Gene Association: ANO2

UniProt Search: ANO2 (PROTEIN_CODING)
Function Description: anoctamin 2

found 22 associated metabolites with current gene based on the text mining result from the pubmed database.

Cepharanthine

(14S,27R)-22,33-dimethoxy-13,28-dimethyl-2,5,7,20-tetraoxa-13,28-diazaoctacyclo[25.6.2.2(16,19).1(3,10).1(21,25).0(4,8).0(14,39).0(31,35)]nonatriaconta-1(33),3,8,10(39),16,18,21(36),22,24,31,34,37-dodecaene

C37H38N2O6 (606.273)


Cepharanthine is a bisbenzylisoquinoline alkaloid from tubers of Stephania; stimulates recovery of immunologic function in lymphatic system after administration of antineoplastic agents or x-irradiation. It is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Cepharanthine is a natural product found in Stephania sinica, Stephania cephalantha, and other organisms with data available. A bisbenzylisoquinoline alkaloid from tubers of Stephania; stimulates recovery of immunologic function in lymphatic system after administration of antineoplastic agents or x-irradiation. C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D020011 - Protective Agents > D011837 - Radiation-Protective Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids Cepharanthine is a natural product that can be isolated from the plant Stephania?cephalantha?Hayata. Cepharanthine has anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) activities. Cepharanthine has good effective in suppressing viral proliferation (half maximal (50\\%) inhibitory concentration (IC50) and 90\\% inhibitory concentration (IC90) values of 1.90 and 4.46?μM[1]. Cepharanthine can also effectively reverses P-gp-mediated multidrug resistance in K562 cells and increase enhances the sensitivity of anticancer agents in xenograft mice model[2][3]. Cepharanthine shows inhibitory effects of human liver cytochrome P450 enzymes CYP3A4, CYP2E1 and CYP2C9. Cepharanthine has antitumor, anti-inflammatory and antinociceptive effects[4][5][6][7][8]. Cepharanthine is a natural product that can be isolated from the plant Stephania?cephalantha?Hayata. Cepharanthine has anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) activities. Cepharanthine has good effective in suppressing viral proliferation (half maximal (50\%) inhibitory concentration (IC50) and 90\% inhibitory concentration (IC90) values of 1.90 and 4.46?μM[1]. Cepharanthine can also effectively reverses P-gp-mediated multidrug resistance in K562 cells and increase enhances the sensitivity of anticancer agents in xenograft mice model[2][3]. Cepharanthine shows inhibitory effects of human liver cytochrome P450 enzymes CYP3A4, CYP2E1 and CYP2C9. Cepharanthine has antitumor, anti-inflammatory and antinociceptive effects[4][5][6][7][8].

   

Cyprodinil

4-Cyclopropyl-6-methyl-N-phenyl-2-pyrimidinamine, 9ci

C14H15N3 (225.1266)


CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9314; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9293; ORIGINAL_PRECURSOR_SCAN_NO 9292 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9313; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9269; ORIGINAL_PRECURSOR_SCAN_NO 9268 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9257; ORIGINAL_PRECURSOR_SCAN_NO 9256 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9258; ORIGINAL_PRECURSOR_SCAN_NO 9257 CONFIDENCE standard compound; EAWAG_UCHEM_ID 148 CONFIDENCE standard compound; INTERNAL_ID 2569 KEIO_ID C172; [MS2] KO008908 Cyprodinil is a fungicide. Cyprodinil is a fungicide KEIO_ID C172

   

L-Glutamine

(2S)-2,5-diamino-5-oxopentanoic acid

C5H10N2O3 (146.0691)


