Exact Mass: 399.30969060000007

Exact Mass Matches: 399.30969060000007

Found 169 metabolites which its exact mass value is equals to given mass value 399.30969060000007, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Palmitoylcarnitine

O-hexadecanoyl-R-carnitine

C23H45NO4 (399.33484100000004)


D018977 - Micronutrients > D014815 - Vitamins CONFIDENCE standard compound; INTERNAL_ID 250

   

3-Aza-A-homocholest-4a-en-4-one

8-(1,5-Dimethylhexyl)-5a,7a-dimethyl-4,5,5a,5b,6,7,7a,8,9,10,10a,10b,11,12-tetradecahydrocyclopenta[5,6]naphtho[1,2-d]azepin-2(3H)-one #

C27H45NO (399.350096)


A steroid alkaloid that is an organic heterotetracyclic compound comprising of a seven-membered lactam.

   

3-Epidemissidine

10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0^{2,11}.0^{5,10}.0^{15,23}.0^{17,22}]tetracosan-7-ol

C27H45NO (399.350096)


Alkaloid from Solanum tuberosum (potato). 3-Epidemissidine is found in alcoholic beverages, root vegetables, and potato. 3-Epidemissidine is found in alcoholic beverages. 3-Epidemissidine is an alkaloid from Solanum tuberosum (potato).

   

(5Z)-13-Carboxytridec-5-enoylcarnitine

3-{[(5Z)-13-carboxytridec-5-enoyl]oxy}-4-(trimethylammonio)butanoic acid

C21H37NO6 (399.26207420000003)


(5Z)-13-Carboxytridec-5-enoylcarnitine is an acylcarnitine. More specifically, it is an (5Z)-tetradec-5-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z)-13-Carboxytridec-5-enoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5Z)-13-Carboxytridec-5-enoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

L-Palmitoylcarnitine

L-Palmitoylcarnitine

C23H45NO4 (399.33484100000004)


L-Palmitoylcarnitine or hexadecanoylcarnitine is an acylcarnitine. It is technically a long-chain acyl fatty acid derivative ester of carnitine which facilitates the transfer of long-chain fatty acids from cytoplasm into mitochondria during the oxidation of fatty acids. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, palmitic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called palmitoyl-CoA. This reaction is facilitated by the Long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, palmitoyl-CoA reacts with L-carnitine to form palmitoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the palmitoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, palmitoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form palmitoyl-CoA and L-carnitine. Palmitoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing palmitoylcarnitine from forming and thereby preventing it from being transported into the mitochondria. L-Palmitoylcarnitine has been also reported to change the activity of certain proteins and to stimulate the activity of caspases 3, 7, and 8. Interestingly, the level of this long-chain acylcarnitine increased during apoptosis. Palmitoylcarnitine was also reported to diminish the binding of phorbol esters (protein kinase C activators) and the autophosphorylation of the enzyme. Some of the physicochemical properties of palmitoylcarnitine may help to explain the need for coenzyme A-carnitine-coenzyme A acyl exchange during mitochondrial fatty acid import. The amphiphilic character of palmitoylcarnitine may also explain its proposed involvement in the pathogenesis of myocardial ischemia. L-Palmitoylcarnitine accumulates in ischemic myocardium and potentially contributes to myocardial damage through alterations in membrane molecular dynamics. This is a mechanism through which could play an important role in ischemic injury (PMID: 2540838, 15363641, 8706815). Palmitoylcarnitine is characteristically elevated in late-onset carnitine palmitoyltransferase II deficiency (OMIM: 255110).

   

O-Palmitoylcarnitine

3-(Hexadecanoyloxy)-4-(trimethylammonio)butanoic acid

C23H45NO4 (399.33484100000004)


O-Palmitoylcarnitine is an acylcarnitine. More specifically, it is an palmitic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. O-Palmitoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine O-Palmitoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular O-Palmitoylcarnitine is elevated in the blood or plasma of individuals with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency (PMID: 9034211), sleep deprivation (PMID: 31419538), carnitine palmitoyl transferase 2 deficiency (PMID: 15653102), carnitine-acylcarnitine translocase deficiency (PMID: 12403251), type 2 diabetes mellitus (PMID: 27694567, PMID: 24837145, PMID: 20111019), non-alcoholic fatty liver disease (PMID: 27211699), obesity (PMID: 20111019), pulmonary arterial hypertension (PMID: 27006481), chronic heart failure (PMID: 22622056), cardiovascular mortality in chronic kidney disease (PMID: 24308938), diastolic heart failure (PMID: 26010610, PMID: 27473038), and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), carnitine palmitoyl transferase 1A deficiency (PMID: 11568084), and psoriasis (PMID: 33391503). It is found to be increased in feces of patients with cirrhosis (PMID: 23384618). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Damb... D018977 - Micronutrients > D014815 - Vitamins

   

12-Methylpentadecanoylcarnitine

3-[(12-Methylpentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C23H45NO4 (399.33484100000004)


12-Methylpentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 12-methylpentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 12-Methylpentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 12-Methylpentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

