Exact Mass: 594.1308096
Exact Mass Matches: 594.1308096
Found 500 metabolites which its exact mass value is equals to given mass value 594.1308096
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Kaempferol_3-O-rutinoside
Kaempferol-3-rutinoside is a kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. It has a role as a metabolite, a radical scavenger and a plant metabolite. It is a rutinoside, a trihydroxyflavone, a disaccharide derivative and a kaempferol O-glucoside. Nicotiflorin is a natural product found in Visnea mocanera, Eupatorium cannabinum, and other organisms with data available. See also: Cocoa (part of). A kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.
6'-O-p-Coumaroyltrifolin
Kaempferol 3-(6-p-coumaroylgalactoside) is a member of the class of compounds known as flavonoid 3-o-p-coumaroyl glycosides. Flavonoid 3-o-p-coumaroyl glycosides are flavonoid 3-O-glycosides where the carbohydrate moiety is esterified with a p-coumaric acid. P-coumaric acid is an organic derivative of cinnamic acid, that carries a hydroxyl group at the 4-position of the benzene ring. Kaempferol 3-(6-p-coumaroylgalactoside) is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Within the cell, kaempferol 3-(6-p-coumaroylgalactoside) is primarily located in the membrane (predicted from logP). Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid. Tiliroside is a natural product found in Phlomoides spectabilis, Anaphalis contorta, and other organisms with data available. 6-O-p-Coumaroyltrifolin is a constituent of Pinus sylvestris (Scotch pine). Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
Saponarin
7-O-(beta-D-glucosyl)isovitexin is a C-glycosyl compound that is isovitexin in which the hydroxyl hydrogen at position 7 is replaced by a beta-D-glucosyl residue. It has a role as a metabolite. It is a C-glycosyl compound, a dihydroxyflavone, a glycosyloxyflavone and a monosaccharide derivative. It is functionally related to an isovitexin. Saponarin is a natural product found in Hibiscus syriacus, Moraea sisyrinchium, and other organisms with data available. Saponarin is a natural flavonoid isolated from Gypsophila trichotoma, with antioxidant, anti-inflammatory and hepatoprotective activities. Saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake[1][2][3]. Saponarin is a natural flavonoid isolated from Gypsophila trichotoma, with antioxidant, anti-inflammatory and hepatoprotective activities. Saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake[1][2][3].
Meloside
Meloside, also known as isovitexin 2-beta-D-O-glucoside or 2-O-beta-D-glucosylisovitexin, is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Meloside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Meloside can be found in muskmelon, which makes meloside a potential biomarker for the consumption of this food product. 2-O-(beta-D-glucosyl)isovitexin is a disaccharide derivative that is isovitexin substituted at position 2 on the glucose ring by a beta-D-glucosyl residue. It has a role as a metabolite. It is a C-glycosyl compound, a disaccharide derivative and a trihydroxyflavone. It is functionally related to an isovitexin. Meloside A is a natural product found in Ziziphus jujuba with data available. Meloside A (Isovitexin 2''-O-glucoside) is a phenylpropanoid isolated from barley with antioxidant activity. In barley, phenylpropanoids have been described as having protective properties against excess UV-B radiation and have been linked to resistance to pathogens[1][2].
Vicenin 2
Constituent of lemons (Citrus limon). Vicenin 2 is found in many foods, some of which are common salsify, fenugreek, sweet orange, and cucumber. Vicenin 2 is found in citrus. Vicenin 2 is a constituent of lemons (Citrus limon) Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1]. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1].
Scolymoside
Scolymoside is a minor flavonoid found in the leaves and leaf extracts of artichoke (Cynara scolymus L.). Artichoke and artichoke leaf extracts (ALE) have a long history as a traditional part of the Mediterranean diet as well as in folk medicine for the treatment of dyspeptic disorders. Although several biol. mechanisms of action have been suggested, e.g. increased biliary secretion leading to an increased cholesterol elimination and/or inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase activity resulting in a decreased cholesterol biosynthesis, convincing and conclusive human studies investigating the blood cholesterol lowering properties of artichoke or ALE are currently limited. (European Food Research and Technology (2002), 215(2), 149-157.). Luteolin 7-O-neohesperidoside is a disaccharide derivative that is luteolin substituted by a 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antibacterial agent and a metabolite. It is a neohesperidoside, a disaccharide derivative, a glycosyloxyflavone and a trihydroxyflavone. It is functionally related to a luteolin. Lonicerin is a natural product found in Carex fraseriana, Lonicera japonica, and other organisms with data available. See also: Cynara scolymus leaf (part of). A disaccharide derivative that is luteolin substituted by a 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Isolated from Capsella bursa-pastoris (shepherds purse) Cynara scolymus (globe artichoke) Lonicerin is an anti-algE (alginate secretion protein) flavonoid with inhibitory activity for P. aeruginosa. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury[1][2]. Lonicerin is an anti-algE (alginate secretion protein) flavonoid with inhibitory activity for P. aeruginosa. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury[1][2].
Paniculatin
A hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and beta-D-glucopyranosyl residues at positions 6 and 8 via C-glycosidic linkages.
Kaempferol
Kaempferol 3-neohesperidoside is a member of flavonoids and a glycoside. Kaempferol 3-neohesperidoside is a natural product found in Ficus pandurata, Crataegus monogyna, and other organisms with data available. Kaempferol 3-neohesperidoside (Kaempferol 3-O-neohesperidoside) is a flavonoid[1]. Kaempferol 3-neohesperidoside exhibits insulinomimetic effect on the rat soleus muscle[2]. Kaempferol 3-neohesperidoside (Kaempferol 3-O-neohesperidoside) is a flavonoid[1]. Kaempferol 3-neohesperidoside exhibits insulinomimetic effect on the rat soleus muscle[2]. Kaempferol-3-O-glucorhamnoside, a flavonoid derived from plant Thesium chinense Turcz, inhibits inflammatory responses via MAPK and NF-κB pathways in vitro and in vivo[1]. Kaempferol-3-O-glucorhamnoside, a flavonoid derived from plant Thesium chinense Turcz, inhibits inflammatory responses via MAPK and NF-κB pathways in vitro and in vivo[1].
Biorobin
Isolated from Medicago subspecies, Trigonella subspecies and other plant subspecies Kaempferol 3-robinobioside is found in herbs and spices and pulses. Biorobin is found in herbs and spices. Biorobin is isolated from Medicago species, Trigonella species and other plant species.
