6-HYDROXY-5A,9-DIMETHYL-3-METHYLENE-, (3AS-(3A.ALPHA.,5A.BETA.,6.BETA.,9A.ALPHA.,9B.BETA.))-

C15H20O3 (248.1412)


Santamarin, also known as (+)-santamarine or balchanin, belongs to eudesmanolides, secoeudesmanolides, and derivatives class of compounds. Those are terpenoids with a structure based on the eudesmanolide (a 3,5a,9-trimethyl-naphtho[1,2-b]furan-2-one derivative) or secoeudesmanolide (a 3,6-dimethyl-5-(pentan-2-yl)-1-benzofuran-2-one derivative) skeleton. Santamarin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Santamarin can be found in sweet bay, which makes santamarin a potential biomarker for the consumption of this food product. Santamarin is a sesquiterpene lactone of the eudesmanolide group. Santamarine is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available.

   

alpha-Cadinol

(1R,4S,4aR,8aR)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol

C15H26O (222.1984)


alpha-Cadinol is found in cloves. alpha-Cadinol is a constituent of Juniperus communis (juniper)

   

(+)-lariciresinol

4-[(2S,3R,4R)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl]-2-methoxyphenol

C20H24O6 (360.1573)


(+)-Lariciresinol belongs to the class of organic compounds known as 7,9-epoxylignans. These are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at positons 2, 3 and 4, respectively. (+)-Lariciresinol has been detected in several different foods, such as parsnips, white mustards, narrowleaf cattails, turnips, and common sages. This could make (+)-Lariciresinol a potential biomarker for the consumption of these foods. Lariciresinol is also found in sesame seeds, Brassica vegetables, in the bark and wood of white fir (Abies alba). (+)-lariciresinol is a member of the class of compounds known as 7,9-epoxylignans. 7,9-epoxylignans are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively (+)-lariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-lariciresinol can be found in a number of food items such as pili nut, lemon balm, root vegetables, and parsley, which makes (+)-lariciresinol a potential biomarker for the consumption of these food products.

   

DivK1c_000746

alpha-Cyclocostunolide

C15H20O2 (232.1463)


   

LICARIN A

2-methoxy-4-[(2S,3S)-7-methoxy-3-methyl-5-[(E)-prop-1-enyl]-2,3-dihydro-1-benzofuran-2-yl]phenol

C20H22O4 (326.1518)


(-)-Licarin A is a natural product found in Magnolia dodecapetala, Magnolia kachirachirai, and other organisms with data available. Dehydrodiisoeugenol is a natural product found in Myristica fragrans with data available. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1].

   

Cedrelanol

(1S,4S,4aR,8aR)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol

C15H26O (222.1984)


A cadinane sesquiterpenoid that is cadin-4-ene carrying a hydroxy substituent at position 10.

   

Docosahexaenoic acid

Methylparaben, Pharmaceutical Secondary Standard; Certified Reference Material

C8H8O3 (152.0473)


