Gene Association: MUC7
UniProt Search:
MUC7 (PROTEIN_CODING)
Function Description: mucin 7, secreted
found 37 associated metabolites with current gene based on the text mining result from the pubmed database.
Adenosine triphosphate
Adenosine triphosphate, also known as atp or atriphos, is a member of the class of compounds known as purine ribonucleoside triphosphates. Purine ribonucleoside triphosphates are purine ribobucleotides with a triphosphate group linked to the ribose moiety. Adenosine triphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine triphosphate can be found in a number of food items such as lichee, alpine sweetvetch, pecan nut, and black mulberry, which makes adenosine triphosphate a potential biomarker for the consumption of these food products. Adenosine triphosphate can be found primarily in blood, cellular cytoplasm, cerebrospinal fluid (CSF), and saliva, as well as throughout most human tissues. Adenosine triphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine triphosphate is involved in several metabolic pathways, some of which include phosphatidylethanolamine biosynthesis PE(16:0/18:4(6Z,9Z,12Z,15Z)), carteolol action pathway, phosphatidylethanolamine biosynthesis PE(20:3(5Z,8Z,11Z)/15:0), and carfentanil action pathway. Adenosine triphosphate is also involved in several metabolic disorders, some of which include lysosomal acid lipase deficiency (wolman disease), phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1), propionic acidemia, and the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria. Moreover, adenosine triphosphate is found to be associated with rachialgia, neuroinfection, stroke, and subarachnoid hemorrhage. Adenosine triphosphate is a non-carcinogenic (not listed by IARC) potentially toxic compound. Adenosine triphosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine triphosphate (ATP) is a complex organic chemical that participates in many processes. Found in all forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts to either the di- or monophosphates, respectively ADP and AMP. Other processes regenerate ATP such that the human body recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and RNA . ATP is able to store and transport chemical energy within cells. ATP also plays an important role in the synthesis of nucleic acids. ATP can be produced by various cellular processes, most typically in mitochondria by oxidative phosphorylation under the catalytic influence of ATP synthase. The total quantity of ATP in the human body is about 0.1 mole. The energy used by human cells requires the hydrolysis of 200 to 300 moles of ATP daily. This means that each ATP molecule is recycled 2000 to 3000 times during a single day. ATP cannot be stored, hence its consumption must closely follow its synthesis (DrugBank). Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Demethylation and glucuronidation may also occur. Oxidation of organophosphorus pesticides may result in moderately toxic products. In general, phosphorothioates are not directly toxic but require oxidative metabolism to the proximal toxin. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of organophosphate exposure (T3DB). ATP is an adenosine 5-phosphate in which the 5-phosphate is a triphosphate group. It is involved in the transportation of chemical energy during metabolic pathways. It has a role as a nutraceutical, a micronutrient, a fundamental metabolite and a cofactor. It is an adenosine 5-phosphate and a purine ribonucleoside 5-triphosphate. It is a conjugate acid of an ATP(3-). An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. Adenosine triphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine-5-triphosphate is a natural product found in Chlamydomonas reinhardtii, Arabidopsis thaliana, and other organisms with data available. Adenosine Triphosphate is an adenine nucleotide comprised of three phosphate groups esterified to the sugar moiety, found in all living cells. Adenosine triphosphate is involved in energy production for metabolic processes and RNA synthesis. In addition, this substance acts as a neurotransmitter. In cancer studies, adenosine triphosphate is synthesized to examine its use to decrease weight loss and improve muscle strength. Adenosine triphosphate (ATP) is a nucleotide consisting of a purine base (adenine) attached to the first carbon atom of ribose (a pentose sugar). Three phosphate groups are esterified at the fifth carbon atom of the ribose. ATP is incorporated into nucleic acids by polymerases in the processes of DNA replication and transcription. ATP contributes to cellular energy charge and participates in overall energy balance, maintaining cellular homeostasis. ATP can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission, inflammation, apoptosis, and bone remodelling. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin, and ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity. During exercise, intracellular homeostasis depends on the matching of adenosine triphosphate (ATP) supply and ATP demand. Metabolites play a useful role in communicating the extent of ATP demand to the metabolic supply pathways. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular ATP. The increased concentration of adenosine triphosphate (ATP) in erythrocytes from patients with chronic renal failure (CRF) has been observed in many studies but the mechanism leading to these abnormalities still is controversial. (A3367, A3368, A3369, A3370, A3371). Adenosine triphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. Adenosine triphosphate (ATP) is a nucleotide consisting of a purine base (adenine) attached to the first carbon atom of ribose (a pentose sugar). Three phosphate groups are esterified at the fifth carbon atom of the ribose. ATP is incorporated into nucleic acids by polymerases in the processes of DNA replication and transcription. ATP contributes to cellular energy charge and participates in overall energy balance, maintaining cellular homeostasis. ATP can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission, inflammation, apoptosis, and bone remodelling. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin, and ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity. During exercise, intracellular homeostasis depends on the matching of adenosine triphosphate (ATP) supply and ATP demand. Metabolites play a useful role in communicating the extent of ATP demand to the metabolic supply pathways. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular ATP. The increased concentration of adenosine triphosphate (ATP) in erythrocytes from patients with chronic renal failure (CRF) has been observed in many studies but the mechanism leading to these abnormalities still is controversial. (PMID: 15490415, 15129319, 14707763, 14696970, 11157473). 5′-ATP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-65-5 (retrieved 2024-07-01) (CAS RN: 56-65-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Pyrimethanil
CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8499; ORIGINAL_PRECURSOR_SCAN_NO 8497 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8493; ORIGINAL_PRECURSOR_SCAN_NO 8491 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8504; ORIGINAL_PRECURSOR_SCAN_NO 8502 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8481; ORIGINAL_PRECURSOR_SCAN_NO 8479 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8459; ORIGINAL_PRECURSOR_SCAN_NO 8457 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8532; ORIGINAL_PRECURSOR_SCAN_NO 8531 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2712 Pyrimethanil is a fungicide used on grape vines. COVID info from PDB, Protein Data Bank Fungicide used on grape vines. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
N-Methylhydantoin
N-methylhydantoin is a imidazolidine-2,4-dione that is the N-methyl-derivative of hydantoin. It has a role as a bacterial metabolite. It derives from a hydantoin. N-Methylhydantoin is a small molecular weight polar substance, the product of degradation of creatinine by bacteria (hydrolyzed by creatinine iminohydrolase, EC 3.5.4.21 to ammonia and N-methylhydantoin). In mammals, the metabolism of 1-methylhydantoin occurs via 5-hydroxy-1-methylhydantoin. In a reported human case, 1-Methylhydantoin was found as an unexpected metabolite of the intelligence-affecting substance dupracetam (PMID:15533691, 8287520, 3196760, 7294979). N-Methylhydantoin is a small molecular weight polar substance, the product of degradation of creatinine by bacteria (hydrolyzed by creatinine iminohydrolase, EC 3.5.4.21 to ammonia and N-methylhydantoin). In mammals, the metabolism of 1-methylhydantoin occurs via 5-hydroxy-1-methylhydantoin. In a reported human case, 1-Methylhydantoin was found as an unexpected metabolite of the intelligence-affecting substance dupracetam. (PMID: 15533691, 8287520, 3196760, 7294979) [HMDB] KEIO_ID M016 N-Methylhydantoin is a product of degradation of creatinine by bacteria. N-Methylhydantoin is a product of degradation of creatinine by bacteria.