9-Methylpentadecanoylcarnitine

3-[(9-methylpentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO4 (399.33484100000004)


9-Methylpentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 9-methylpentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-Methylpentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 9-Methylpentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

5-Methylpentadecanoylcarnitine

3-[(5-Methylpentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C23H45NO4 (399.33484100000004)


5-Methylpentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 5-methylpentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Methylpentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 5-Methylpentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

6-Methylpentadecanoylcarnitine

3-[(6-methylpentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO4 (399.33484100000004)


6-Methylpentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 6-methylpentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-Methylpentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 6-Methylpentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

11-Methylpentadecanoylcarnitine

3-[(11-Methylpentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C23H45NO4 (399.33484100000004)


11-Methylpentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 11-methylpentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 11-Methylpentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 11-Methylpentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-Methylpentadecanoylcarnitine

3-[(3-methylpentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO4 (399.33484100000004)


3-Methylpentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 3-methylpentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Methylpentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Methylpentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

8-Methylpentadecanoylcarnitine

3-[(8-methylpentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO4 (399.33484100000004)


8-Methylpentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 8-methylpentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 8-Methylpentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 8-Methylpentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

7-Methylpentadecanoylcarnitine

3-[(7-methylpentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO4 (399.33484100000004)


7-Methylpentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 7-methylpentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-Methylpentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 7-Methylpentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

13-Methylpentadecanoylcarnitine

3-[(13-Methylpentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C23H45NO4 (399.33484100000004)


13-Methylpentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 13-methylpentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 13-Methylpentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 13-Methylpentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

4-Methylpentadecanoylcarnitine

3-[(4-methylpentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO4 (399.33484100000004)


4-Methylpentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 4-methylpentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Methylpentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 4-Methylpentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

14-Methylpentadecanoylcarnitine

3-[(14-Methylpentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C23H45NO4 (399.33484100000004)


14-Methylpentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 14-methylpentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 14-Methylpentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 14-Methylpentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(7Z)-Tetradec-7-enedioylcarnitine

3-[(13-carboxytridec-7-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H37NO6 (399.26207420000003)


(7Z)-Tetradec-7-enedioylcarnitine is an acylcarnitine. More specifically, it is an (7Z)-tetradec-7-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (7Z)-Tetradec-7-enedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (7Z)-Tetradec-7-enedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2E)-Tetradec-2-enedioylcarnitine

3-[(13-Carboxytridec-2-enoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C21H37NO6 (399.26207420000003)


(2E)-Tetradec-2-enedioylcarnitine is an acylcarnitine. More specifically, it is an (2E)-tetradec-2-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-Tetradec-2-enedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (2E)-Tetradec-2-enedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4Z)-Tetradec-4-enedioylcarnitine

3-[(13-carboxytridec-4-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H37NO6 (399.26207420000003)


(4Z)-Tetradec-4-enedioylcarnitine is an acylcarnitine. More specifically, it is an (4Z)-tetradec-4-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z)-Tetradec-4-enedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (4Z)-Tetradec-4-enedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(5E)-Tetradec-5-enedioylcarnitine

3-[(13-Carboxytridec-5-enoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C21H37NO6 (399.26207420000003)


(5E)-Tetradec-5-enedioylcarnitine is an acylcarnitine. More specifically, it is an (5E)-tetradec-5-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5E)-Tetradec-5-enedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5E)-Tetradec-5-enedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

10-Methylpentadecanoylcarnitine

3-[(10-methylpentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO4 (399.33484100000004)


10-Methylpentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 10-Methylpentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 10-Methylpentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 10-Methylpentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Stearoyl Aspartic acid

2-[(1-Hydroxyoctadecylidene)amino]butanedioate

C22H41NO5 (399.29845760000006)


N-stearoyl aspartic acid, also known as N-stearoyl aspartate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Stearic acid amide of Aspartic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Stearoyl Aspartic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Stearoyl Aspartic acid is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Docosahexaenoyl Alanine

2-(docosa-4,7,10,13,16,19-hexaenamido)propanoic acid

C25H37NO3 (399.27732920000005)


N-docosahexaenoyl alanine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Docosahexaenoic acd amide of Alanine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Docosahexaenoyl Alanine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Docosahexaenoyl Alanine is therefore classified as a very long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Eicosapentaenoyl Proline

1-(icosa-5,8,11,14,17-pentaenoyl)pyrrolidine-2-carboxylic acid

C25H37NO3 (399.27732920000005)


N-eicosapentaenoyl proline belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Eicosapentaenoic acid amide of Proline. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Eicosapentaenoyl Proline is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Eicosapentaenoyl Proline is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

Epristeride

14-(tert-butylcarbamoyl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-5,7-diene-5-carboxylic acid

C25H37NO3 (399.27732920000005)


   

Cholest-4-en-3-one, oxime

N-[2,15-dimethyl-14-(6-methylheptan-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-ylidene]hydroxylamine

C27H45NO (399.350096)


   

Macamide Impurity 10

9,12-Octadecadienamide, N-[(3-methoxyphenyl)methyl]-, (9Z,12Z)-

C26H41NO2 (399.31371260000003)


(9Z,12Z)-N-(3-Methoxybenzyl)octadeca-9,12-dienamide is a natural product found in Lepidium meyenii with data available.