Astragalin 7-rhamnoside
Astragalin 7-rhamnoside is found in broad bean. Astragalin 7-rhamnoside is a constituent of Delphinium formosum, Tilia argentea and many other plant species [CCD].
2'-O-trans-p-Coumaroylastragalin
2-O-trans-p-Coumaroylastragalin is found in tea. 2-O-trans-p-Coumaroylastragalin is isolated from Lithocarpus polystachya tea. Isolated from Lithocarpus polystachya tea. 2-E-p-Coumaroylastragalin is found in tea.
Kaempferol 3-neohesperidoside
Isolated from hop (Humulus lupulus). Kaempferol 3-neohesperidoside is found in soy bean, alcoholic beverages, and cereals and cereal products. Kaempferol 3-neohesperidoside is found in alcoholic beverages. Kaempferol 3-neohesperidoside is isolated from hop (Humulus lupulus). Kaempferol 3-neohesperidoside (Kaempferol 3-O-neohesperidoside) is a flavonoid[1]. Kaempferol 3-neohesperidoside exhibits insulinomimetic effect on the rat soleus muscle[2]. Kaempferol 3-neohesperidoside (Kaempferol 3-O-neohesperidoside) is a flavonoid[1]. Kaempferol 3-neohesperidoside exhibits insulinomimetic effect on the rat soleus muscle[2].
7-O-(4-Hydroxycinnamoyl) astragalin
7-O-(4-Hydroxycinnamoyl) astragalin is found in fruits. 7-O-(4-Hydroxycinnamoyl) astragalin is a constituent of Elaeagnus angustifolia (Russian olive). Constituent of Elaeagnus angustifolia (Russian olive). 7-(4-Hydroxycinnamoyl)astragalin is found in fruits.
Apigenin 7-[galactosyl-(1->4)-mannoside]
Apigenin 7-[galactosyl-(1->4)-mannoside] is found in root vegetables. Apigenin 7-[galactosyl-(1->4)-mannoside] is isolated from seeds of carrot (Daucus carota) Apigenin is a flavone that is the aglycone of several glycosides. It is a yellow crystalline solid that has been used to dye wool. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (PMID: 16982614); Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (PMID: 16844095); Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (PMID: 16648565). Isolated from seeds of carrot (Daucus carota). Apigenin 7-[galactosyl-(1->4)-mannoside] is found in root vegetables.
5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)-4H-chromen-4-one
Isovitexin 2'-O-glucoside
Constituent of Oxalis acetosella (wood sorrel) and many other plants. Isovitexin 2-glucoside is found in tea, muskmelon, and cucumber. Isovitexin 2-O-galactoside is found in cereals and cereal products. Isovitexin 2-O-galactoside is isolated from Secale cereale (rye). Meloside A (Isovitexin 2''-O-glucoside) is a phenylpropanoid isolated from barley with antioxidant activity. In barley, phenylpropanoids have been described as having protective properties against excess UV-B radiation and have been linked to resistance to pathogens[1][2].
Safflor Yellow A
Yellow pigment of flower petals of Carthamus tinctorius (safflower). Safflor Yellow A is found in safflower, fats and oils, and herbs and spices. Safflor Yellow A is found in fats and oils. Safflor Yellow A is a yellow pigment of flower petals of Carthamus tinctorius (safflower
Orientin 2'-rhamnoside
Orientin 2-rhamnoside is found in fruits. Orientin 2-rhamnoside is isolated from Fortunella japonica (round kumquat). Isolated from Fortunella japonica (round kumquat). Orientin 2-rhamnoside is found in fruits.
3,6-Diglucopyranosyl-4',5,7-trihydroxyflavone
3,6-Diglucopyranosyl-4,5,7-trihydroxyflavone is found in citrus. 3,6-Diglucopyranosyl-4,5,7-trihydroxyflavone is isolated from Citrus unshiu (satsuma mandarin). Isolated from Citrus unshiu (satsuma mandarin). Apigenin 3,6-di-C-glucoside is found in citrus.
Epicatechin-(4beta->8)-gallocatechin
Catechin-(4alpha->8)-epigallocatechin is found in tea. Catechin-(4alpha->8)-epigallocatechin is isolated from Camellia sinensis assamica (Assam tea). Constituent of Phyllanthus emblica (emblic). Epicatechin-(4beta->8)-gallocatechin is found in fruits.
Epigallocatechin-(4beta->8)-catechin
Epigallocatechin-(4beta->8)-catechin is found in barley. Epigallocatechin-(4beta->8)-catechin is isolated from Hordeum vulgare (barley) grains and Pinus sylvestris (Scotch pine).
5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)-4H-chromen-4-one
Kaempferol 3-O-glucosyl-(1->2)-rhamnoside
Kaempferol 3-O-glucosyl-(1->2)-rhamnoside is found in fats and oils. Kaempferol 3-O-glucosyl-(1->2)-rhamnoside is isolated from Ginkgo biloba (ginkgo). Isolated from Ginkgo biloba (ginkgo). Kaempferol 3-O-glucosyl-(1->2)-rhamnoside is found in ginkgo nuts and fats and oils.
Isorhamnetin 3-O-a-L-arabinopyranoside 7-O-a-L-rhamnopyranoside
Isorhamnetin 3-O-a-L-arabinopyranoside 7-O-a-L-rhamnopyranoside is found in fruits. Isorhamnetin 3-O-a-L-arabinopyranoside 7-O-a-L-rhamnopyranoside is isolated from Peumus boldus (boldo). Isolated from Peumus boldus (boldo). Isorhamnetin 3-O-a-L-arabinopyranoside 7-O-a-L-rhamnopyranoside is found in fruits.
Rheinoside C
Rheinoside D is found in green vegetables. Rheinoside D is a constituent of rhubarb. Isolated from rhubarb. Rheinoside C is found in green vegetables.
3'-O-Caffeoylcosmosiin
3-O-Caffeoylcosmosiin is isolated from leaves of Perilla frutescens (perilla). Isolated from leaves of Perilla frutescens (perilla)
Graveobioside B
Isolated from Apium graveolens (celery seeds) and Petroselinum hortense (parsley). Chrysoeriol 7-[apiofuranosyl-(1->2)-glucoside] is found in many foods, some of which are herbs and spices, green vegetables, celery leaves, and wild celery. Graveobioside B is found in celery leaves. Graveobioside B is isolated from Apium graveolens (celery seeds) and Petroselinum hortense (parsley). 3'-Methoxyapiin (Graveobioside B) is a flavone. 3'-Methoxyapiin can be found in Uraria crinite and celery[1][2].
1,8-Dihydroxy-3-hydroxymethylanthraquinone 1,8-di-O-b-D-glucoside
1,8-Dihydroxy-3-hydroxymethylanthraquinone 1,8-di-O-b-D-glucoside is found in green vegetables. 1,8-Dihydroxy-3-hydroxymethylanthraquinone 1,8-di-O-b-D-glucoside is found in Chinese rhubarb (Rheum palmatum Found in Chinese rhubarb (Rheum palmatum)
Buddlenoid A
Isolated from Muntingia calabura (Jamaica cherry). Kaempferol 7-(6-p-coumaroylglucoside) is found in fruits. Buddlenoid A is found in fruits. Buddlenoid A is isolated from Muntingia calabura (Jamaica cherry).
Kuwanon Z
Kuwanon Z is found in fruits. Kuwanon Z is a constituent of Morus alba (white mulberry). Constituent of Morus alba (white mulberry). Kuwanon Z is found in fruits.
Orientin 7-rhamnoside
Orientin 7-rhamnoside is found in coffee and coffee products. Orientin 7-rhamnoside is isolated from Linum usitatissimum. Isolated from Linum usitatissimum. Orientin 7-rhamnoside is found in tea, flaxseed, and coffee and coffee products.
Kaempferol 4'-glucoside 7-rhamnoside
Kaempferol 4-glucoside 7-rhamnoside is found in green vegetables. Kaempferol 4-glucoside 7-rhamnoside is a constituent of the bracken fern Pteridium aquilinum. Constituent of the bracken fern Pteridium aquilinum. Kaempferol 4-glucoside 7-rhamnoside is found in green vegetables and root vegetables.
Scoparin 2'-xyloside
Scoparin 2-xyloside is found in cereals and cereal products. Scoparin 2-xyloside is isolated from Setaria italica (foxtail millet). Isolated from Setaria italica (foxtail millet). Scoparin 2-xyloside is found in cereals and cereal products.
Piperitoside
Piperitoside is found in herbs and spices. Piperitoside is isolated from Mentha piperita (peppermint) leaves. Isolated from Mentha piperita (peppermint) leaves. Piperitoside is found in herbs and spices.
Isoorientin 6'-rhamnoside
Isoorientin 6-rhamnoside is found in cereals and cereal products. Isoorientin 6-rhamnoside is isolated from wheat leaves (Triticum sp.). Isolated from wheat leaves (Triticum species). Isoorientin 6-rhamnoside is found in wheat and cereals and cereal products.
2'-Hydroxydaidzein 4',7-diglucoside
2-Hydroxydaidzein 4,7-diglucoside is found in adzuki bean. 2-Hydroxydaidzein 4,7-diglucoside is a stress metabolite from cell suspension cultures of Vigna angularis (azuki bean). Stress metabolite from cell suspension cultures of Vigna angularis (azuki bean). 2-Hydroxydaidzein 4,7-diglucoside is found in pulses and adzuki bean.
6-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl (2E)-3-(4-hydroxyphenyl)prop-2-enoate
Gallocatechin-(4alpha->8)-epicatechin
Gallocatechin-(4alpha->8)-epicatechin is found in broad bean. Gallocatechin-(4alpha->8)-epicatechin is isolated from Camellia sinensis assamica (Assam tea). Isolated from Camellia sinensis assamica (Assam tea). Gallocatechin-(4alpha->8)-epicatechin is found in tea and broad bean.
Peumoside
Peumoside is found in fruits. Peumoside is isolated from Peumus boldus (boldo). Isolated from Peumus boldus (boldo). Peumoside is found in fruits.
Saponarin
Isovitexin 7-glucoside, also known as isovitexin-7-O-β-D-glucopyranoside or saponarin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Isovitexin 7-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isovitexin 7-glucoside can be found in barley and cucumber, which makes isovitexin 7-glucoside a potential biomarker for the consumption of these food products. Saponarin is a natural flavonoid isolated from Gypsophila trichotoma, with antioxidant, anti-inflammatory and hepatoprotective activities. Saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake[1][2][3]. Saponarin is a natural flavonoid isolated from Gypsophila trichotoma, with antioxidant, anti-inflammatory and hepatoprotective activities. Saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake[1][2][3].
Sultamicillin
C25H30N4O9S2 (594.1454130000001)
[(2R,3S,6S)-6-[5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl 3-(4-hydroxyphenyl)prop-2-enoate
Kaempferol 3-feruloylapioside
Constituent of the bracken fern Pteridium aquilinum. Kaempferol 3-feruloylapioside is found in green vegetables and root vegetables.
Chrysoeriol 7-apiosyl-glucoside
Chrysoeriol 7-apiosyl-glucoside is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Chrysoeriol 7-apiosyl-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Chrysoeriol 7-apiosyl-glucoside can be found in wild celery, which makes chrysoeriol 7-apiosyl-glucoside a potential biomarker for the consumption of this food product.
Degalloyl theasinensin F
Degalloyl theasinensin f is a member of the class of compounds known as epigallocatechins. Epigallocatechins are compounds containing epigallocatechin or a derivative. Epigallocatechin is a flavan-3-ol containing a benzopyran-3,5,7-triol linked to a 3,4,5-hydroxyphenyl moiety. Degalloyl theasinensin f is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Degalloyl theasinensin f can be found in tea, which makes degalloyl theasinensin f a potential biomarker for the consumption of this food product.
Kaempferol 3-rhamno-glucoside
Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.
Kaempferol 3-O-neohesperidoside
Kaempferol 3-o-neohesperidoside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-o-neohesperidoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-neohesperidoside can be found in soy bean, which makes kaempferol 3-o-neohesperidoside a potential biomarker for the consumption of this food product.
Kaempferol 7-O-beta-D-glucoside-O-alpha-L-rhamnosyl
Kaempferol 7-o-beta-d-glucoside-o-alpha-l-rhamnosyl is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Kaempferol 7-o-beta-d-glucoside-o-alpha-l-rhamnosyl is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 7-o-beta-d-glucoside-o-alpha-l-rhamnosyl can be found in lentils, which makes kaempferol 7-o-beta-d-glucoside-o-alpha-l-rhamnosyl a potential biomarker for the consumption of this food product.
Catechin-(4->8)-gallocatechin
Catechin-(4->8)-gallocatechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Catechin-(4->8)-gallocatechin can be found in pomegranate, which makes catechin-(4->8)-gallocatechin a potential biomarker for the consumption of this food product.
Kaempferol 3-gluco-rhamnoside
Kaempferol 3-gluco-rhamnoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-gluco-rhamnoside can be found in blackcurrant, which makes kaempferol 3-gluco-rhamnoside a potential biomarker for the consumption of this food product.
Apigenin 7-O-beta-D-galactomannoside
Apigenin 7-o-beta-d-galactomannoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 7-o-beta-d-galactomannoside can be found in carrot and wild carrot, which makes apigenin 7-o-beta-d-galactomannoside a potential biomarker for the consumption of these food products.
Luteolin 7-O-beta-rutinoside
Luteolin 7-o-beta-rutinoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Luteolin 7-o-beta-rutinoside can be found in carrot and wild carrot, which makes luteolin 7-o-beta-rutinoside a potential biomarker for the consumption of these food products.
Quercetin 3,7-dirhamnoside
Quercetin 3,7-dirhamnoside is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Quercetin 3,7-dirhamnoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Quercetin 3,7-dirhamnoside can be found in medlar, which makes quercetin 3,7-dirhamnoside a potential biomarker for the consumption of this food product.
Multiflorin B
Multiflorin b is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Multiflorin b is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Multiflorin b can be found in peach, which makes multiflorin b a potential biomarker for the consumption of this food product.
cyanidin 3-(p-coumaroyl)-glucoside
Cyanidin 3-(p-coumaroyl)-glucoside is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cyanidin 3-(p-coumaroyl)-glucoside can be found in a number of food items such as celery leaves, swamp cabbage, common chokecherry, and horseradish tree, which makes cyanidin 3-(p-coumaroyl)-glucoside a potential biomarker for the consumption of these food products.
pelargonidin 3-O-beta-D-caffeoylglucoside
Pelargonidin 3-o-beta-d-caffeoylglucoside is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pelargonidin 3-o-beta-d-caffeoylglucoside can be found in a number of food items such as cauliflower, swamp cabbage, enokitake, and sunflower, which makes pelargonidin 3-o-beta-d-caffeoylglucoside a potential biomarker for the consumption of these food products.
glutamine betaine
Nepsilon-trimethyllysine
Kaempferol 3-O-beta-glucopyranoside-7-O-alpha-rhamnopyranoside
Quercetin 3,4'-O-diglucoside
Vitexin 4-glucoside
4-O-Glucosylvitexin is a member of flavonoids and a glycoside. Vitexin 4'-glucoside is a leaf flavonoid identified from Briza stricta[1].
Oroxin B
Oroxin B (OB) is a flavonoid isolated from traditional Chinese herbal medicine Oroxylum indicum (L.) Vent. Oroxin B (OB) possesses obvious inhibitory effect and induces early apoptosis rather than late apoptosis on liver cancer cells through upregulation of PTEN, down regulation of COX-2, VEGF, PI3K, and p-AKT[1]. Oroxin B (OB) selectively induces tumor-suppressive ER stress in malignant lymphoma cells[2]. Oroxin B (OB) is a flavonoid isolated from traditional Chinese herbal medicine Oroxylum indicum (L.) Vent. Oroxin B (OB) possesses obvious inhibitory effect and induces early apoptosis rather than late apoptosis on liver cancer cells through upregulation of PTEN, down regulation of COX-2, VEGF, PI3K, and p-AKT[1]. Oroxin B (OB) selectively induces tumor-suppressive ER stress in malignant lymphoma cells[2].
Orientin 2-O-p-trans-coumarate
Orientin-2-O-p-trans-coumarate is a natural product found in Trigonella foenum-graecum with data available.
Vicenin
Isovitexin 8-C-beta-glucoside is a C-glycosyl compound that is isovitexin in which the hydrogen at position 8 is replaced by a beta-D-glucosyl residue. It has a role as a metabolite. It is a trihydroxyflavone and a C-glycosyl compound. It is functionally related to an isovitexin. Vicenin-2 is a natural product found in Carex fraseriana, Pseudarrhenatherum longifolium, and other organisms with data available. A C-glycosyl compound that is isovitexin in which the hydrogen at position 8 is replaced by a beta-D-glucosyl residue. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1]. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1].
Procyanidin
Procyanidin is oligomeric compounds, formed from catechin and epicatechin molecules. They yield cyanidin when depolymerized under oxidative conditions. Procyanidin is a natural product found in Vitis amurensis, Syzygium grande, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants
Tectorigenin 7-O-xylosylglucoside
Oroxin
Oroxin B (OB) is a flavonoid isolated from traditional Chinese herbal medicine Oroxylum indicum (L.) Vent. Oroxin B (OB) possesses obvious inhibitory effect and induces early apoptosis rather than late apoptosis on liver cancer cells through upregulation of PTEN, down regulation of COX-2, VEGF, PI3K, and p-AKT[1]. Oroxin B (OB) selectively induces tumor-suppressive ER stress in malignant lymphoma cells[2]. Oroxin B (OB) is a flavonoid isolated from traditional Chinese herbal medicine Oroxylum indicum (L.) Vent. Oroxin B (OB) possesses obvious inhibitory effect and induces early apoptosis rather than late apoptosis on liver cancer cells through upregulation of PTEN, down regulation of COX-2, VEGF, PI3K, and p-AKT[1]. Oroxin B (OB) selectively induces tumor-suppressive ER stress in malignant lymphoma cells[2].
Datiscin
Acquisition and generation of the data is financially supported in part by CREST/JST.
Quercetin 3,7-dirhamnoside
2)-galactoside
Isosaponarin
Isosaponarin is a natural product found in Citrullus colocynthis, Cerastium arvense, and other organisms with data available.
Luteolin 7-rutinoside
Luteolin-7-rutinoside has both anti-arthritic and antifungal activities, can result in a combination therapy for the treatment of fungal arthritis due to C. albicans infection.
6)-glucoside
Apigenin 7-cellobioside
6)-beta-D-glucoside
Kaempferol 3-(5-feruloylapioside)
Palasitrin
Apigenin 7-(6-E-Caffeoylglucoside)
Luteolin 4-rutinoside
2)-rhamnoside
4)-rhamnoside
Chrysoeriol 6-C-glucoside-8-C-arabinopyranoside
Luteolin 5-O-rutinoside
Crenuloside
Stephaflavone A
Vitexin 6-O-glucoside
8-C-xylopyranosylchrysoeriol 2-O-glucoside
Scutellarein 6-rhamnosyl- (1->2) -galactoside
6,8-Di-C-arabinopyranosylapometzgerin
8,9-dihydro-10-(2,4-dihydroxyphenyl)-9-hydroxy-8-(3,4,5-trihydroxyphenyl)-10H-pyrano[2,3-h]gallocatechin
8-Hydroxyapigenin 8-(6-E-p-coumaroylglucoside)
Isoorientin 7-O-rhamnoside
Kaempferol 3-glucoside-7-rhamnoside
Epicatechin-(4beta->8)-gallocatechin
Catechin-(4alpha->8)-epigallocatechin is found in tea. Catechin-(4alpha->8)-epigallocatechin is isolated from Camellia sinensis assamica (Assam tea). Constituent of Phyllanthus emblica (emblic). Epicatechin-(4beta->8)-gallocatechin is found in fruits.
6)galactoside
Apigenin 7,4-diglucoside
Kaempferol 3-(2-(Z)-p-coumaroylglucoside)
Kaempferol 3-(4-p-coumaroylglucoside)
6-C-Galactosylapigenin 6-O-galactoside
Tiliroside
Acquisition and generation of the data is financially supported in part by CREST/JST. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
6-C-Xylopyranosyl-8-C-glucopyranosylchrysoeriol
6-C-Glucopyranosyl-8-C-xylopyranosylchrysoeriol
Vitexin 4-O-glucoside
Vitexin 4'-glucoside is a leaf flavonoid identified from Briza stricta[1].
Flavosativaside
2-O-beta-L-galactopyranosylvitexin
Biondnoid A
Isoorientin 6-O-rhamnoside
Isorhamnetin 3-alpha-L-arabinopyranoside-7-rhamnoside
Meloside A
Meloside A (Isovitexin 2''-O-glucoside) is a phenylpropanoid isolated from barley with antioxidant activity. In barley, phenylpropanoids have been described as having protective properties against excess UV-B radiation and have been linked to resistance to pathogens[1][2].
Kaempferol 3-galactoside-7-rhamnoside
Kaempferol 7-neohesperidoside
Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB054_Kaempferol-7-neohesperidoside_neg_50eV_000018.txt [Raw Data] CB054_Kaempferol-7-neohesperidoside_neg_40eV_000018.txt [Raw Data] CB054_Kaempferol-7-neohesperidoside_neg_30eV_000018.txt [Raw Data] CB054_Kaempferol-7-neohesperidoside_neg_20eV_000018.txt [Raw Data] CB054_Kaempferol-7-neohesperidoside_neg_10eV_000018.txt [Raw Data] CB054_Kaempferol-7-neohesperidoside_pos_50eV_CB000026.txt [Raw Data] CB054_Kaempferol-7-neohesperidoside_pos_40eV_CB000026.txt [Raw Data] CB054_Kaempferol-7-neohesperidoside_pos_30eV_CB000026.txt [Raw Data] CB054_Kaempferol-7-neohesperidoside_pos_20eV_CB000026.txt [Raw Data] CB054_Kaempferol-7-neohesperidoside_pos_10eV_CB000026.txt
Lonicerin
Lonicerin is an anti-algE (alginate secretion protein) flavonoid with inhibitory activity for P. aeruginosa. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury[1][2]. Lonicerin is an anti-algE (alginate secretion protein) flavonoid with inhibitory activity for P. aeruginosa. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury[1][2].
multiflorin B
A glycosyloxyflavone that is kaempferol substituted by a 6-deoxy-4-O-beta-D-glucopyranosyl-alpha-L-mannopyranosyl residue at position 3 via a glycosidic linkage.
Neosaponarin
nicotiflorin
Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.
Orientin 7-O-rhamnoside
Safflor yellow A
Vitexin 4-O-galactoside
Tectorigenin 7-O-[beta-D-apiofuranosyl-(1->6)-beta-D-glucopyranoside]
[6-[2-(3,4-dihydroxyphenyl)-8-hydroxy-4-oxochromen-7-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate
5,3,4-Trihydroxy-7-methoxy-4-phenylcoumarin 5-O-xylosyl-(1->6)-glucoside
Luteolin 4-methyl ether 7-alpha-L-arabinofuranosyl-(1->6)-beta-D-glucoside
7-O-Methylsciadopitysin
4H-1-Benzopyran-4-one, 5-hydroxy-8-(5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl)-7-methoxy-2-(4-methoxyphenyl)-, (+)- is a natural product found in Cryptomeria japonica, Dacrydium cupressinum, and other organisms with data available.
2,2-Bis(3,4,5-trihydroxyphenyl)-2,2,3,3-tetrahydro-4,6-bi(4H-1-benzopyran)-3,3,4,7,7-pentaol
Luteolin 4-methyl ether 7-xylosyl-(1->6)-glucoside
(7-O-methylorientin) 2-O-beta-arabinopyranoside|isoswertiajaponin
2,2,4,4,5,5-hexahydroxy-7,7-dipropyl-1,1-bianthracene-9,9,10,10-tetrone
kaempferol 3-O- 6)-beta-D-glucopyranoside>|kaempferol 3-O-[O-alpha-L-rhamnopyranosyl-(1 -> 6)-beta-D-glucopyranoside]|kaempferol 3-rutinoside|kaempferol 7-O-neohesperidoside|luteolin 7-O-rutinoside
2,2,3,3-Tetrahydro-2-(3,4,5-trihydroxyphenyl)-2-(3,4-dihydroxyphenyl)-4,6-bi(4H-1-benzopyran)-3,3,5,5,7,7-hexaol
2,2-Bis(3,4-dihydroxyphenyl)-2,2,3,3-tetrahydro-[4,4-oxybis(4H-1-benzopyran)]-3,3,7,7,8,8-hexaol
Chrysoeriol 7-alpha-L-arabinofuranosyl-(1->6)-glucoside
2,2-Bis(3,4,5-trihydroxyphenyl)-2,2,3,3-tetrahydro-4,6-bi(4H-1-benzopyran)-3,3,5,7,7-pentaol
4,5,7-trihydroxy-3-methoxyflavone 7-(alpha-L-arabinofuranosyl-(1->6)-beta-D-glucopyranoside)
Rhamnocitrin 3-apiosyl-(1->2)-glucoside
2-Hydroxy-6,4,6,4-tetramethoxy-[7-O-7]-bisisoflavone
luteolin 5-O-alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside
Chrysoeriol-7-(2-alpha-L-arabofuranosido)-beta-D-galactopyranosid (Salicaprin)|Chrysoeriol-7-<2-alpha-L-arabofuranosido>-beta-D-galactopyranosid (Salicaprin)
2,2-Bis(3,4-dihydroxyphenyl)-2,2,3,3-tetrahydro-4,6-bi(4H-1-benzopyran)3,3,4,7,7,8,8-heptaol
7-O-(Xylosylglucoside)-3,5,7-Trihydroxy-4-methoxyflavone
vitexin 2-rhamnoside|vitexin-2-O-alpha-L-rhamnoside
2,2-Bis(3,4,5-trihydroxyphenyl)-2,2,3,3-tetrahydro-4,8-bi(4H-1-benzopyran)-3,3,5,7,7-pentaol
2-[2-[2-(3,4,5-Trihydroxyphenyl)-2,3-dihydro-3,7-dihydroxy-4H-1-benzopyran-4-yl]-3,4,5-trihydroxyphenyl]-2,3-dihydro-4H-1-benzopyran-3,4,7-triol
5,7,4-trihydroxy-7-O-beta-D-apiofuranosyl-(1?6)-beta-D-glucopyranoside
genistein 7-O-(6-O-((E)-caffeoyl)-beta-D-glucopyranoside)
3-[(6-deoxy-alpha-L-mannopyranosyl)oxy]-2-{3-[(6-deoxy-alpha-L-mannopyranosyl)oxy]-4-hydroxyphenyl}-5,7-dihydroxy-4H-1-benzopyran-4-one|quercetin 3,3?-di-alpha-L-rhamnopyranoside
emodin 1-O-beta-D-glucopyranosyl-(1?2)-glucopyranoside
kaempferol 3-O-beta-D-glucopyranosyl-(1?3)-alpha-L-rhamnopyranoside|ternatumoside II
2,2-Bis(3,4-dihydroxyphenyl)-2,2,3,3-tetrahydro-4,8-bi(4H-1-benzopyran)3,3,4,5,5,7,7-heptaol
Isorhamnetin 3-alpha-L-arabinopyranosyl-(1->2)-rhamnoside
benzoic acid 4-[[6-O-[4-(beta-D-glucopyranosyloxy)benzoyl]-beta-D-glucopyranosyl]oxy]-3-methoxy-intramol.1,6-ester|clemoarmanoside B
apigenin 6-C-beta-D-glucopyranosyl-(1->3)-beta-D-glucopyranoside|isovitexin 3-O-beta-D-glucopyranoside
3-O-Rhamnosylarabinoside-3,3,4,7-Tetrahydroxy-5-methoxyflavone
7-O-(2-p-Hydroxycinnamoylglucopyranoside)-3,4,5,7-Tetrahydroxyflavone
Luteolin-7-O-beta-D-glucopyranosyl-(1->4)-beta-L-rhamnofuranosid
luteolin 8-C-alpha-L-rhamnopyranosyl-(1->2)-quinovopyranoside
biflavonal|gallocatechin-(4->O->7)-epigallocatechin|gallocatechin-(4O-7)-epigallocatechin|gallocatechin-[4-O-7]-epigallocatechin
O-Diglucoside-9,10-Dihydro-4,5-dihydroxy-10-oxo-2-anthracenecarboxylic acid
5,6,7,4-tetrahydroxyflavone-7-O-(6-O-[E]-coumaroyl)-beta-D-glucopyranoside
apigenin-8-C-[alpha-L-rhamnopyranosyl-(1->2)-O-beta-D-glucopyranoside]|vitexin-2-(O-alpha-L-rhamnopyranoside)|vitexin-2-O-alpha-L-rhamnoside
2-(4-hydroxyphenyl)-6,7-dihydroxy-3-C-beta-glucopyranosyl-(6->1)-beta-glucopyranosyl-4H-1-benzopyran-4-one|pakistoside B
apigenin-7-O-gentiobioside
A glycosyloxyflavone that is apigenin substituted by a 6-O-beta-D-glucopyranosyl-beta-D-glucopyranoside group at position 7.
quercetin 3-O-(3-O-methyl-alpha-L-rhamnopyranosyl)-(1->5)-O-beta-D-apiofuranoside
2-(3,4-dihydroxy-phenyl)-3-[2-(3,4-dihydroxy-phenyl)-5,7-dihydroxy-chroman-3-yloxy]-chroman-3,4,5,7-tetraol|Leucocyanidin 1
Luteolin 3-methyl ether 7-arabinosyl-(1->2)-galactoside
Kuwanon Z
Luteolin 5-methyl ether 7-xylosyl-(1->6)-glucoside
Tribuloside
Tribuloside is a natural product found in Dasiphora fruticosa, Lamium album, and Rosa canina with data available. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
Biorobin
Biorobin is a natural product found in Anthyllis henoniana, Monteverdia ilicifolia, and other organisms with data available.
Vitexin glucoside
Vitexin glucoside is a member of flavonoids and a C-glycosyl compound. Vitexin-4''-O-glucoside is a kind of flavonoid fraction from the leaves of Crataegus pinnatifida[1]. Vitexin-4''-O-glucoside is a kind of flavonoid fraction from the leaves of Crataegus pinnatifida[1].
Genistein 7,4-di-O-glucoside
Genistein 7,4-di-O-beta-D-glucopyranoside is a natural product found in Maackia amurensis, Lupinus luteus, and other organisms with data available.
Graveobioside B
3'-Methoxyapiin (Graveobioside B) is a flavone. 3'-Methoxyapiin can be found in Uraria crinite and celery[1][2].
Scolimoside
Luteolin 7-rutinoside is a natural product found in Saussurea medusa, Trachycarpus fortunei, and other organisms with data available. Luteolin-7-rutinoside has both anti-arthritic and antifungal activities, can result in a combination therapy for the treatment of fungal arthritis due to C. albicans infection.
Emodin-1-O-β-gentiobioside
Emodin-1-O-beta-gentiobioside is a natural product found in Senna obtusifolia with data available.
Nicotiflorine
[Raw Data] CBA23_Nicotiflorine_neg_50eV_1-5_01_1420.txt [Raw Data] CBA23_Nicotiflorine_neg_40eV_1-5_01_1419.txt [Raw Data] CBA23_Nicotiflorine_neg_30eV_1-5_01_1418.txt [Raw Data] CBA23_Nicotiflorine_neg_20eV_1-5_01_1417.txt [Raw Data] CBA23_Nicotiflorine_neg_10eV_1-5_01_1367.txt [Raw Data] CBA23_Nicotiflorine_pos_50eV_1-5_01_1393.txt [Raw Data] CBA23_Nicotiflorine_pos_40eV_1-5_01_1392.txt [Raw Data] CBA23_Nicotiflorine_pos_30eV_1-5_01_1391.txt [Raw Data] CBA23_Nicotiflorine_pos_20eV_1-5_01_1390.txt [Raw Data] CBA23_Nicotiflorine_pos_10eV_1-5_01_1356.txt
Kaempferol-3-rutinoside
Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.
Kaempferol-3-O-beta-glucopyranosyl-7-O-alpha-rhamnopyranoside
Acquisition and generation of the data is financially supported in part by CREST/JST.
Kaempferol-3-O-beta-D-galactoside-7-O-alpha-L-rhamnoside
Acquisition and generation of the data is financially supported in part by CREST/JST.
Kaempferol-3-Glucoside-2-p-coumaroyl
Acquisition and generation of the data is financially supported in part by CREST/JST.
Kaem-3-Glc-3-Rha
Acquisition and generation of the data is financially supported in part by CREST/JST.
Quercetin-3,7-O-alpha-L-dirhamnopyranoside
Acquisition and generation of the data is financially supported in part by CREST/JST.
Kaempferol-3-Glucoside-3-Rhamnoside
Acquisition and generation of the data is financially supported in part by CREST/JST.
kaempferol 3-O-neohesperidoside
Kaempferol 3-neohesperidoside (Kaempferol 3-O-neohesperidoside) is a flavonoid[1]. Kaempferol 3-neohesperidoside exhibits insulinomimetic effect on the rat soleus muscle[2]. Kaempferol 3-neohesperidoside (Kaempferol 3-O-neohesperidoside) is a flavonoid[1]. Kaempferol 3-neohesperidoside exhibits insulinomimetic effect on the rat soleus muscle[2].
5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxymethyl]oxan-2-yl]oxychromen-4-one
7-[4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-2-(3,4-dihydroxyphenyl)-5-hydroxychromen-4-one
[6-[2-(3,4-dihydroxyphenyl)-8-hydroxy-4-oxochromen-7-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate
5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one
5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one
3-[(2S,3R,4R,5R,6S)-4,5-dihydroxy-6-methyl-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
8-[4,5-dihydroxy-6-(hydroxymethyl)-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
5-[6-[[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-4-(3,4-dihydroxyphenyl)-7-methoxychromen-2-one
2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one
7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-3,5-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
5,7-dihydroxy-3-(4-hydroxyphenyl)-6,8-bis[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one
3-[(2S,3R,4S,5R,6R)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
5-hydroxy-2-(4-hydroxyphenyl)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-7-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxychromen-4-one
[(2R,3S,4S,5R,6S)-6-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate
2-(3,4-dihydroxyphenyl)-5-hydroxy-3,7-bis[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy]chromen-4-one
8-[4,5-dihydroxy-6-(hydroxymethyl)-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one
8-[(2S,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
vicenin-2
Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1]. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1].
Luteolin 7-O-rutinoside
Luteolin-7-rutinoside has both anti-arthritic and antifungal activities, can result in a combination therapy for the treatment of fungal arthritis due to C. albicans infection.
8-[4,5-dihydroxy-6-(hydroxymethyl)-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
5-[6-[[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-4-(3,4-dihydroxyphenyl)-7-methoxychromen-2-one
2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one
7-[(2S,3R,4S,5S,6R)-6-[[(2S,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-5-hydroxy-3-(4-hydroxyphenyl)-6-methoxychromen-4-one
2-(3,4-dihydroxyphenyl)-5-hydroxy-3,7-bis[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy]chromen-4-one
5-hydroxy-2-(4-hydroxyphenyl)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-7-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxychromen-4-one
3-[(2S,3R,4S,5R,6R)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
4-(3,4-dihydroxyphenyl)-7-methoxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-2-one
8-[(2S,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
Kaempferol 3- (6-p-coumarylgalactoside)
Epicatechin(4b->8)gallocatechin
3''-O-Caffeoylcosmosiin
Piperitoside
Epigallocatechin(4b->8)catechin
Gallocatechin(4a->8)epicatechin
Kaempferol 3-(e-P-coumarylglucoside)
7-O-(4-Hydroxycinnamoyl) astragalin
2,6-Dimethylcarbonylphenyl 10-Methyl-9-acridinecarboxylate 4-NHS Ester Methylsulfate
(R)-(-)-1,1-Bi-2-naphthyl ditosylate
C34H26O6S2 (594.1170736000001)
tosufloxacin tosilate
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones Tosufloxacin tosylate hydrate (A-61827) is an orally active fluoroquinolone antibiotic. Tosufloxacin shows a broad spectrum of antibacterial activity against gram-positive and gram-negative bacteria[1][2].
Sultamicillin
C25H30N4O9S2 (594.1454130000001)
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CR - Combinations of penicillins, incl. beta-lactamase inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C2166 - Combination Anti-Infective Agent
2-(3,4-dihydroxyphenyl)-2-{[2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2h-chromen-3-yl]oxy}-3,4,5,7-chromanetetrol
Epigallocatechin-(4beta->8)-catechin
Epigallocatechin-(4beta->8)-catechin is a member of the class of compounds known as biflavonoids and polyflavonoids. Biflavonoids and polyflavonoids are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3-C3, and C6-C8. Epigallocatechin-(4beta->8)-catechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Epigallocatechin-(4beta->8)-catechin can be found in barley and cereals and cereal products, which makes epigallocatechin-(4beta->8)-catechin a potential biomarker for the consumption of these food products. Epigallocatechin-(4beta->8)-catechin is found in barley. Epigallocatechin-(4beta->8)-catechin is isolated from Hordeum vulgare (barley) grains and Pinus sylvestris (Scotch pine).
pelargonidin 3-O-beta-D-caffeoylglucoside
Pelargonidin 3-o-beta-d-caffeoylglucoside is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pelargonidin 3-o-beta-d-caffeoylglucoside can be found in a number of food items such as cauliflower, swamp cabbage, enokitake, and sunflower, which makes pelargonidin 3-o-beta-d-caffeoylglucoside a potential biomarker for the consumption of these food products. Pelargonidin 3-o-β-d-caffeoylglucoside is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pelargonidin 3-o-β-d-caffeoylglucoside can be found in a number of food items such as cauliflower, swamp cabbage, enokitake, and sunflower, which makes pelargonidin 3-o-β-d-caffeoylglucoside a potential biomarker for the consumption of these food products.
Quercetin 3,4'-O-diglucoside
Prodelphinidin b3 is a member of the class of compounds known as biflavonoids and polyflavonoids. Biflavonoids and polyflavonoids are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3-C3, and C6-C8. Prodelphinidin b3 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Prodelphinidin b3 can be found in a number of food items such as broad bean, italian sweet red pepper, cucurbita (gourd), and green zucchini, which makes prodelphinidin b3 a potential biomarker for the consumption of these food products.