Methylparaben is a 4-hydroxybenzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with methanol. It is the most frequently used antimicrobial preservative in cosmetics. It occurs naturally in several fruits, particularly in blueberries. It has a role as a plant metabolite, an antimicrobial food preservative, a neuroprotective agent and an antifungal agent. Methylparaben is used in allergenic testing. Methylparaben is a Standardized Chemical Allergen. The physiologic effect of methylparaben is by means of Increased Histamine Release, and Cell-mediated Immunity. Methylparaben is a natural product found in Zanthoxylum beecheyanum, Rhizophora apiculata, and other organisms with data available. Methylparaben is found in alcoholic beverages. Methylparaben is an antimicrobial agent, preservative, flavouring agent. Methylparaben is a constituent of cloudberry, yellow passion fruit, white wine, botrytised wine and Bourbon vanilla. Methylparaben has been shown to exhibit anti-microbial function Methylparaben belongs to the family of Hydroxybenzoic Acid Derivatives. These are compounds containing an hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxylic acid. (A3204). See also: Butylparaben; ethylparaben; methylparaben (component of) ... View More ... Methylparaben, also known as methyl 4-hydroxybenzoate or p-carbomethoxyphenol, belongs to the class of organic compounds known as p-hydroxybenzoic acid alkyl esters. These are aromatic compounds containing a benzoic acid, which is esterified with an alkyl group and para-substituted with a hydroxyl group. Methylparaben is an antimicrobial agent, preservative, and flavouring agent. methylparaben has been detected, but not quantified, in a few different foods, such as alcoholic beverages, saffrons, and fruits (particularly blueberries). It is also a constituent of cloudberry, yellow passion fruit, white wine, botrytized wine, and Bourbon vanilla. Methylparaben is the most frequently used antimicrobial preservative in cosmetics. A 4-hydroxybenzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with methanol. It is the most frequently used antimicrobial preservative in cosmetics. It occurs naturally in several fruits, particularly in blueberries. Antimicrobial agent, preservative, flavouring agent. Constituent of cloudberry, yellow passion fruit, white wine, botrytised wine and Bourbon vanilla. Methylparaben is found in saffron, alcoholic beverages, and fruits. D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1]. Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1].

   

Oxoglaucine

N-[3-Ethyl-3-methyl-7-(2-methylpropyl)-5,8-dioxo-2-oxa-6,9-diazabicyclo[10.2.2]hexadeca-10,12,14,15-tetraen-4-yl]-1-methyl-2-pyrrolidinecarboxamide, 9ci

C20H17NO5 (351.1107)


Oxoglaucine is an isoquinoline alkaloid. Oxoglaucine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. Oxoglaucine is found in beverages. Oxoglaucine is an alkaloid from Annona purpurea (soncoya

   

Syringaldehyde

InChI=1/C9H10O4/c1-12-7-3-6(5-10)4-8(13-2)9(7)11/h3-5,11H,1-2H

C9H10O4 (182.0579)


Syringaldehyde is a hydroxybenzaldehyde that is 4-hydroxybenzaldehyde substituted by methoxy groups at positions 3 and 5. Isolated from Pisonia aculeata and Panax japonicus var. major, it exhibits hypoglycemic activity. It has a role as a hypoglycemic agent and a plant metabolite. It is a hydroxybenzaldehyde and a dimethoxybenzene. Syringaldehyde is a natural product found in Ficus septica, Mikania laevigata, and other organisms with data available. Syringaldehyde is a metabolite found in or produced by Saccharomyces cerevisiae. A hydroxybenzaldehyde that is 4-hydroxybenzaldehyde substituted by methoxy groups at positions 3 and 5. Isolated from Pisonia aculeata and Panax japonicus var. major, it exhibits hypoglycemic activity. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

N-Acetylanonaine

1-{3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaen-11-yl}ethan-1-one

C19H17NO3 (307.1208)


N-Acetylanonaine is found in fruits. N-Acetylanonaine is an alkaloid from the root bark of Zanthoxylum simulans (Szechuan pepper

   

N-Acetyldehydroanonaine

1-{3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,12,14,16,18-heptaen-11-yl}ethan-1-one

C19H15NO3 (305.1052)


N-Acetyldehydroanonaine is found in fruits. N-Acetyldehydroanonaine is an alkaloid from root bark of Zanthoxylum simulans (Szechuan pepper). Alkaloid from root bark of Zanthoxylum simulans (Szechuan pepper). N-Acetyldehydroanonaine is found in herbs and spices and fruits.

   

Cedrelanol

(1S,4S,4aR,8aR)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol

C15H26O (222.1984)


Constituent of Juniperus communis (juniper). Cedrelanol is found in many foods, some of which are fruits, sweet basil, lemon balm, and hyssop. Cedrelanol is found in fruits. Cedrelanol is a constituent of Juniperus communis (juniper).