   

16,28-Secosolanid-5-en-3-ol, (3.beta.)-

16,28-Secosolanid-5-en-3-ol, (3.beta.)-

C27H45NO (399.350096)


   

Myriocin-12-en

Myriocin-12-en

C21H37NO6 (399.26207420000003)


[Raw Data] CBA30_Myriocin-12-en_neg_40eV_1-4_01_1594.txt [Raw Data] CBA30_Myriocin-12-en_neg_30eV_1-4_01_1593.txt [Raw Data] CBA30_Myriocin-12-en_neg_20eV_1-4_01_1592.txt [Raw Data] CBA30_Myriocin-12-en_neg_10eV_1-4_01_1579.txt [Raw Data] CBA30_Myriocin-12-en_pos_50eV_1-4_01_1564.txt [Raw Data] CBA30_Myriocin-12-en_pos_40eV_1-4_01_1563.txt [Raw Data] CBA30_Myriocin-12-en_pos_30eV_1-4_01_1562.txt [Raw Data] CBA30_Myriocin-12-en_pos_20eV_1-4_01_1561.txt [Raw Data] CBA30_Myriocin-12-en_pos_10eV_1-4_01_1547.txt

   
   

5-epi-smenospongorine|epi-smenospongiarine

5-epi-smenospongorine|epi-smenospongiarine

C25H37NO3 (399.27732920000005)


   
   
   
   
   

Solacongestidine

Solacongestidine

C27H45NO (399.350096)


A natural product found in Solanum congestiflorum.

   
   

Demissidine

solanidan-3beta-ol

C27H45NO (399.350096)


[Raw Data] CB019_Demissidine_pos_50eV_rep000003.txt [Raw Data] CB019_Demissidine_pos_40eV_rep000003.txt [Raw Data] CB019_Demissidine_pos_30eV_rep000003.txt [Raw Data] CB019_Demissidine_pos_20eV_rep000003.txt [Raw Data] CB019_Demissidine_pos_10eV_rep000003.txt

   

L-Palmitoylcarnitine

L-Palmitoylcarnitine

C23H45NO4 (399.33484100000004)


D018977 - Micronutrients > D014815 - Vitamins

   
   

PALMITOYLCARNITINE

PALMITOYLCARNITINE

C23H45NO4 (399.33484100000004)


D018977 - Micronutrients > D014815 - Vitamins

   
   
   

Palmitoyl-carnitine; AIF; CE0; CorrDec

Palmitoyl-carnitine; AIF; CE0; CorrDec

C23H45NO4 (399.33484100000004)


   

Palmitoyl-carnitine; AIF; CE10; CorrDec

Palmitoyl-carnitine; AIF; CE10; CorrDec

C23H45NO4 (399.33484100000004)


   

Palmitoyl-carnitine; AIF; CE30; CorrDec

Palmitoyl-carnitine; AIF; CE30; CorrDec

C23H45NO4 (399.33484100000004)


   

Palmitoyl-carnitine; AIF; CE0; MS2Dec

Palmitoyl-carnitine; AIF; CE0; MS2Dec

C23H45NO4 (399.33484100000004)


   

Palmitoyl-carnitine; AIF; CE10; MS2Dec

Palmitoyl-carnitine; AIF; CE10; MS2Dec

C23H45NO4 (399.33484100000004)


   

Palmitoyl-carnitine; AIF; CE30; MS2Dec

Palmitoyl-carnitine; AIF; CE30; MS2Dec

C23H45NO4 (399.33484100000004)


   

Palmitoyl-carnitine; LC-tDDA; CE10

Palmitoyl-carnitine; LC-tDDA; CE10

C23H45NO4 (399.33484100000004)


   

Palmitoyl-carnitine; LC-tDDA; CE20

Palmitoyl-carnitine; LC-tDDA; CE20

C23H45NO4 (399.33484100000004)


   

Palmitoyl-carnitine; LC-tDDA; CE30

Palmitoyl-carnitine; LC-tDDA; CE30

C23H45NO4 (399.33484100000004)


   

Palmitoyl-carnitine; LC-tDDA; CE40

Palmitoyl-carnitine; LC-tDDA; CE40

C23H45NO4 (399.33484100000004)


   

3-Epidemissidine

10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0^{2,11}.0^{5,10}.0^{15,23}.0^{17,22}]tetracosan-7-ol

C27H45NO (399.350096)


   

CAR 14:2;O2

3-{[(5Z)-13-carboxytridec-5-enoyl]oxy}-4-(trimethylazaniumyl)butanoate

C21H37NO6 (399.26207420000003)


   

CAR 16:0

3-(hexadecanoyloxy)-4-(trimethylammonio)butanoate;O-hexadecanoylcarnitine

C23H45NO4 (399.33484100000004)


   

NAE 24:6

N-(6Z,9Z,12Z,15Z,18Z,21Z-tetracosahexaenoyl)-ethanolamine

C26H41NO2 (399.31371260000003)