Dimethomorph
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1085 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2944
N,N-Dimethylaniline
N,N-Dimethylaniline, also known as dimethylaminobenzene or dimethylphenylamine, belongs to the class of organic compounds known as dialkylarylamines. These are aliphatic aromatic amines in which the amino group is linked to two aliphatic chains and one aromatic group. N,N-dimethylaniline is a tertiary amine that is aniline in which the amino hydrogens are replaced by two methyl groups. It is a tertiary amine and a dimethylaniline. N,N-dimethylaniline appears as a yellow to brown colored oily liquid with a fishlike odor. It is less dense than water and insoluble in water. Its flash point is 150 °F, and is toxic by ingestion, inhalation, and skin absorption. N,N-Dimethylaniline was used to make dyes and as a solvent. Outside of the human body, N,N-Dimethylaniline has been detected, but not quantified in several different foods, such as common mushrooms, strawberries, feijoa, limes, and black-eyed pea. the structural formula shown is also known as N,N-dimethylaniline -- Wikipedia; Dimethylaniline (C8H11N) is an organic chemical compound which is a substituted derivative of aniline. It consists of a benzene ring and a substituted amino group, making it a tertiary aromatic amine. -- Wikipedia; N,N-Dimethylaniline (DMA) is an organic chemical compound, a substituted derivative of aniline. It consists of a tertiary amine, featuring dimethylamino group attached to a phenyl group. This oily liquid is colourless when pure, but commercial samples are often yellow. N,N-Dimethylaniline is found in many foods, some of which are fennel, rose hip, black elderberry, and maitake. KEIO_ID D032
N-Methyl-D-aspartic acid
N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. NMDA is a water-soluble endogenous metabolite that plays an important role in the neuroendocrine system of species across Animalia (PMID:18096065). It was first synthesized in the 1960s (PMID:14056452). NMDA is an excitotoxin; this trait has applications in behavioural neuroscience research. The body of work utilizing this technique falls under the term "lesion studies." Researchers apply NMDA to specific regions of an (animal) subjects brain or spinal cord and subsequently test for the behaviour of interest, such as operant behaviour. If the behaviour is compromised, it suggests that the destroyed tissue was part of a brain region that made an important contribution to the normal expression of that behaviour. Examples of antagonists of the NMDA receptor are ketamine, amantadine, dextromethorphan (DXM), riluzole, and memantine. They are commonly referred to as NMDA receptor antagonists (PMID:28877137). N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
N-acetylmethionine
N-Acetyl-L-methionine or N-Acetylmethionine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylmethionine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylmethionine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-methionine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylmethionine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free methionine can also occur. In particular, N-Acetylmethionine can be biosynthesized from L-methionine and acetyl-CoA by the enzyme methionine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylmethionine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylmethionine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Nutrient supplement used as a source of L-methionine. KEIO_ID A065 N-Acetyl-DL-methionine is an endogenous metabolite. N-Acetyl-L-methionine, a human metabolite, is nutritionally and metabolically equivalent to L-methionine. L-methionine is an indispensable amino acid required for normal growth and development[1].
Protriptyline
Protriptyline hydrochloride is a dibenzocycloheptene-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, protriptyline does not affect mood or arousal, but may cause sedation. In depressed individuals, protriptyline exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. In addition, TCAs down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. See toxicity section below for a complete listing of side effects. Protriptyline may be used for the treatment of depression. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators
N-PHENYL-1-NAPHTHYLAMINE
CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10077; ORIGINAL_PRECURSOR_SCAN_NO 10074 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10054; ORIGINAL_PRECURSOR_SCAN_NO 10051 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10017; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10109; ORIGINAL_PRECURSOR_SCAN_NO 10106 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10083; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10041; ORIGINAL_PRECURSOR_SCAN_NO 10037 D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes CONFIDENCE standard compound; INTERNAL_ID 4139 CONFIDENCE standard compound; INTERNAL_ID 2426 CONFIDENCE standard compound; INTERNAL_ID 8127 D009676 - Noxae > D002273 - Carcinogens
Michlers ketone