   

beta-Amyrin acetate

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967)


Beta-amyrin acetate, also known as B-amyrin acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrin acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Beta-amyrin acetate can be found in burdock and guava, which makes beta-amyrin acetate a potential biomarker for the consumption of these food products. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Dehydrodiisoeugenol

2-methoxy-4-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran-2-yl]phenol

C20H22O4 (326.1518)


   

Lariciresinol

4-{4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl}-2-methoxyphenol

C20H24O6 (360.1573)


(-)-lariciresinol is a member of the class of compounds known as 7,9-epoxylignans. 7,9-epoxylignans are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively (-)-lariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (-)-lariciresinol can be found in a number of food items such as cassava, acorn, celeriac, and banana, which makes (-)-lariciresinol a potential biomarker for the consumption of these food products.

   

Syringaldehyde

3,5-Dimethoxy-4-hydroxy-benzaldehyde

C9H10O4 (182.0579)


4-hydroxy-3,5-dimethoxybenzaldehyde, also known as sinapaldehyde or 2,6-dimethoxy-4-formylphenol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 4-hydroxy-3,5-dimethoxybenzaldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 4-hydroxy-3,5-dimethoxybenzaldehyde is a mild, sweet, and plastic tasting compound and can be found in a number of food items such as whisky, common grape, garden tomato (variety), and coriander, which makes 4-hydroxy-3,5-dimethoxybenzaldehyde a potential biomarker for the consumption of these food products. 4-hydroxy-3,5-dimethoxybenzaldehyde may be a unique S.cerevisiae (yeast) metabolite. Because it contains many functional groups, it can be classified in many ways - aromatic, aldehyde, phenol. It is a colorless solid (impure samples appear yellowish) that is soluble in alcohol and polar organic solvents. Its refractive index is 1.53 . Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

delta-Cadinol

(8R)-2,5-dimethyl-8-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-2-ol

C15H26O (222.1984)


Delta-cadinol, also known as delta-cadinol, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Delta-cadinol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Delta-cadinol is a herbal tasting compound and can be found in a number of food items such as cloves, parsley, lemon balm, and common sage, which makes delta-cadinol a potential biomarker for the consumption of these food products. Delta-cadinol, also known as δ-cadinol, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Delta-cadinol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Delta-cadinol is a herbal tasting compound and can be found in a number of food items such as cloves, parsley, lemon balm, and common sage, which makes delta-cadinol a potential biomarker for the consumption of these food products.

   

Guaiacin

2-Naphthalenol, 5,6,7,8-tetrahydro-8-(4-hydroxy-3-methoxyphenyl)-3-methoxy-6,7-dimethyl-, (6R,7S,8S)-

C20H24O4 (328.1675)


(+)-guaiacin is a lignan. It has a role as a metabolite. Guaiacin is a natural product found in Magnolia kachirachirai, Saururus cernuus, and other organisms with data available. A natural product found in Machilus robusta. Guaiacin is a arylnaphthalene type lignin isolated from the barks of Machilus thunbergii SIEB. et ZUCC (Lauraceae). Guaiacin significantly increases alkaline phosphatase activity and osteoblast differentiation[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

N-Acetyldehydroanonaine

1-{3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6}.0^{8,20}.0^{14,19}]icosa-1,6,8(20),12,14,16,18-heptaen-11-yl}ethan-1-one

C19H15NO3 (305.1052)


   

Stigmasterol

Stigmasterol

C29H48O (412.3705)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

Syringaldehyde

4-hydroxy-3,5-dimethoxybenzaldehyde

C9H10O4 (182.0579)


Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 303; CONFIDENCE confident structure Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

β-Amyrin acetate

(4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl) acetate

C32H52O2 (468.3967)


β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

2,3-bis(4-hydroxy-3-methoxyphenyl)prop-2-enal

2,3-bis(4-hydroxy-3-methoxyphenyl)prop-2-enal

C17H16O5 (300.0998)


   

β-Amyrin acetate

[(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl] acetate

C32H52O2 (468.3967)


Beta-amyrin acetate is a triterpenoid. beta-Amyrin acetate is a natural product found in Euphorbia decipiens, Euphorbia larica, and other organisms with data available. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Lariciresinol