   

Palmitoylcarnitine

3-Carboxy-N,N,N-trimethyl-2-[(1-oxohexadecyl)oxy]-1-propanaminium

C23H45NO4 (399.33484100000004)


L-Palmitoylcarnitine or hexadecanoylcarnitine is an acylcarnitine. It is technically a long-chain acyl fatty acid derivative ester of carnitine which facilitates the transfer of long-chain fatty acids from cytoplasm into mitochondria during the oxidation of fatty acids. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, palmitic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called palmitoyl-CoA. This reaction is facilitated by the Long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, palmitoyl-CoA reacts with L-carnitine to form palmitoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the palmitoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, palmitoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form palmitoyl-CoA and L-carnitine. Palmitoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing palmitoylcarnitine from forming and thereby preventing it from being transported into the mitochondria. L-Palmitoylcarnitine has been also reported to change the activity of certain proteins and to stimulate the activity of caspases 3, 7, and 8. Interestingly, the level of this long-chain acylcarnitine has been shown to increase during apoptosis. Palmitoylcarnitine has also been reported to diminish the binding of phorbol esters (protein kinase C activators) and the autophosphorylation of the enzyme. Some of the physicochemical properties of palmitoylcarnitine may help to explain the need for coenzyme A-carnitine-coenzyme A acyl exchange during mitochondrial fatty acid import. The amphiphilic character of palmitoylcarnitine may also explain its proposed involvement in the pathogenesis of myocardial ischemia. L-Palmitoylcarnitine accumulates in ischemic myocardium and potentially contributes to myocardial damage through alterations in membrane molecular dynamics. This is a mechanism through which could play an important role in ischemic injury (PMID: 2540838, 15363641, 8706815). Palmitoylcarnitine is characteristically elevated in late-onset carnitine palmitoyltransferase II deficiency (OMIM: 255110). L-Palmitoylcarnitine is a long-chain acyl fatty acid derivative ester of carnitine which facilitates the transfer of long-chain fatty acids from cytoplasm into mitochondria during the oxidation of fatty acids. L-palmitoylcarnitine, due to its amphipatic character is, like detergents, a surface-active molecule and by changing the membrane fluidity and surface charge can change activity of several enzymes and transporters localized in the membrane. L-palmitoylcarnitine has been also reported to change the activity of certain proteins. On the contrary to carnitine, palmitoylcarnitine was shown to stimulate the activity of caspases 3, 7 and 8 and the level of this long-chain acylcarnitine increased during apoptosis. Palmitoylcarnitine was also reported to diminish completely binding of phorbol esters, the protein kinase C activators and to decrease the autophosphorylation of the enzyme. Apart from these isoform nonspecific phenomena, palmitoylcarnitine was also shown to be responsible for retardation in cytoplasm of protein kinase C isoforms β and δ and, in the case of the latter one, to decrease its interaction with GAP-43.

   

Benzenemethanaminium,N-dodecyl-N,N-bis(2-hydroxyethyl)-, chloride (1:1)

Benzenemethanaminium,N-dodecyl-N,N-bis(2-hydroxyethyl)-, chloride (1:1)

C23H42ClNO2 (399.29039020000005)


   

3-De(hydroxymethyl)-3-methyl Salmeterol

3-De(hydroxymethyl)-3-methyl Salmeterol

C25H37NO3 (399.27732920000005)


   

butyl 2-methylprop-2-enoate,2-(dimethylamino)ethyl 2-methylprop-2-enoate,methyl 2-methylprop-2-enoate

butyl 2-methylprop-2-enoate,2-(dimethylamino)ethyl 2-methylprop-2-enoate,methyl 2-methylprop-2-enoate

C21H37NO6 (399.26207420000003)


   

5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1-(TRIISOPROPYLSILYL)-1H-INDOLE

5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1-(TRIISOPROPYLSILYL)-1H-INDOLE

C23H38BNO2Si (399.27647179999997)


   

Epristeride

Epristeride

C25H37NO3 (399.27732920000005)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058891 - 5-alpha Reductase Inhibitors C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen C471 - Enzyme Inhibitor > C2319 - 5 Alpha-Reductase Inhibitor C1892 - Chemopreventive Agent

   

bis(2-hydroxyethyl)ammonium tetradecyl sulphate

bis(2-hydroxyethyl)ammonium tetradecyl sulphate

C18H41NO6S (399.2654446000001)


   
   

1-(TRIISOPROPYLSILYL)-4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-INDOLE

1-(TRIISOPROPYLSILYL)-4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-INDOLE

C23H38BNO2Si (399.27647179999997)


   

Olesoxime

N-[9a,11a-dimethyl-1-(6-methylheptan-2-yl)-1H,2H,3H,3aH,3bH,4H,5H,7H,8H,9H,9aH,9bH,10H,11H,11aH-cyclopenta[a]phenanthren-7-ylidene]hydroxylamine

C27H45NO (399.350096)


Olesoxime (TRO 19622) is a mitochondrial-targeted neuroprotective compound with mean EC50 value for increasing cell survival is 3.2±0.2 μM.