Glutamine (Gln), also known as L-glutamine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Structurally, glutamine is similar to the amino acid glutamic acid. However, instead of having a terminal carboxylic acid, it has an amide. Glutamine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, polar amino acid. In humans glutamine is considered a non-essential amino acid. Enzymatically, glutamine is formed by replacing a side-chain hydroxyl of glutamic acid with an amine functional group. More specifically, glutamine is synthesized by the enzyme glutamine synthetase from glutamate and ammonia. The most relevant glutamine-producing tissue are skeletal muscles, accounting for about 90\\\\\\% of all glutamine synthesized. Glutamine is also released, in small amounts, by the lungs and brain. In human blood, glutamine is the most abundant free amino acid. Dietary sources of glutamine include protein-rich foods such as beef, chicken, fish, dairy products, eggs, beans, beets, cabbage, spinach, carrots, parsley, vegetable juices, wheat, papaya, Brussels sprouts, celery and kale. Glutamine is one of the few amino acids that can directly cross the blood–brain barrier. Glutamine is often used as a supplement in weightlifting, bodybuilding, endurance and other sports, as well as by those who suffer from muscular cramps or pain, particularly elderly people. In 2017, the U.S. Food and Drug Administration (FDA) approved L-glutamine oral powder, marketed as Endari, to reduce severe complications of sickle cell disease in people aged five years and older with the disorder. Subjects who were treated with L-glutamine oral powder experienced fewer hospital visits for pain treated with a parenterally administered narcotic or ketorolac. The main use of glutamine within the diet of either group is as a means of replenishing the bodys stores of amino acids that have been used during exercise or everyday activities. Studies which have looked into problems with excessive consumption of glutamine thus far have proved inconclusive. However, normal supplementation is healthy mainly because glutamine is supposed to be supplemented after prolonged periods of exercise (for example, a workout or exercise in which amino acids are required for use) and replenishes amino acid stores. This is one of the main reasons glutamine is recommended during fasting or for people who suffer from physical trauma, immune deficiencies, or cancer. There is a significant body of evidence that links glutamine-enriched diets with positive intestinal effects. These include maintenance of gut barrier function, aiding intestinal cell proliferation and differentiation, as well as generally reducing septic morbidity and the symptoms of Irritable Bowel Syndrome (IBS). The reason for such "cleansing" properties is thought to stem from the fact that the intestinal extraction rate of glutamine is higher than that for other amino acids, and is therefore thought to be the most viable option when attempting to alleviate conditions relating to the gastrointestinal tract. These conditions were discovered after comparing plasma concentration within the gut between glutamine-enriched and non glutamine-enriched diets. However, even though glutamine is thought to have "cleansing" properties and effects, it is unknown to what extent glutamine has clinical benefits, due to the varied concentrations of glutamine in varieties of food. It is also known that glutamine has positive effects in reducing healing time after operations. Hospital waiting times after abdominal s... L-glutamine, also known as L-2-aminoglutaramic acid or levoglutamide, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-glutamine is soluble (in water) and a moderately acidic compound (based on its pKa). L-glutamine can be found in a number of food items such as acorn, yautia, ohelo berry, and oregon yampah, which makes L-glutamine a potential biomarker for the consumption of these food products. L-glutamine can be found primarily in most biofluids, including blood, sweat, breast milk, and cerebrospinal fluid (CSF), as well as throughout most human tissues. L-glutamine exists in all living species, ranging from bacteria to humans. In humans, L-glutamine is involved in several metabolic pathways, some of which include amino sugar metabolism, the oncogenic action of 2-hydroxyglutarate, mercaptopurine metabolism pathway, and transcription/Translation. L-glutamine is also involved in several metabolic disorders, some of which include the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria, tay-sachs disease, xanthinuria type I, and adenosine deaminase deficiency. Moreover, L-glutamine is found to be associated with carbamoyl Phosphate Synthetase Deficiency, epilepsy, schizophrenia, and alzheimers disease. L-glutamine is a non-carcinogenic (not listed by IARC) potentially toxic compound. L-glutamine is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalance. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2].

   

N-acetylmethionine

(2S)-2-Acetamido-4-(methylsulphanyl)butanoic acid

C7H13NO3S (191.0616)


N-Acetyl-L-methionine or N-Acetylmethionine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylmethionine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylmethionine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-methionine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylmethionine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free methionine can also occur. In particular, N-Acetylmethionine can be biosynthesized from L-methionine and acetyl-CoA by the enzyme methionine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylmethionine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylmethionine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Nutrient supplement used as a source of L-methionine. KEIO_ID A065 N-Acetyl-DL-methionine is an endogenous metabolite. N-Acetyl-L-methionine, a human metabolite, is nutritionally and metabolically equivalent to L-methionine. L-methionine is an indispensable amino acid required for normal growth and development[1].

   

Niflumic Acid

2-[[3-(trifluoromethyl)phenyl]amino]-3-pyridinecarboxylic acid

C13H9F3N2O2 (282.0616)


Niflumic Acid is only found in individuals that have used or taken this drug. It is an analgesic and anti-inflammatory agent used in the treatment of rheumatoid arthritis. [PubChem]Niflumic acid is able to inhibit both phospholipase A2 as well as COX-2, thereby acting as an antiinflamatory and pain reduction agent. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3691 CONFIDENCE standard compound; INTERNAL_ID 1154 D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

1,5-Naphthalenediamine

naphthalene-1,5-diamine

C10H10N2 (158.0844)