3-Furanmethanol, tetrahydro-2-(4-hydroxy-3-methoxyphenyl)-4-((4-hydroxy-3-methoxyphenyl)methyl)-, (2R-(2alpha,3beta,4beta))-

C20H24O6 (360.1573)


(+)-lariciresinol is a lignan that is tetrahydrofuran substituted at positions 2, 3 and 4 by 4-hydroxy-3-methoxyphenyl, hydroxymethyl and 4-hydroxy-3-methoxybenzyl groups respectively (the 2S,3R,4R-diastereomer). It has a role as an antifungal agent and a plant metabolite. It is a member of oxolanes, a member of phenols, a lignan, a primary alcohol and an aromatic ether. It is an enantiomer of a (-)-lariciresinol. Lariciresinol is a natural product found in Magnolia kachirachirai, Euterpe oleracea, and other organisms with data available. See also: Acai fruit pulp (part of). A lignan that is tetrahydrofuran substituted at positions 2, 3 and 4 by 4-hydroxy-3-methoxyphenyl, hydroxymethyl and 4-hydroxy-3-methoxybenzyl groups respectively (the 2S,3R,4R-diastereomer). (-)-lariciresinol is a member of the class of compounds known as 7,9-epoxylignans. 7,9-epoxylignans are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively (-)-lariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (-)-lariciresinol can be found in a number of food items such as ostrich fern, pepper (c. frutescens), ohelo berry, and guava, which makes (-)-lariciresinol a potential biomarker for the consumption of these food products. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.823 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.820 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.818 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.812

   

Oxoglaucine

4,5,15,16-tetramethoxy-10-azatetracyclo[7.7.1.0^{2,7}.0^{13,17}]heptadeca-1(16),2,4,6,9(17),10,12,14-octaen-8-one

C20H17NO5 (351.1107)


Alkaloid from Annona purpurea (soncoya). Oxoglaucine is found in cherimoya, beverages, and fruits. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.251 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.249

   

Methylparaben

Prodelphinidin trimer GC-C-C

C8H8O3 (152.0473)


Prodelphinidin trimer gc-c-c is a member of the class of compounds known as biflavonoids and polyflavonoids. Biflavonoids and polyflavonoids are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3-C3, and C6-C8. Prodelphinidin trimer gc-c-c is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Prodelphinidin trimer gc-c-c can be found in beer, which makes prodelphinidin trimer gc-c-c a potential biomarker for the consumption of this food product. D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3579; ORIGINAL_PRECURSOR_SCAN_NO 3578 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3566; ORIGINAL_PRECURSOR_SCAN_NO 3561 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3549; ORIGINAL_PRECURSOR_SCAN_NO 3546 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3560; ORIGINAL_PRECURSOR_SCAN_NO 3556 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3573; ORIGINAL_PRECURSOR_SCAN_NO 3570 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3577; ORIGINAL_PRECURSOR_SCAN_NO 3575 CONFIDENCE standard compound; INTERNAL_ID 2371 Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1]. Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1].

   

4-Hydroxy-3,5-dimethoxybenzaldehyde

4-Hydroxy-3,5-dimethoxybenzaldehyde

C9H10O4 (182.0579)


   

4-Isopropyl-1,6-dimethyl-1,2,3,4,4a,7,8,8a-octahydro-1-naphthalenol

4-Isopropyl-1,6-dimethyl-1,2,3,4,4a,7,8,8a-octahydro-1-naphthalenol

C15H26O (222.1984)


   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

AI3-28796

InChI=1\C9H10O4\c1-12-7-3-6(5-10)4-8(13-2)9(7)11\h3-5,11H,1-2H

C9H10O4 (182.0579)


Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

Abiol

InChI=1\C8H8O3\c1-11-8(10)6-2-4-7(9)5-3-6\h2-5,9H,1H

C8H8O3 (152.0473)


D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1]. Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1].