   
   

3-Aza-alpha-homocholest-4alpha-en-4-one

3-Aza-alpha-homocholest-4alpha-en-4-one

C27H45NO (399.350096)


   
   

N-Cycloheptylglycyl-N-(4-Carbamimidoylbenzyl)-L-Prolinamide

N-Cycloheptylglycyl-N-(4-Carbamimidoylbenzyl)-L-Prolinamide

C22H33N5O2 (399.26341180000003)


   

3-[(1,2,4a,5-Tetramethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl)methyl]-4-hydroxy-5-(2-methylpropylamino)cyclohexa-3,5-diene-1,2-dione

3-[(1,2,4a,5-Tetramethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl)methyl]-4-hydroxy-5-(2-methylpropylamino)cyclohexa-3,5-diene-1,2-dione

C25H37NO3 (399.27732920000005)


   

(1S,2R,7S,10S,11S,14S,15R,16S,17R,20S,23S)-10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.02,11.05,10.015,23.017,22]tetracosan-7-ol

(1S,2R,7S,10S,11S,14S,15R,16S,17R,20S,23S)-10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.02,11.05,10.015,23.017,22]tetracosan-7-ol

C27H45NO (399.350096)


   
   
   
   
   
   
   
   
   
   
   
   
   
   

(7Z)-Tetradec-7-enedioylcarnitine

(7Z)-Tetradec-7-enedioylcarnitine

C21H37NO6 (399.26207420000003)


   

(2E)-Tetradec-2-enedioylcarnitine

(2E)-Tetradec-2-enedioylcarnitine

C21H37NO6 (399.26207420000003)


   

(4Z)-Tetradec-4-enedioylcarnitine

(4Z)-Tetradec-4-enedioylcarnitine

C21H37NO6 (399.26207420000003)


   

(5E)-Tetradec-5-enedioylcarnitine

(5E)-Tetradec-5-enedioylcarnitine

C21H37NO6 (399.26207420000003)


   
   
   

(2S,3R,4S)-3-[4-(1-cyclohexenyl)phenyl]-2-(hydroxymethyl)-4-[(propan-2-ylamino)methyl]-N-propyl-1-azetidinecarboxamide

(2S,3R,4S)-3-[4-(1-cyclohexenyl)phenyl]-2-(hydroxymethyl)-4-[(propan-2-ylamino)methyl]-N-propyl-1-azetidinecarboxamide

C24H37N3O2 (399.2885622)


   

N-[[(2S,3R,4S)-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]-2-(dimethylamino)-N-propan-2-ylacetamide

N-[[(2S,3R,4S)-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]-2-(dimethylamino)-N-propan-2-ylacetamide

C24H37N3O2 (399.2885622)


   

1-[[(2S,3R,4S)-1-(cyclopentylmethyl)-4-(hydroxymethyl)-3-[4-[(E)-prop-1-enyl]phenyl]azetidin-2-yl]methyl]-3-propan-2-ylurea

1-[[(2S,3R,4S)-1-(cyclopentylmethyl)-4-(hydroxymethyl)-3-[4-[(E)-prop-1-enyl]phenyl]azetidin-2-yl]methyl]-3-propan-2-ylurea

C24H37N3O2 (399.2885622)


   

(2S,3R,4R)-3-[4-(1-cyclohexenyl)phenyl]-2-(hydroxymethyl)-N-propan-2-yl-4-[(propan-2-ylamino)methyl]-1-azetidinecarboxamide

(2S,3R,4R)-3-[4-(1-cyclohexenyl)phenyl]-2-(hydroxymethyl)-N-propan-2-yl-4-[(propan-2-ylamino)methyl]-1-azetidinecarboxamide

C24H37N3O2 (399.2885622)


   

(2R,3S,4S)-3-[4-(1-cyclohexenyl)phenyl]-2-(hydroxymethyl)-N-propan-2-yl-4-[(propan-2-ylamino)methyl]-1-azetidinecarboxamide

(2R,3S,4S)-3-[4-(1-cyclohexenyl)phenyl]-2-(hydroxymethyl)-N-propan-2-yl-4-[(propan-2-ylamino)methyl]-1-azetidinecarboxamide

C24H37N3O2 (399.2885622)


   

(2S,3R,4R)-3-[4-(1-cyclohexenyl)phenyl]-2-(hydroxymethyl)-4-[(propan-2-ylamino)methyl]-N-propyl-1-azetidinecarboxamide

(2S,3R,4R)-3-[4-(1-cyclohexenyl)phenyl]-2-(hydroxymethyl)-4-[(propan-2-ylamino)methyl]-N-propyl-1-azetidinecarboxamide

C24H37N3O2 (399.2885622)


   

(2E)-16-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]hexadec-2-enoate

(2E)-16-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]hexadec-2-enoate

C22H39O6- (399.2746494)


   

(E,15R)-15-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxyhexadec-2-enoate

(E,15R)-15-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxyhexadec-2-enoate

C22H39O6- (399.2746494)


   

(6Z,9Z,12Z,15Z,18Z,21Z)-N-(2-hydroxyethyl)tetracosa-6,9,12,15,18,21-hexaenamide

(6Z,9Z,12Z,15Z,18Z,21Z)-N-(2-hydroxyethyl)tetracosa-6,9,12,15,18,21-hexaenamide

C26H41NO2 (399.31371260000003)


   
   
   

(5Z)-13-carboxytridec-5-enoylcarnitine

(5Z)-13-carboxytridec-5-enoylcarnitine

C21H37NO6 (399.26207420000003)


An O-acylcarnitine having (5Z)-13-carboxytridec-5-enoyl as the acyl substituent.