INTERNAL_ID 250; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9520; ORIGINAL_PRECURSOR_SCAN_NO 9519 CONFIDENCE standard compound; INTERNAL_ID 250; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9492; ORIGINAL_PRECURSOR_SCAN_NO 9487 CONFIDENCE standard compound; INTERNAL_ID 250; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9500; ORIGINAL_PRECURSOR_SCAN_NO 9498 CONFIDENCE standard compound; INTERNAL_ID 250; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9534; ORIGINAL_PRECURSOR_SCAN_NO 9532 CONFIDENCE standard compound; INTERNAL_ID 250; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9547; ORIGINAL_PRECURSOR_SCAN_NO 9546 CONFIDENCE standard compound; INTERNAL_ID 250; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9470; ORIGINAL_PRECURSOR_SCAN_NO 9468 CONFIDENCE standard compound; INTERNAL_ID 250; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9520; ORIGINAL_PRECURSOR_SCAN_NO 9519 CONFIDENCE standard compound; INTERNAL_ID 2291 CONFIDENCE standard compound; INTERNAL_ID 8123 CONFIDENCE standard compound; INTERNAL_ID 4144
Toyomycin
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D002865 - Chromomycins D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes Same as: D02062
Acetylphosphate
Acetylphosphate, also known as acetyl-p, belongs to the class of organic compounds known as acyl monophosphates. These are organic compounds containing a monophosphate linked to an acyl group. They have the general structure R-CO-P(O)(O)OH, R=H or organyl. Since acetylphosphate synthesis is known to depend on cholinesterase activity, pseudocholinesterase was assumed to participate to a small extent in acetylphosphate synthesis by cancerous serum. It is also an intermediate in pyruvate metabolism. Acetylphosphate is a drug. Acetylphosphate exists in all living organisms, ranging from bacteria to humans. Acetylphosphate can be converted into acetic acid; which is mediated by the enzyme acylphosphatase-1. It is generated from pyruvate and the formation is catalyzed by pyruvate oxidase (EC:1.2.3.3). In humans, acetylphosphate is involved in the metabolic disorder called the pyruvate dehydrogenase complex deficiency pathway. It is generated from sulfoacetaldehyde, converted to acetyl-CoA and acetate via phosphate acetyltransferase (EC:2.3.1.8) and acetate kinase (EC:2.7.2.1) respectively. Acetylphosphate or actyl phosphate is a compound involved in taurine and hypotaurine metabolism as well as pyruvate metabolism. Cancerous serum produced 37\\% less acetylphosphate than normal serum. Cancerous serum produced 37\\% less acetylphosphate than normal serum. Since acetylphosphate synthesis is known to depend on cholinesterase activity, pseudocholinesterase was assumed to participate to a small extent in acetylphosphate synthesis by cancerous serum.( Rev. sci. Med., Acad. rep. populaire Roumaine (1960), 5 7-10) [HMDB]
HexNAc-(Hex)3
Paricalcitol
Paricalcitol is only found in individuals that have used or taken this drug. It is a synthetic vitamin D analog. Paricalcitol has been used to reduce parathyroid hormone levels. Paricalcitol is indicated for the prevention and treatment of secondary hyperparathyroidism associated with chronic renal failure.Paricalcitol is biologically active vitamin D analog of calcitriol with modifications to the side chain (D2) and the A (19-nor) ring. Preclinical andin vitro studies have demonstrated that paricalcitols biological actions are mediated through binding of the VDR, which results in the selective activation of vitamin D responsive pathways. Vitamin D and paricalcitol have been shown to reduce parathyroid hormone levels by inhibiting PTH synthesis and secretion. H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols
Ground limestone
A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02A - Antacids > A02AC - Calcium compounds A - Alimentary tract and metabolism > A12 - Mineral supplements > A12A - Calcium > A12AA - Calcium D005765 - Gastrointestinal Agents > D000863 - Antacids It is used as a food additive .
Calcium phosphate
A - Alimentary tract and metabolism > A12 - Mineral supplements > A12A - Calcium > A12AA - Calcium Component of flour bleaching mixtures, anticaking agent, dietary supplement, flavouring ingredient
Psorospermin
An organic heterotetracyclic compound that is 1,2-dihydro-6H-furo[2,3-c]xanthene substituted by a hydroxy group at position 10, a methoxy group at position 5 nad a 2-methyloxiran-2-yl group at position 2.
Isofenphos
Isofenphos is an Agricultural insecticide with contact and stomach actio C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
UNII:EU52DFC4WJ
N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
N-Methyl-DL-aspartic acid
N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
chromomycin a3
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D002865 - Chromomycins D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent
N-acetyl-L-methionine
An L-methionine derivative that is L-methionine in which one of the amine hydrogens is substituted by an acetyl group. N-Acetyl-L-methionine, a human metabolite, is nutritionally and metabolically equivalent to L-methionine. L-methionine is an indispensable amino acid required for normal growth and development[1].
protriptyline
N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators
FA 18:2
Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].
Paricalcitol
H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols
Limestone
A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02A - Antacids > A02AC - Calcium compounds A - Alimentary tract and metabolism > A12 - Mineral supplements > A12A - Calcium > A12AA - Calcium D005765 - Gastrointestinal Agents > D000863 - Antacids
N-Methylhydantoin
A imidazolidine-2,4-dione that is the N-methyl-derivative of hydantoin. N-Methylhydantoin is a product of degradation of creatinine by bacteria. N-Methylhydantoin is a product of degradation of creatinine by bacteria.
Pyrimethanil
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
N-PHENYL-1-NAPHTHYLAMINE
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens
UNII:0514MAW53A
C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals