Exact Mass: 538.0883
Exact Mass Matches: 538.0883
Found 86 metabolites which its exact mass value is equals to given mass value 538.0883
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Amentoflavone
Amentoflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. It has a role as a cathepsin B inhibitor, an antiviral agent, an angiogenesis inhibitor, a P450 inhibitor and a plant metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Amentoflavone is a natural product found in Podocarpus elongatus, Austrocedrus chilensis, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Amentoflavone is found in fruits. Amentoflavone is obtained from Viburnum prunifolium (black haw Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].
Cupressuflavone
Cupressuflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-8 of the two chromene rings respectively. Isolated from Cupressus sempervirens and Juniperus occidentalis, it exhibits free radical scavenging and antielastase activities. It has a role as an EC 3.4.21.37 (leukocyte elastase) inhibitor, a radical scavenger and a metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Cupressuflavone is a natural product found in Fitzroya cupressoides, Juniperus drupacea, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-8 of the two chromene rings respectively. Isolated from Cupressus sempervirens and Juniperus occidentalis, it exhibits free radical scavenging and antielastase activities.
Agathisflavone
A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-6 and C-8 of the two chromene rings.
Hinokiflavone
Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1]. Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1].
Robustaflavone
A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-6 of the chromene ring. Isolated from Thuja orientalis and Rhus succedanea it exhibits antioxidant, cytotoxic and anti-hepatitis B activity.
4',4',5,5',7,7'-Hexahydroxy-3,8'-biflavone
4,4,5,5,7,7-Hexahydroxy-3,8-biflavone is a flavonoid oligomer. 3,8-Biapigenin is a natural product found in Hypericum montbretii, Hypericum scabrum, and other organisms with data available. 4,4,5,5,7,7-Hexahydroxy-3,8-biflavone is found in cereals and cereal products. 4,4,5,5,7,7-Hexahydroxy-3,8-biflavone is isolated from Fagopyrum esculentum (buckwheat). Isolated from Fagopyrum esculentum (buckwheat). 3,8-Biapigenin is found in cereals and cereal products. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors
Sennidin B
Anthraquinone derivative, a stereoisomer of sennidin A, stimulates glucose incoporation into adipocytes in rats, but the activity of sennidin B is lower than sennidin A. [HMDB] Anthraquinone derivative, a stereoisomer of sennidin A, stimulates glucose incoporation into adipocytes in rats, but the activity of sennidin B is lower than sennidin A.
3,3'-Biflavone, 4',4',5,5',7,7'-hexahydroxy-
2-(3-(5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-8-yl)-4-hydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one
Hinokiflavone
Hinokiflavone is a biflavonoid that is apigenin substituted by a 4-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)phenoxy group at position 6. A diflavonyl ether, it is isolated from Rhus succedanea and has been found to possess significant cytotoxic potential. It has a role as a neuroprotective agent, an antineoplastic agent and a metabolite. It is a biflavonoid, an aromatic ether and a hydroxyflavone. It is functionally related to an apigenin. Hinokiflavone is a natural product found in Garcinia multiflora, Podocarpus elongatus, and other organisms with data available. A biflavonoid that is apigenin substituted by a 4-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)phenoxy group at position 6. A diflavonyl ether, it is isolated from Rhus succedanea and has been found to possess significant cytotoxic potential. Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1]. Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1].
Disulfuretin
Ochnaflavone
A biflavonoid with an ether linkage between the B-rings of the apigenin and luteolin subunits. It has been isolated from several members of the Ochnaceae plant family.
Delicaflavone
6-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-6-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
Amentoflavone
D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 4341; CONFIDENCE confident structure Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].
5,7-Dihydroxy-3-(4-hydroxyphenyl)-8-[2-hydroxy-5-[5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl]phenyl]-4H-1-benzopyran-4-one
Cladofulvin
A bianthracene homodimer composed of two nataloe-emodin moieties linked by an aryl-aryl bond. It is a secondary metabolite isolated from the fungal tomato pathogen Cladosporium fulvum.
8,8-Bibaicalein
5,6,7-Trihydroxy-2-phenyl-8-(5,6,7-trihydroxy-4-oxo-2-phenylchromen-8-yl)chromen-4-one is a natural product found in Aria edulis and Scutellaria alpina with data available.
8-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-6-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
3-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-8-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
8-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-8-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
3,8-Biapigenin
D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors
2,4,5-TRICHLOROPHENYL 4-(PENTYLOXY)-[1,1:4,1-TERPHENYL]-4-CARBOXYLATE
Inokiflavone
Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1]. Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1].
2,4,4,5,5,7-Hexahydroxy-2,7-dimethyl-1,1-bianthraquinone
2-methylthio-N(6)-L-threonylcarbamoyladenine 5-monophosphate
5,5',7,7'-tetrahydroxy-2,2'-bis(4-hydroxyphenyl)-[3,8'-bichromene]-4,4'-dione
(1s,3s,7r,8r,12r,17r,18s,19r,21r,26r)-23-chloro-3,12,17,19,21-pentahydroxy-8-methoxy-5-methyl-2,10,24,25-tetraoxaheptacyclo[11.8.2.2³,⁷.1⁴,¹⁸.0¹,¹⁸.0¹⁶,²².0⁷,²⁶]hexacosa-4,13,15,22-tetraene-6,9-dione
(9r,9'r)-1,4',5',8-tetrahydroxy-10,10'-dioxo-9h,9'h-[9,9'-bianthracene]-2,2'-dicarboxylic acid
1,1',4,4',5,5'-hexahydroxy-7,7'-dimethyl-[2,2'-bianthracene]-9,9',10,10'-tetrone
(2z)-2-[1,2-bis(3,4-dihydroxyphenyl)-2-[(2e)-6-hydroxy-3-oxo-1-benzofuran-2-ylidene]ethylidene]-6-hydroxy-1-benzofuran-3-one
anticancer flavonoid pmv70p691-018
{"Ingredient_id": "HBIN016325","Ingredient_name": "anticancer flavonoid pmv70p691-018","Alias": "NA","Ingredient_formula": "C30H18O10","Ingredient_Smile": "C1=CC(=C(C=C1C(=C2C(=O)C3=C(O2)C=C(C=C3)O)C(=C4C(=O)C5=C(O4)C=C(C=C5)O)C6=CC(=C(C=C6)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1400","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}