   

ascr#27(1-)

ascr#27(1-)

C22H39O6 (399.2746494)


Conjugate base of ascr#27

   

O-palmitoyl-L-carnitine

O-palmitoyl-L-carnitine

C23H45NO4 (399.33484100000004)


An O-acyl-L-carnitine in which the acyl group is specified as palmitoyl (hexadecanoyl).

   

O-palmitoylcarnitine

O-palmitoylcarnitine

C23H45NO4 (399.33484100000004)


An O-acylcarnitine having palmitoyl (hexadecanoyl) as the acyl substituent.

   

oscr#27(1-)

oscr#27(1-)

C22H39O6 (399.2746494)


A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#27, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

CarE(16:0)

CarE(16:0)

C23H45NO4 (399.33484100000004)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   

NA-Ala 22:6(4Z,7Z,10Z,13Z,16Z,19Z)

NA-Ala 22:6(4Z,7Z,10Z,13Z,16Z,19Z)

C25H37NO3 (399.27732920000005)


   

NA-Amylamine 22:5(7Z,10Z,13Z,16Z,19Z)

NA-Amylamine 22:5(7Z,10Z,13Z,16Z,19Z)

C27H45NO (399.350096)


   
   
   
   
   
   

(±)-J-113397

(±)-J-113397

C24H37N3O2 (399.2885622)


(±)-J-113397 is a potent and selective non-peptidyl ORL1 receptor antagonist with a Ki of 1.8 nM for cloned human ORL1. J-113397 inhibited nociceptin/orphanin FQ-stimulated GTPγS binding to CHO cells expressing ORL1 with an IC50 value of 5.3 nM. J-113397 can be used for researching the physiological roles of nociceptin/orphanin FQ[1].

   

Hexadecenoylcarnitine(Car 16:1)

3-hydroxy-4-oxo-3-[(trimethylazaniumyl)methyl]nonadec-5-enoate

C23H45NO4 (399.334841)


Hexadecenoylcarnitine (Car 16:1) is a naturally occurring derivative of carnitine, which plays a crucial role in the transport of long-chain fatty acids across the mitochondrial membrane for beta-oxidation. This process is essential for the production of energy in the body. The name “Hexadecenoylcarnitine” refers to its structure: it consists of a 16-carbon fatty acid chain with one double bond (hence the “16:1” notation), esterified to carnitine. The presence of the double bond at a specific position in the fatty acid chain imparts unique properties to this molecule. In biological systems, Hexadecenoylcarnitine is involved in several important functions: Energy Metabolism: It facilitates the transport of fatty acids into the mitochondria, where they undergo beta-oxidation to produce ATP, the cell’s primary energy source. Regulation of Fatty Acid Oxidation: It helps regulate the rate of fatty acid oxidation, which is particularly important in tissues with high energy demands, such as the heart and skeletal muscles. Homeostasis: Hexadecenoylcarnitine is involved in maintaining the balance of fatty acids and their CoA esters across the mitochondrial membrane. Potential Biomarker: Levels of Hexadecenoylcarnitine in the blood can serve as a biomarker for certain metabolic disorders and may indicate abnormalities in fatty acid metabolism. Research Interest: It is of interest in research for its potential roles in various diseases, including cardiovascular diseases and metabolic disorders. Hexadecenoylcarnitine is synthesized in the body and can also be obtained from dietary sources, particularly those rich in unsaturated fatty acids. Its metabolism is tightly regulated by various enzymes and transporters, ensuring efficient energy production and maintaining cellular homeostasis.

   

3-{[(1r,2s,4ar,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-2-hydroxy-5-[(2-methylpropyl)amino]cyclohexa-2,5-diene-1,4-dione

3-{[(1r,2s,4ar,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-2-hydroxy-5-[(2-methylpropyl)amino]cyclohexa-2,5-diene-1,4-dione

C25H37NO3 (399.27732920000005)


   

1-[(6s,8r,11r,12s,14r,15r,16r)-6-(dimethylamino)-14-hydroxy-7,7,12,16-tetramethyltetracyclo[9.7.0.0³,⁸.0¹²,¹⁶]octadeca-1(18),2-dien-15-yl]ethanone

1-[(6s,8r,11r,12s,14r,15r,16r)-6-(dimethylamino)-14-hydroxy-7,7,12,16-tetramethyltetracyclo[9.7.0.0³,⁸.0¹²,¹⁶]octadeca-1(18),2-dien-15-yl]ethanone

C26H41NO2 (399.31371260000003)


   