   

Balchanin

NAPHTHO(1,2-B)FURAN-2(3H)-ONE, 3A,4,5,5A,6,7,9A,9B-OCTAHYDRO-6-HYDROXY-5A,9-DIMETHYL-3-METHYLENE-, (3AS-(3A.ALPHA.,5A.BETA.,6.BETA.,9A.ALPHA.,9B.BETA.))-

C15H20O3 (248.1412)


Santamarin is a sesquiterpene lactone of the eudesmanolide group. Santamarine is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available.

   

(3aR,4S,6aR)-4-(4-hydroxy-3-methoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan-1-one

(3aR,4S,6aR)-4-(4-hydroxy-3-methoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan-1-one

C13H14O5 (250.0841)


   

alpha-Cyclocostunolide

alpha-Cyclocostunolide

C15H20O2 (232.1463)


   

delta-Cadinol

delta-Cadinol

C15H26O (222.1984)


   

(3r,3as,5ar,6r,9r,9as,9bs)-6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

(3r,3as,5ar,6r,9r,9as,9bs)-6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H24O4 (268.1675)


   

6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

5-hydroxy-8-isopropyl-5-methyl-4,4a,6,7,8,8a-hexahydro-3h-naphthalene-2-carbaldehyde

5-hydroxy-8-isopropyl-5-methyl-4,4a,6,7,8,8a-hexahydro-3h-naphthalene-2-carbaldehyde

C15H24O2 (236.1776)


   

(2e)-2,3-bis(4-hydroxy-3-methoxyphenyl)prop-2-enal

(2e)-2,3-bis(4-hydroxy-3-methoxyphenyl)prop-2-enal

C17H16O5 (300.0998)


   

5-{7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-1-benzofuran-2-yl}-2h-1,3-benzodioxole

5-{7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-1-benzofuran-2-yl}-2h-1,3-benzodioxole

C20H18O4 (322.1205)


   

β-sitostenone

NA

C29H48O (412.3705)


{"Ingredient_id": "HBIN018272","Ingredient_name": "\u03b2-sitostenone","Alias": "NA","Ingredient_formula": "C29H48O","Ingredient_Smile": "CCC(CCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(=O)C4)C)C)C(C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "19965","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(3s,3as,5ar,6r,9as,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,6r,9as,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

(2s,3s)-2-(3,4-dimethoxyphenyl)-7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran

(2s,3s)-2-(3,4-dimethoxyphenyl)-7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran

C21H24O4 (340.1675)


   

(2r)-2,3-bis(hexadecanoyloxy)propyl (9z)-octadec-9-enoate

(2r)-2,3-bis(hexadecanoyloxy)propyl (9z)-octadec-9-enoate

C53H100O6 (832.752)


   

5a,9-dimethyl-3-methylidene-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

5a,9-dimethyl-3-methylidene-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H20O2 (232.1463)


   

2-methoxy-4-{7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-1-benzofuran-2-yl}phenol

2-methoxy-4-{7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-1-benzofuran-2-yl}phenol

C20H20O4 (324.1362)


   

4-{7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-1-benzofuran-2-yl}phenol

4-{7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-1-benzofuran-2-yl}phenol

C19H18O3 (294.1256)


   

1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C29H46O (410.3548)


   

[(1s,2r,4s)-1-ethenyl-2,4-bis(prop-1-en-2-yl)cyclohexyl]methanol

[(1s,2r,4s)-1-ethenyl-2,4-bis(prop-1-en-2-yl)cyclohexyl]methanol

C15H24O (220.1827)


   

(1r,3as,3bs,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1r,3as,3bs,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C29H46O (410.3548)


   

6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H24O4 (268.1675)


   

(3s,3as,5ar,6r,9r,9as,9bs)-6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,6r,9r,9as,9bs)-6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H24O4 (268.1675)


   

(3ar,4s,6ar)-4-(4-hydroxy-3,5-dimethoxyphenyl)-tetrahydro-3h-furo[3,4-c]furan-1-one

(3ar,4s,6ar)-4-(4-hydroxy-3,5-dimethoxyphenyl)-tetrahydro-3h-furo[3,4-c]furan-1-one

C14H16O6 (280.0947)


   

(3s,3as,5ar,6r,9as,9bs)-6-hydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,6r,9as,9bs)-6-hydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

(9r)-15-hydroxy-16-methoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(17),2,4,6,13,15-hexaene-10-carbaldehyde

(9r)-15-hydroxy-16-methoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(17),2,4,6,13,15-hexaene-10-carbaldehyde

C18H17NO3 (295.1208)


   

4-(4-hydroxy-3-methoxybenzoyl)-2-methoxyphenol

4-(4-hydroxy-3-methoxybenzoyl)-2-methoxyphenol

C15H14O5 (274.0841)


   

5-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-1-benzofuran-2-yl]-2h-1,3-benzodioxole

5-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-1-benzofuran-2-yl]-2h-1,3-benzodioxole

C20H18O4 (322.1205)


   

methyl n-[4-({4-[(methoxycarbonyl)amino]phenyl}methyl)phenyl]carbamate

methyl n-[4-({4-[(methoxycarbonyl)amino]phenyl}methyl)phenyl]carbamate

C17H18N2O4 (314.1267)


   

1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C29H48O (412.3705)


   

8-hydroxy-5-isopropyl-3,8-dimethyl-1,4a,5,6,7,8a-hexahydronaphthalen-2-one

8-hydroxy-5-isopropyl-3,8-dimethyl-1,4a,5,6,7,8a-hexahydronaphthalen-2-one

C15H24O2 (236.1776)


   

(4ar,5r,8s,8ar)-5-hydroxy-8-isopropyl-5-methyl-4,4a,6,7,8,8a-hexahydro-3h-naphthalene-2-carbaldehyde

(4ar,5r,8s,8ar)-5-hydroxy-8-isopropyl-5-methyl-4,4a,6,7,8,8a-hexahydro-3h-naphthalene-2-carbaldehyde

C15H24O2 (236.1776)


   

5-[(2s,3s)-7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-2-yl]-2h-1,3-benzodioxole

5-[(2s,3s)-7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-2-yl]-2h-1,3-benzodioxole

C20H20O4 (324.1362)


   

4-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran-2-yl]benzene-1,2-diol

4-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran-2-yl]benzene-1,2-diol

C19H20O4 (312.1362)


   

3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O2 (234.162)


   

(3s,3as,11as)-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3as,11as)-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O2 (234.162)


   

(2r)-2-[(1r,2r,3s,4s)-4-ethenyl-2-hydroxy-4-methyl-3-(prop-1-en-2-yl)cyclohexyl]-1-hydroxypropan-2-yl acetate

(2r)-2-[(1r,2r,3s,4s)-4-ethenyl-2-hydroxy-4-methyl-3-(prop-1-en-2-yl)cyclohexyl]-1-hydroxypropan-2-yl acetate

C17H28O4 (296.1987)


   

2-(3,4-dimethoxyphenyl)-7-methoxy-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran

2-(3,4-dimethoxyphenyl)-7-methoxy-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran

C21H24O4 (340.1675)


   

6-hydroxy-5a,9-dimethyl-3-methylidene-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

6-hydroxy-5a,9-dimethyl-3-methylidene-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H20O3 (248.1412)


   

2,3-bis(hexadecanoyloxy)propyl octadec-9-enoate

2,3-bis(hexadecanoyloxy)propyl octadec-9-enoate

C53H100O6 (832.752)


   

4-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-1-benzofuran-2-yl]phenol

4-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-1-benzofuran-2-yl]phenol

C19H18O3 (294.1256)


   

2-methoxy-4-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-1-benzofuran-2-yl]phenol

2-methoxy-4-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-1-benzofuran-2-yl]phenol

C20H20O4 (324.1362)


   

1-{3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,12,14(19),15,17-heptaen-11-yl}ethanone

1-{3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,12,14(19),15,17-heptaen-11-yl}ethanone

C19H15NO3 (305.1052)


   