CONFIDENCE standard compound; INTERNAL_ID 543; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1321; ORIGINAL_PRECURSOR_SCAN_NO 1317 CONFIDENCE standard compound; INTERNAL_ID 543; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1306; ORIGINAL_PRECURSOR_SCAN_NO 1305 CONFIDENCE standard compound; INTERNAL_ID 543; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1313; ORIGINAL_PRECURSOR_SCAN_NO 1311 CONFIDENCE standard compound; INTERNAL_ID 543; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1314; ORIGINAL_PRECURSOR_SCAN_NO 1311 CONFIDENCE standard compound; INTERNAL_ID 543; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1302; ORIGINAL_PRECURSOR_SCAN_NO 1298

   

Oxolinic acid

5-Ethyl-5,8-dihydro-8-oxo-1,3-dioxolo(4,5-g)quinoline-7-carboxylic acid

C13H11NO5 (261.0637)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3609 CONFIDENCE standard compound; INTERNAL_ID 1034 D004791 - Enzyme Inhibitors

   

Aloeemodin

InChI=1/C15H10O5/c16-6-7-4-9-13(11(18)5-7)15(20)12-8(14(9)19)2-1-3-10(12)17/h1-5,16-18H,6H

C15H10O5 (270.0528)


Aloe emodin is a dihydroxyanthraquinone that is chrysazin carrying a hydroxymethyl group at position 3. It has been isolated from plant species of the genus Aloe. It has a role as an antineoplastic agent and a plant metabolite. It is a dihydroxyanthraquinone and an aromatic primary alcohol. It is functionally related to a chrysazin. Aloe-emodin is a natural product found in Rhamnus davurica, Aloe succotrina, and other organisms with data available. See also: Frangula purshiana Bark (part of). Aloeemodin is found in green vegetables. Aloeemodin is found in aloes, also bark of cascara sagrada Rhamnus purshiana, Chinese rhubarb Rheum palmatum and Rheum undulatum (rhubarb).Aloe emodin is an anthraquinone present in aloe latex, an exudate from the aloe plant. It has a strong stimulant-laxative action. (Wikipedia A dihydroxyanthraquinone that is chrysazin carrying a hydroxymethyl group at position 3. It has been isolated from plant species of the genus Aloe. CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 Aloe emodin is a hydroxyanthraquinone extracted from aloe leaves and has been shown to have anti-tumor activity in vitro and in vivo. Aloe emodin is a hydroxyanthraquinone extracted from aloe leaves and has been shown to have anti-tumor activity in vitro and in vivo.

   

L-Alanine

(2S)-2-aminopropanoic acid

C3H7NO2 (89.0477)


Alanine (Ala), also known as L-alanine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-alanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Alanine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. In humans, alanine is a non-essential amino acid that can be easily made in the body from either the conversion of pyruvate or the breakdown of the dipeptides carnosine and anserine. Alanine can be also synthesized from branched chain amino acids such as valine, leucine, and isoleucine. Alanine is produced by reductive amination of pyruvate through a two-step process. In the first step, alpha-ketoglutarate, ammonia and NADH are converted by the enzyme known glutamate dehydrogenase to glutamate, NAD+ and water. In the second step, the amino group of the newly-formed glutamate is transferred to pyruvate by an aminotransferase enzyme, regenerating the alpha-ketoglutarate, and converting the pyruvate to alanine. The net result is that pyruvate and ammonia are converted to alanine. In mammals, alanine plays a key role in glucose–alanine cycle between tissues and liver. In muscle and other tissues that degrade amino acids for fuel, amino groups are collected in the form of glutamate by transamination. Glutamate can then transfer its amino group to pyruvate, a product of muscle glycolysis, through the action of alanine aminotransferase, forming alanine and alpha-ketoglutarate. The alanine enters the bloodstream and is transported to the liver. The alanine aminotransferase reaction takes place in reverse in the liver, where the regenerated pyruvate is used in gluconeogenesis, forming glucose which returns to the muscles through the circulation system. Alanine is highly concentrated in muscle and is one of the most important amino acids released by muscle, functioning as a major energy source. Plasma alanine is often decreased when the BCAA (branched-chain amino acids) are deficient. This finding may relate to muscle metabolism. Alanine is highly concentrated in meat products and other high-protein foods like wheat germ and cottage cheese. Alanine is an important participant as well as a regulator of glucose metabolism. Alanine levels parallel blood sugar levels in both diabetes and hypoglycemia, and alanine is reduced in both severe hypoglycemia and the ketosis of diabetes. Alanine is an important amino acid for lymphocyte reproduction and immunity. Alanine therapy has helped dissolve kidney stones in experimental animals. Normal alanine metabolism, like that of other amino acids, is highly dependent upon enzymes that contain vitamin B6. Alanine, like GABA, taurine, and glycine, is an inhibitory neurotransmitter in the brain (http://www.dcnutrition.com/AminoAcids/). L-Alanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-41-7 (retrieved 2024-07-01) (CAS RN: 56-41-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Alanine is a non-essential amino acid, involved in sugar and acid metabolism, increases immunity, and provides energy for muscle tissue, brain, and central nervous system. L-Alanine is a non-essential amino acid, involved in sugar and acid metabolism, increases immunity, and provides energy for muscle tissue, brain, and central nervous system.

