Gene Association: SLCO4C1
UniProt Search:
SLCO4C1 (PROTEIN_CODING)
Function Description: solute carrier organic anion transporter family member 4C1
found 13 associated metabolites with current gene based on the text mining result from the pubmed database.
Digoxin
Digoxin appears as clear to white crystals or white crystalline powder. Odorless. Used as a cardiotonic drug. (EPA, 1998) Digoxin is a cardenolide glycoside that is digitoxin beta-hydroxylated at C-12. A cardiac glycoside extracted from the foxglove plant, Digitalis lanata, it is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation, but the margin between toxic and therapeutic doses is small. It has a role as an epitope, an anti-arrhythmia drug, a cardiotonic drug and an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is a cardenolide glycoside and a steroid saponin. It is a conjugate acid of a digoxin(1-). Digoxin is one of the oldest cardiovascular medications used today. It is a common agent used to manage atrial fibrillation and the symptoms of heart failure. Digoxin is classified as a cardiac glycoside and was initially approved by the FDA in 1954. This drug originates from the foxglove plant, also known as the Digitalis plant, studied by William Withering, an English physician and botanist in the 1780s. Prior to this, a Welsh family, historically referred to as the Physicians of Myddvai, formulated drugs from this plant. They were one of the first to prescribe cardiac glycosides, according to ancient literature dating as early as the 1250s. Digoxin is a Cardiac Glycoside. Digoxin is a natural product found in Digitalis obscura, Digitalis parviflora, and other organisms with data available. Digoxin is a cardiac glycoside. Digoxin inhibits the sodium potassium adenosine triphosphatase (ATPase) pump, thereby increasing intracellular calcium and enhancing cardiac contractility. This agent also acts directly on the atrioventricular node to suppress conduction, thereby slowing conduction velocity. Apparently due to its effects on intracellular calcium concentrations, digoxin induces apoptosis of tumor cells via a pathway involving mitochondrial cytochrome c and caspases 8 and 3. (NCI04) Digoxin is a cardiac glycoside extracted from the foxglove plant, digitalis. It is widely used in the treatment of various heart conditions, namely atrial fibrillation, atrial flutter and congestive heart failure that cannot be controlled by other medication. Digoxin preparations are commonly marketed under the trade name Lanoxin. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) Digoxin is a cardiotonic glycoside obtained mainly from Digitalis lanata; It consists of three sugars and the aglycone digoxigenin. Digoxin binds to a site on the extracellular aspect of the of the Na+/K+ ATPase pump in the membranes of heart cells (myocytes). This causes an increase in the level of sodium ions in the myocytes, which then leads to a rise in the level of calcium ions. The proposed mechanism is the following: inhibition of the Na+/K+ pump leads to increased Na+ levels, which in turn slows down the extrusion of Ca2+ via the Na+/Ca2+ exchange pump. Increased amounts of Ca2+ are then stored in the sarcoplasmic reticulum and released by each action potential, which is unchanged by digoxin. This is a different mechanism from that of catecholamines. Owing to its narrow therapeutic index (the margin between effectiveness and toxicity), side effects of digoxin are inevitable. Nausea, vomiting and GIT upset are common, especially in higher doses. Decreased conduction in the AV node can lead to AV blocks, increased intracellular Ca2+ causes a type of arrhythmia called bigeminy (coupled beats), eventually ventricular tachycardia or fibrillation. An often described but rarely seen side effect of digoxin is a disturbance of color vision (mos... Digoxin is a cardiac glycoside extracted from the foxglove plant, digitalis. It is widely used in the treatment of various heart conditions, namely atrial fibrillation, atrial flutter and congestive heart failure that cannot be controlled by other medication. Digoxin preparations are commonly marketed under the trade name Lanoxin. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) -- Pubchem; Digoxin is a cardiotonic glycoside obtained mainly from Digitalis lanata; It consists of three sugars and the aglycone digoxigenin. Digoxin binds to a site on the extracellular aspect of the of the Na+/K+ ATPase pump in the membranes of heart cells (myocytes). This causes an increase in the level of sodium ions in the myocytes, which then leads to a rise in the level of calcium ions. The proposed mechanism is the following: inhibition of the Na+/K+ pump leads to increased Na+ levels, which in turn slows down the extrusion of Ca2+ via the Na+/Ca2+ exchange pump. Increased amounts of Ca2+ are then stored in the sarcoplasmic reticulum and released by each action potential, which is unchanged by digoxin. This is a different mechanism from that of catecholamines. -- Wikipedia; Owing to its narrow therapeutic index (the margin between effectiveness and toxicity), side effects of digoxin are inevitable. Nausea, vomiting and GIT upset are common, especially in higher doses. Decreased conduction in the AV node can lead to AV blocks, increased intracellular Ca2+ causes a type of arrhythmia called bigeminy (coupled beats), eventually ventricular tachycardia or fibrillation. An often described but rarely seen side effect of digoxin is a disturbance of color vision (mostly yellow and green color) called xanthopsia. Digoxin is a cardiac glycoside extracted from the foxglove plant, digitalis. It is widely used in the treatment of various heart conditions, namely atrial fibrillation, atrial flutter and congestive heart failure that cannot be controlled by other medication. Digoxin preparations are commonly marketed under the trade name Lanoxin. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) -- Pubchem; A cardiotonic glycoside obtained mainly from Digitalis lanata; Digoxin binds to a site on the extracellular aspect of the of the Na+/K+ ATPase pump in the membranes of heart cells (myocytes). This causes an increase in the level of sodium ions in the myocytes, which then leads to a rise in the level of calcium ions. The proposed mechanism is the following: inhibition of the Na+/K+ pump leads to increased Na+ levels, which in turn slows down the extrusion of Ca2+ via the Na+/Ca2+ exchange pump. Increased amounts of Ca2+ are then stored in the sarcoplasmic reticulum and released by each action potential, which is unchanged by digoxin. This is a different mechanism from that of catecholamines. -- Wikipedia; Owing to its narrow therapeutic index (the margin between effectiveness and toxicity), side effects of digoxin are inevitable. Nausea, vomiting and GIT upset are common, especially in higher doses. Decreased conduction in the AV node can lead to AV blocks, increased intracellular Ca2+ causes a type of arrhythmia called bigeminy (coupled beats), eventually ventricular tachycardia or fibrillation. An often described but rarely seen side effect of digoxin is a disturbance of color vision (mostly yellow and green color) called xanthopsia. [HMDB] A cardenolide glycoside that is digitoxin beta-hydroxylated at C-12. A cardiac glycoside extracted from the foxglove plant, Digitalis lanata, it is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation, but the margin between toxic and therapeutic doses is small. C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C1907 - Drug, Natural Product D004791 - Enzyme Inhibitors Digoxin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=20830-75-5 (retrieved 2024-10-11) (CAS RN: 20830-75-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Guanidinosuccinic acid
Guanidinosuccinic acid (GSA) has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806). Guanidinosuccinic acid (GSA) is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806) [HMDB] Guanidinosuccinic acid is a nitrogenous metabolite.