(1r,3as,3bs,7s,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H45NO (399.350096)


   

(1r,3as,3bs,7s,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H45NO (399.350096)


   

(9z,12z)-n-[2-(4-hydroxyphenyl)ethyl]octadeca-9,12-dienimidic acid

(9z,12z)-n-[2-(4-hydroxyphenyl)ethyl]octadeca-9,12-dienimidic acid

C26H41NO2 (399.31371260000003)


   

[(4ar,5s,6r,8as)-5-(3-hydroxy-3-methylpent-4-en-1-yl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]methyl 1h-pyrrole-2-carboxylate

[(4ar,5s,6r,8as)-5-(3-hydroxy-3-methylpent-4-en-1-yl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]methyl 1h-pyrrole-2-carboxylate

C25H37NO3 (399.27732920000005)


   

(1r,3as,3br,7s,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3br,7s,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H45NO (399.350096)


   

3-{[(1s,2r,4ar,8ar)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-4-hydroxy-5-[(2-methylpropyl)amino]cyclohexa-3,5-diene-1,2-dione

3-{[(1s,2r,4ar,8ar)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-4-hydroxy-5-[(2-methylpropyl)amino]cyclohexa-3,5-diene-1,2-dione

C25H37NO3 (399.27732920000005)


   

3-[(2e)-5-[(1r,3r)-1,3-dimethyl-2-methylidenecyclohexyl]pent-2-en-1-yl]-4-hydroxy-5-[(3-methylbutyl)amino]cyclohexa-3,5-diene-1,2-dione

3-[(2e)-5-[(1r,3r)-1,3-dimethyl-2-methylidenecyclohexyl]pent-2-en-1-yl]-4-hydroxy-5-[(3-methylbutyl)amino]cyclohexa-3,5-diene-1,2-dione

C25H37NO3 (399.27732920000005)


   

n-[2-(4-hydroxyphenyl)ethyl]octadeca-9,12-dienimidic acid

n-[2-(4-hydroxyphenyl)ethyl]octadeca-9,12-dienimidic acid

C26H41NO2 (399.31371260000003)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5r)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5r)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H45NO (399.350096)


   

(1s,3s,8r,11s,12s,14r,15s,16r)-15-[(1s)-1-(dimethylamino)ethyl]-14-hydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-6-one

(1s,3s,8r,11s,12s,14r,15s,16r)-15-[(1s)-1-(dimethylamino)ethyl]-14-hydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-6-one

C26H41NO2 (399.31371260000003)


   

(2r,3s,6r)-6-[(8s)-8-hydroxydodecyl]-2-methylpiperidin-3-yl (2z)-3-(methylsulfanyl)prop-2-enoate

(2r,3s,6r)-6-[(8s)-8-hydroxydodecyl]-2-methylpiperidin-3-yl (2z)-3-(methylsulfanyl)prop-2-enoate

C22H41NO3S (399.28069960000005)


   

(2r,3s,6r)-6-[(8r)-8-hydroxydodecyl]-2-methylpiperidin-3-yl (2e)-3-(methylsulfanyl)prop-2-enoate

(2r,3s,6r)-6-[(8r)-8-hydroxydodecyl]-2-methylpiperidin-3-yl (2e)-3-(methylsulfanyl)prop-2-enoate

C22H41NO3S (399.28069960000005)


   

(1s,2s,4s,5'r,6r,8r,9s,12s,13r,16s)-5',9,13-trimethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-18-en-16-ol

(1s,2s,4s,5'r,6r,8r,9s,12s,13r,16s)-5',9,13-trimethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-18-en-16-ol

C26H41NO2 (399.31371260000003)


   

(2r,3s,6r)-6-(8-hydroxydodecyl)-2-methylpiperidin-3-yl (2e)-3-(methylsulfanyl)prop-2-enoate

(2r,3s,6r)-6-(8-hydroxydodecyl)-2-methylpiperidin-3-yl (2e)-3-(methylsulfanyl)prop-2-enoate

C22H41NO3S (399.28069960000005)


   

(1s,2r,5s,7s,10s,11s,14s,15r,16s,17s,20r,23s)-10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁷,²²]tetracosan-7-ol

(1s,2r,5s,7s,10s,11s,14s,15r,16s,17s,20r,23s)-10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁷,²²]tetracosan-7-ol

C27H45NO (399.350096)


   

3-{[(1r,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-2-hydroxy-5-[(2-methylpropyl)amino]cyclohexa-2,5-diene-1,4-dione

3-{[(1r,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-2-hydroxy-5-[(2-methylpropyl)amino]cyclohexa-2,5-diene-1,4-dione

C25H37NO3 (399.27732920000005)


   

(2r,3s,6r)-6-(8-hydroxydodecyl)-2-methylpiperidin-3-yl (2z)-3-(methylsulfanyl)prop-2-enoate

(2r,3s,6r)-6-(8-hydroxydodecyl)-2-methylpiperidin-3-yl (2z)-3-(methylsulfanyl)prop-2-enoate

C22H41NO3S (399.28069960000005)


   