   

Heptanal

Oenanthic aldehyde

C7H14O (114.1045)


Heptanal, also known as enanthal or N-heptaldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, heptanal is considered to be a fatty aldehyde lipid molecule. It is a colourless liquid with a strong fruity odor, which is used as precursor to components in perfumes and lubricants. Heptanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heptanal exists in all eukaryotes, ranging from yeast to humans. Heptanal is an aldehydic, citrus, and fat tasting compound. heptanal is found, on average, in the highest concentration in a few different foods, such as corns, tea, and sweet oranges and in a lower concentration in lemons, wild carrots, and carrots. heptanal has also been detected, but not quantified, in several different foods, such as horned melons, common beets, dills, red bell peppers, and malus (crab apple). This could make heptanal a potential biomarker for the consumption of these foods. The formation of heptanal in the fractional distillation of castor oil was already described in 1878. The large-scale production is based on the pyrolytic cleavage of ricinoleic acid ester (Arkema method) and on the hydroformylation of 1-hexene with rhodium 2-ethylhexanoate as a catalyst upon addition of some 2-ethylhexanoic acid (Oxea method):Heptanal naturally occurs in the essential oils of ylang-ylang (Cananga odorata), clary sage (Salvia sclarea), lemon (Citrus x limon), bitter orange (Citrus x aurantium), rose (Rosa) and hyacinth (Hyacinthus). Heptanal is a potentially toxic compound. Heptanal has been found to be associated with several diseases such as ulcerative colitis, crohns disease, uremia, and nonalcoholic fatty liver disease; also heptanal has been linked to the inborn metabolic disorders including celiac disease. The compound has a flash point of 39.5 °C. The explosion range is between 1.1\\% by volume as the lower explosion limit (LEL) and 5.2\\% by volume as the upper explosion limit. Heptanal or heptanaldehyde is an alkyl aldehyde. Full hydrogenation provides the branched primary alcohol 2-pentylnonan-1-ol, also accessible from the Guerbet reaction from heptanol. A by-product of the given reaction is the unpleasant rancid smelling (Z)-2-pentyl-2-nonenal. Heptanal forms flammable vapor-air mixtures. Heptanal is a flammable, slightly volatile colorless liquid of pervasive fruity to oily-greasy odor, which is miscible with alcohols and practically insoluble in water. Heptanal reacts with benzaldehyde in a Knoevenagel reaction under basic catalysis with high yield and selectivity (> 90\\%) to alpha-pentylcinnamaldehyde (also called jasmine aldehyde because of the typical jasmine odor), which is mostly used in many fragrances as a cis/trans isomer mixture. Found in essential oils of ylang-ylang, clary sage, California orange, bitter orange and others. Flavouring agent

   

2-Aminonaphthalene

RCRA waste number u168

C10H9N (143.0735)


CONFIDENCE standard compound; INTERNAL_ID 516; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6383; ORIGINAL_PRECURSOR_SCAN_NO 6382 CONFIDENCE standard compound; INTERNAL_ID 516; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6382; ORIGINAL_PRECURSOR_SCAN_NO 6380 CONFIDENCE standard compound; INTERNAL_ID 516; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6375; ORIGINAL_PRECURSOR_SCAN_NO 6374 CONFIDENCE standard compound; INTERNAL_ID 516; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6368; ORIGINAL_PRECURSOR_SCAN_NO 6366 CONFIDENCE standard compound; INTERNAL_ID 516; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6328; ORIGINAL_PRECURSOR_SCAN_NO 6323 CONFIDENCE standard compound; INTERNAL_ID 516; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6403; ORIGINAL_PRECURSOR_SCAN_NO 6398 2-aminonaphthalene belongs to the family of Naphthalenes. These are compounds containing a naphthalene moiety, which consists of two fused benzene rings. D009676 - Noxae > D002273 - Carcinogens

   

DL-Glutamine

DL-Glutamine

C5H10N2O3 (146.0691)


DL-Glutamine is used for biochemical research and drug synthesis.