(3s,3as,5ar,9as,9bs)-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,9as,9bs)-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H22O2 (234.162)


   

4-[(2s,3s)-7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-2-yl]benzene-1,2-diol

4-[(2s,3s)-7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-2-yl]benzene-1,2-diol

C19H20O4 (312.1362)


   

4,5,15,16-tetramethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,9(17),10,12,14-octaen-8-one

4,5,15,16-tetramethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,9(17),10,12,14-octaen-8-one

C20H17NO5 (351.1107)


   

(3ar,4s,6ar)-4-(4-hydroxy-3-methoxyphenyl)-tetrahydro-3h-furo[3,4-c]furan-1-one

(3ar,4s,6ar)-4-(4-hydroxy-3-methoxyphenyl)-tetrahydro-3h-furo[3,4-c]furan-1-one

C13H14O5 (250.0841)


   

1-[(12r)-7-methoxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaen-11-yl]ethanone

1-[(12r)-7-methoxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaen-11-yl]ethanone

C20H19NO4 (337.1314)


   

5-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran-2-yl]-2h-1,3-benzodioxole

5-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran-2-yl]-2h-1,3-benzodioxole

C20H20O4 (324.1362)


   

(3r,3as,5ar,6r,9as,9bs)-6-hydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

(3r,3as,5ar,6r,9as,9bs)-6-hydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

(3r,3as,5ar,6r,9as,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

(3r,3as,5ar,6r,9as,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

(1ar,4ar,7s,7as,7br)-7-hydroxy-1,1,7-trimethyl-4-methylidene-hexahydro-1ah-cyclopropa[e]azulen-5-one

(1ar,4ar,7s,7as,7br)-7-hydroxy-1,1,7-trimethyl-4-methylidene-hexahydro-1ah-cyclopropa[e]azulen-5-one

C15H22O2 (234.162)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

1-{7-methoxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaen-11-yl}ethanone

1-{7-methoxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaen-11-yl}ethanone

C20H19NO4 (337.1314)


   

6-ethenyl-6-methyl-3-methylidene-7-(prop-1-en-2-yl)-tetrahydro-3ah-1-benzofuran-2-one

6-ethenyl-6-methyl-3-methylidene-7-(prop-1-en-2-yl)-tetrahydro-3ah-1-benzofuran-2-one

C15H20O2 (232.1463)


   

2-methoxy-4-[(2r,3r)-7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-2-yl]phenol

2-methoxy-4-[(2r,3r)-7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-2-yl]phenol

C20H22O4 (326.1518)


   

3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H22O2 (234.162)


   

(3ar,4s,6ar)-4-(3-hydroxy-4,5-dimethoxyphenyl)-tetrahydro-3h-furo[3,4-c]furan-1-one

(3ar,4s,6ar)-4-(3-hydroxy-4,5-dimethoxyphenyl)-tetrahydro-3h-furo[3,4-c]furan-1-one

C14H16O6 (280.0947)


   

6-hydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

6-hydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

(4ar,5s,8s,8ar)-8-hydroxy-5-isopropyl-3,8-dimethyl-1,4a,5,6,7,8a-hexahydronaphthalen-2-one

(4ar,5s,8s,8ar)-8-hydroxy-5-isopropyl-3,8-dimethyl-1,4a,5,6,7,8a-hexahydronaphthalen-2-one

C15H24O2 (236.1776)


   

1-[(12r)-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaen-11-yl]ethanone

1-[(12r)-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaen-11-yl]ethanone

C19H17NO3 (307.1208)


   

α-cyclocostunolide

α-cyclocostunolide

C15H20O2 (232.1463)


   

(3as,6s,7s,7as)-6-ethenyl-6-methyl-3-methylidene-7-(prop-1-en-2-yl)-tetrahydro-3ah-1-benzofuran-2-one

(3as,6s,7s,7as)-6-ethenyl-6-methyl-3-methylidene-7-(prop-1-en-2-yl)-tetrahydro-3ah-1-benzofuran-2-one

C15H20O2 (232.1463)