[(2S,3R,4S,5S,6R)-2-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl] (E)-3-(4-hydroxyphenyl)prop-2-enoate
2'-O-trans-p-Coumaroylastragalin
2-O-trans-p-Coumaroylastragalin is found in tea. 2-O-trans-p-Coumaroylastragalin is isolated from Lithocarpus polystachya tea. Isolated from Lithocarpus polystachya tea. 2-E-p-Coumaroylastragalin is found in tea.
(-)-Epigallocatechin-(4beta->8)-(-)-epicatechin
A proanthocyanidin consisting of (-)-epigallocatechin and (-)-epicatechin units joined by a (4beta->8)-linkage.
[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6-[5-hydroxy-2-(4-hydroxyphenyl)-7-oxochromen-3-yl]oxyoxan-2-yl]methyl (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate
[(2R,3S,4S,5R,6S)-6-[2-(3,4-dihydroxyphenyl)-5-hydroxy-7-oxochromen-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate
(+)-Gallocatechin-(4alpha->8)-(+)-catechin
A proanthocyanidin consisting of (+)-gallocatechin and (+)-catechin units joined by a (4alpha->8)-linkage.
[6-[2-(3,4-dihydroxyphenyl)-5-hydroxy-7-oxochromen-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate
[3,4,5-trihydroxy-6-[5-hydroxy-2-(4-hydroxyphenyl)-7-oxochromen-3-yl]oxyoxan-2-yl]methyl (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate
(-)-Epicatechin-(4beta->8)-(+)-gallocatechin
A proanthocyanidin consisting of (-)-epicatechin and (+)-gallocatechin units joined by a (4beta->8)-linkage.
(-)-Epicatechin-(4beta->8)-(-)-epigallocatechin
A proanthocyanidin consisting of (-)-epicatechin and (-)-epigallocatechin units joined by a (4beta->8)-linkage.
Robinetinidol-(4alpha,8)-gallocatechin
A ring assembly that consists of robinetinidol attached to a gallocatechin unit resulting in a bond between C-4 of the pyran ring and C-8 of the benzopyran ring. It is isolated from Acacia mearnsii.
(+)-Catechin-(4alpha->8)-(-)-epigallocatechin
A proanthocyanidin consisting of (+)-catechin and (-)-epigallocatechin units joined by a (4alpha->8)-linkage.
(+)-Gallocatechin-(4alpha->6)-(+)-catechin
A proanthocyanidin consisting of (+)-gallocatechin and (+)-catechin units joined by a (4alpha->6)-linkage.
(+)-Catechin-(4alpha->6)-(+)-gallocatechin
A proanthocyanidin consisting of (+)-catechin and (+)-gallocatechin units joined by a (4alpha->6)-linkage.
(+)-Gallocatechin-(4beta->8)-(+)-catechin
A proanthocyanidin consisting of (+)-gallocatechin and (+)-catechin units joined by a (4beta->8)-linkage.
(-)-Epigallocatechin-(4beta->6)-(+)-catechin
A proanthocyanidin consisting of (-)-epigallocatechin and (+)-catechin units joined by a (4alpha->6)-linkage.
[(2S,3S,4R,5S,6R)-6-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate
Tiliroside
Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid. Tiliroside is a natural product found in Phlomoides spectabilis, Anaphalis contorta, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
tosufloxacin tosylate hydrate
A racemate comprising equimolar amounts of (R)- and (S)-tosufloxacin tosylate hydrate.
(+)-gallocatechin-(4alpha->8)-(-)-epicatechin
A proanthocyanidin consisting of (+)-gallocatechin and (-)-epicatechin units joined by a (4alpha->8)-linkage.
2-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl 3-(4-hydroxyphenyl)prop-2-enoate
[(2r,3s,4r,5r,6s)-6-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
(2r,3r,4r)-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-3,5,7-triol
(2r,3s,4r)-4-[(2r,3s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-6-yl]-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-3,5,7-triol
(2s,3r,4s,5s,6r)-2-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-6-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
2-(3,4-dihydroxyphenyl)-4-[3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol
(2r,3r,4s)-2-(3,4-dihydroxyphenyl)-6-[(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-3,7,8-trihydroxy-3,4-dihydro-2h-1-benzopyran-4-yl]-3,4-dihydro-2h-1-benzopyran-3,4,7,8-tetrol
(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3r)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol
[6-({2-[(3,4-dihydroxyphenyl)methylidene]-7-hydroxy-3-oxo-1-benzofuran-6-yl}oxy)-3,4,5-trihydroxyoxan-2-yl]methyl 3-(4-hydroxyphenyl)prop-2-enoate
(2r,3r,4s)-2-(3,4-dihydroxyphenyl)-4-{[(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-3,7,8-trihydroxy-3,4-dihydro-2h-1-benzopyran-4-yl]oxy}-3,4-dihydro-2h-1-benzopyran-3,7,8-triol
(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3s)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol
(3s,4r,6s)-6-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl 3-(4-hydroxyphenyl)prop-2-enoate
7,4',7'',4'''-tetra-o-methylamentoflavone
{"Ingredient_id": "HBIN012920","Ingredient_name": "7,4',7'',4'''-tetra-o-methylamentoflavone","Alias": "NA","Ingredient_formula": "C34H26O10","Ingredient_Smile": "COC1=CC=C(C=C1)C2=CC(=O)C3=C(O2)C(=C(C=C3O)OC)C4=C(C=CC(=C4)C5=CC(=O)C6=C(C=C(C=C6O5)OC)O)OC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "21176","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
amurensisin
{"Ingredient_id": "HBIN015925","Ingredient_name": "amurensisin","Alias": "NA","Ingredient_formula": "C30H26O13","Ingredient_Smile": "C1C(C(OC2=CC(=CC(=C21)O)O)C3=CC(=C(C=C3)O)O)OC4(C(C(C5=C(C=C(C=C5O4)O)O)O)O)C6=CC(=C(C=C6)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "30577","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
biondnoid i
{"Ingredient_id": "HBIN018531","Ingredient_name": "biondnoid i","Alias": "NA","Ingredient_formula": "C30H26O13","Ingredient_Smile": "C1=CC(=CC=C1C=CC(=O)OCC2C(C(C(C(O2)OC3=CC(=C4C(=C3)OC(=C(C4=O)O)C5=CC=C(C=C5)O)O)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2392","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}