Quinapril
Quinapril is a prodrug that belongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is metabolized to quinaprilat (quinapril diacid) following oral administration. Quinaprilat is a competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Quinapril may be used to treat essential hypertension and congestive heart failure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
Homo-L-arginine
L-homoarginine, also known as N6-(aminoiminomethyl)-L-lysine or N6-amidino-L-lysine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. More specifically, L-homoarginine is a naturally occurring, non-proteinogenic, cationic amino acid. It is formed in the liver in a reaction catalyzed by L-arginine:glycine amidinotransferase (AGAT) when transferring the amidino group from arginine to lysine. It is an alternative substrate for nitric oxide (NO) synthase. L-homoarginine increases the availability of NO and thereby affects endothelial function. High homoarginine levels may exert positive actions that are relevant to cardiovascular health, including enhanced endothelial function, inhibition of platelet aggregation and stimulation of insulin secretion (PMID: 30866658). Recent studies have demonstrated that low serum homoarginine levels are a strong predictor of cardiovascular mortality (PMID: 24583919). L-homoarginine is a substrate of the human cationic amino acid CAT1 [solute carrier family 7 (SLC7A1)], CAT2A (SLC7A2A) or CAT2B (SLC7A2B) (PMID: 28684763). According to published human metabolomic data, L-homoarginine can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as in human intestinal and testes tissues. Moreover, L-homoarginine has been found to be associated with liver cirrhosis and the genetic disorder, hyperargininemia. Homoarginine is an organ-specific uncompetitive inhibitor of human liver and bone alkaline phosphohydrolase (PMID: 5063678). H-HoArg-OH, a homologue arginine, is a strong inhibitor of human bone and liver alkaline phosphatase.
Phenol sulfate
Phenol sulphate, also known as phenylsulfate or aryl sulphate, belongs to the class of organic compounds known as phenylsulfates. Phenylsulfates are compounds containing a sulfate group conjugated to a phenyl group. In normal humans, phenol sulphate is primarily a gut-derived metabolite that arises from the activity of the bacterial enzyme tyrosine phenol-lyase, which is responsible for the synthesis of phenol from dietary tyrosine (PMID: 31015435). Phenol sulphate can also arise from the consumption of phenol or from phenol poisoning (PMID: 473790). Phenol sulphate is produced from the conjugation of phenol with sulphate in the liver. In particular, phenol sulphate can be biosynthesized from phenol and phosphoadenosine phosphosulfate through the action of the enzyme sulfotransferase 1A1 in the liver. Phenol sulphate can be found in most mammals (mice, rats, sheep, dogs, humans) and likely most animals. Phenol sulphate is a uremic toxin (PMID: 30068866). It is a protein-bound uremic solute that induces reactive oxygen species (ROS) production and decreases glutathione levels, rendering cells vulnerable to oxidative stress (PMID: 29474405). In experimental models of diabetes, phenol sulphate administration has been shown to induce albuminuria and podocyte damage. In a diabetic patient cohort, phenol sulphate levels were found to significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria (PMID: 31015435).
Trovafloxacin
Trovafloxacin (sold as Trovan by Pfizer) is a broad spectrum antibiotic that inhibits the uncoiling of supercoiled DNA in various bacteria by blocking the activity of DNA gyrase and topoisomerase IV. It was withdrawn from the market due to the risk of hepatotoxicity. It had better gram-positive bacterial coverage and less gram-negative coverage than the previous fluoroquinolones. [Wikipedia] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
Digoxin
C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2 C1907 - Drug, Natural Product D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 1.276 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.282 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.275
Homoarginine
An L-lysine derivative that is the L-enantiomer of homoarginine. Homoarginine is a guanidino compounds of guanidinoethanesulfonic acid. It is an organ-specific uncompetitive inhibitor of human liver and bone alkaline phosphohydrolase. (PMID 5063678). L-Homoarginine is found in grass pea. H-HoArg-OH, a homologue arginine, is a strong inhibitor of human bone and liver alkaline phosphatase.
Quinapril
C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
Trovafloxacin
A 1,8-naphthyridine derivative that is 4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid bearing additional 2,4-difluorophenyl, fluoro and 6-amino-3-azabicyclo[3.1.0]hex-3-yl substituents at positions 1, 6 and 7 respectively. A broad-spectrum antibiotic that was withdrawn from the market due to risk of liver failure. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
Phenylsulfate
An aryl sulfate that is phenol bearing an O-sulfo substituent.