3-{[2-(but-2-en-2-yl)-3,8-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl](hydroxy)methylidene}-5-isopropyl-1-methylpyrrolidine-2,4-dione

3-{[2-(but-2-en-2-yl)-3,8-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl](hydroxy)methylidene}-5-isopropyl-1-methylpyrrolidine-2,4-dione

C25H37NO3 (399.27732920000005)


   

5',9,13-trimethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-18-en-16-ol

5',9,13-trimethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-18-en-16-ol

C26H41NO2 (399.31371260000003)


   

(2r,3s,6s)-6-[(8s)-8-hydroxydodecyl]-2-methylpiperidin-3-yl (2z)-3-(methylsulfanyl)prop-2-enoate

(2r,3s,6s)-6-[(8s)-8-hydroxydodecyl]-2-methylpiperidin-3-yl (2z)-3-(methylsulfanyl)prop-2-enoate

C22H41NO3S (399.28069960000005)


   

(9z,12z)-n-[(3-methoxyphenyl)methyl]octadeca-9,12-dienimidic acid

(9z,12z)-n-[(3-methoxyphenyl)methyl]octadeca-9,12-dienimidic acid

C26H41NO2 (399.31371260000003)


   

3-[(1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl)methyl]-2-hydroxy-5-[(2-methylpropyl)amino]cyclohexa-2,5-diene-1,4-dione

3-[(1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl)methyl]-2-hydroxy-5-[(2-methylpropyl)amino]cyclohexa-2,5-diene-1,4-dione

C25H37NO3 (399.27732920000005)


   

6-methoxy-2-(10-methoxy-3,7,9,11-tetramethyltrideca-2,5,7,11-tetraen-1-yl)-3-methylpyridin-4-ol

6-methoxy-2-(10-methoxy-3,7,9,11-tetramethyltrideca-2,5,7,11-tetraen-1-yl)-3-methylpyridin-4-ol

C25H37NO3 (399.27732920000005)


   

6-(8-hydroxydodecyl)-2-methylpiperidin-3-yl 3-(methylsulfanyl)prop-2-enoate

6-(8-hydroxydodecyl)-2-methylpiperidin-3-yl 3-(methylsulfanyl)prop-2-enoate

C22H41NO3S (399.28069960000005)


   

(6s,23r)-20-hydroxy-6,23-dimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosan-17-one

(6s,23r)-20-hydroxy-6,23-dimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosan-17-one

C26H41NO2 (399.31371260000003)


   

(1s,2r,5s,7s,10s,11s,14s,15r,16s,17s,20s,23s)-10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁷,²²]tetracosan-7-ol

(1s,2r,5s,7s,10s,11s,14s,15r,16s,17s,20s,23s)-10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁷,²²]tetracosan-7-ol

C27H45NO (399.350096)


   

1-[6-(dimethylamino)-14-hydroxy-7,7,12,16-tetramethyltetracyclo[9.7.0.0³,⁸.0¹²,¹⁶]octadeca-1(18),2-dien-15-yl]ethanone

1-[6-(dimethylamino)-14-hydroxy-7,7,12,16-tetramethyltetracyclo[9.7.0.0³,⁸.0¹²,¹⁶]octadeca-1(18),2-dien-15-yl]ethanone

C26H41NO2 (399.31371260000003)


   

(2r,3s,6r)-6-[(8s)-8-hydroxydodecyl]-2-methylpiperidin-3-yl (2e)-3-(methylsulfanyl)prop-2-enoate

(2r,3s,6r)-6-[(8s)-8-hydroxydodecyl]-2-methylpiperidin-3-yl (2e)-3-(methylsulfanyl)prop-2-enoate

C22H41NO3S (399.28069960000005)


   

(1s,3as,3bs,7s,9ar,9br,11ar)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5r)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1s,3as,3bs,7s,9ar,9br,11ar)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5r)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H45NO (399.350096)


   

6-methoxy-2-[(2e,5e,7e,9r,10r,11e)-10-methoxy-3,7,9,11-tetramethyltrideca-2,5,7,11-tetraen-1-yl]-3-methylpyridin-4-ol

6-methoxy-2-[(2e,5e,7e,9r,10r,11e)-10-methoxy-3,7,9,11-tetramethyltrideca-2,5,7,11-tetraen-1-yl]-3-methylpyridin-4-ol

C25H37NO3 (399.27732920000005)


   

9a,11a-dimethyl-1-[1-(5-methylpiperidin-2-yl)ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

9a,11a-dimethyl-1-[1-(5-methylpiperidin-2-yl)ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H45NO (399.350096)


   

(3z,5r)-3-{[(1s,2s,4ar,8s,8ar)-2-[(2e)-but-2-en-2-yl]-3,8-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl](hydroxy)methylidene}-5-isopropyl-1-methylpyrrolidine-2,4-dione

(3z,5r)-3-{[(1s,2s,4ar,8s,8ar)-2-[(2e)-but-2-en-2-yl]-3,8-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl](hydroxy)methylidene}-5-isopropyl-1-methylpyrrolidine-2,4-dione

C25H37NO3 (399.27732920000005)