   

DL-2-Aminopropionic acid

2-aminopropanoic acid

C3H7NO2 (89.0477)


(alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein), also known as ALA or 2-Aminopropanoic acid, is classified as an alanine or an Alanine derivative. Alanines are compounds containing alanine or a derivative thereof resulting from reaction of alanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) is considered to be soluble (in water) and acidic. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) can be synthesized from propionic acid. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) can be synthesized into alanine derivative. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) is an odorless tasting compound found in Green bell peppers, Green zucchinis, Italian sweet red peppers, and Red bell peppers Dietary supplement, nutrient, sweetening flavour enhancer in pickling spice mixts. DL-alanine, an amino acid, is the racemic compound of L- and D-alanine. DL-alanine is employed both as a reducing and a capping agent, used with silver nitrate aqueous solutions for the production of nanoparticles. DL-alanine can be used for the research of transition metals chelation, such as Cu(II), Zn(II), Cd(11). DL-alanine, a sweetener, is classed together with glycine, and sodium saccharin. DL-alanine plays a key role in the glucose-alanine cycle between tissues and liver[1][2][3][4][5][6].

   

TRIPHENYLPHOSPHINE OXIDE

TRIPHENYLPHOSPHINE OXIDE

C18H15OP (278.086)


CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8827; ORIGINAL_PRECURSOR_SCAN_NO 8826 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8840; ORIGINAL_PRECURSOR_SCAN_NO 8839 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8870; ORIGINAL_PRECURSOR_SCAN_NO 8869 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8871; ORIGINAL_PRECURSOR_SCAN_NO 8868 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8916; ORIGINAL_PRECURSOR_SCAN_NO 8915 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8887; ORIGINAL_PRECURSOR_SCAN_NO 8885 CONFIDENCE standard compound; INTERNAL_ID 2472 CONFIDENCE standard compound; INTERNAL_ID 8813 CONFIDENCE standard compound; INTERNAL_ID 8250 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3587 EAWAG_UCHEM_ID 3587; CONFIDENCE standard compound

   

niflumic acid

niflumic acid

C13H9F3N2O2 (282.0616)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

N-acetyl-L-methionine

N-acetyl-L-methionine

C7H13NO3S (191.0616)


An L-methionine derivative that is L-methionine in which one of the amine hydrogens is substituted by an acetyl group. N-Acetyl-L-methionine, a human metabolite, is nutritionally and metabolically equivalent to L-methionine. L-methionine is an indispensable amino acid required for normal growth and development[1].

   

triphenylphosphineoxide

TRIPHENYLPHOSPHINE OXIDE

C18H15OP (278.086)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1081

   

Heptanal

InChI=1\C7H14O\c1-2-3-4-5-6-7-8\h7H,2-6H2,1H

C7H14O (114.1045)


   

oxolinic acid

oxolinic acid

C13H11NO5 (261.0637)


A quinolinemonocarboxylic acid having the carboxy group at position 7 as well as oxo- and ethyl groups at positions 4 and 1 respectively and a dioxolo ring fused at the 5- and 6-positions. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D004791 - Enzyme Inhibitors

   

DL-Alanine

3-Methylellagic acid 8-(2-acetylrhamnoside)

C3H7NO2 (89.0477)


Constituent of Eucalyptus globulus (Tasmanian blue gum) Constituent of some red wines. Acetylvitisin A is found in alcoholic beverages. Constituent of Eriobotrya japonica (loquat). (R)-Naringenin 8-C-(2-rhamnosylglucoside) is found in fruits. 1,2-anhydrido-4,5-dihydroniveusin a is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 1,2-anhydrido-4,5-dihydroniveusin a can be found in sunflower, which makes 1,2-anhydrido-4,5-dihydroniveusin a a potential biomarker for the consumption of this food product. DL-alanine, an amino acid, is the racemic compound of L- and D-alanine. DL-alanine is employed both as a reducing and a capping agent, used with silver nitrate aqueous solutions for the production of nanoparticles. DL-alanine can be used for the research of transition metals chelation, such as Cu(II), Zn(II), Cd(11). DL-alanine, a sweetener, is classed together with glycine, and sodium saccharin. DL-alanine plays a key role in the glucose-alanine cycle between tissues and liver[1][2][3][4][5][6].

   

2-NAPHTHYLAMINE

Naphthalen-2-amine

C10H9N (143.0735)


D009676 - Noxae > D002273 - Carcinogens

   

1,5-Diaminonaphthalene

1,5-Diaminonaphthalene

C10H10N2 (158.0844)