Exact Mass: 399.2746494
Exact Mass Matches: 399.2746494
Found 255 metabolites which its exact mass value is equals to given mass value 399.2746494
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Spiramine A
Spiramine A is a diterpenoid. It derives from a hydride of an atisane. Spiramine A is a natural product found in Spiraea japonica with data available.
candoxatrilat
C20H33NO7 (399.22569080000005)
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors C471 - Enzyme Inhibitor > C783 - Protease Inhibitor
(5Z)-13-Carboxytridec-5-enoylcarnitine
C21H37NO6 (399.26207420000003)
(5Z)-13-Carboxytridec-5-enoylcarnitine is an acylcarnitine. More specifically, it is an (5Z)-tetradec-5-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z)-13-Carboxytridec-5-enoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5Z)-13-Carboxytridec-5-enoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(7Z)-Tetradec-7-enedioylcarnitine
C21H37NO6 (399.26207420000003)
(7Z)-Tetradec-7-enedioylcarnitine is an acylcarnitine. More specifically, it is an (7Z)-tetradec-7-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (7Z)-Tetradec-7-enedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (7Z)-Tetradec-7-enedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E)-Tetradec-2-enedioylcarnitine
C21H37NO6 (399.26207420000003)
(2E)-Tetradec-2-enedioylcarnitine is an acylcarnitine. More specifically, it is an (2E)-tetradec-2-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-Tetradec-2-enedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (2E)-Tetradec-2-enedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4Z)-Tetradec-4-enedioylcarnitine
C21H37NO6 (399.26207420000003)
(4Z)-Tetradec-4-enedioylcarnitine is an acylcarnitine. More specifically, it is an (4Z)-tetradec-4-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z)-Tetradec-4-enedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (4Z)-Tetradec-4-enedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(5E)-Tetradec-5-enedioylcarnitine
C21H37NO6 (399.26207420000003)
(5E)-Tetradec-5-enedioylcarnitine is an acylcarnitine. More specifically, it is an (5E)-tetradec-5-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5E)-Tetradec-5-enedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5E)-Tetradec-5-enedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Stearoyl Aspartic acid
C22H41NO5 (399.29845760000006)
N-stearoyl aspartic acid, also known as N-stearoyl aspartate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Stearic acid amide of Aspartic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Stearoyl Aspartic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Stearoyl Aspartic acid is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Docosahexaenoyl Alanine
C25H37NO3 (399.27732920000005)
N-docosahexaenoyl alanine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Docosahexaenoic acd amide of Alanine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Docosahexaenoyl Alanine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Docosahexaenoyl Alanine is therefore classified as a very long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Eicosapentaenoyl Proline
C25H37NO3 (399.27732920000005)
N-eicosapentaenoyl proline belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Eicosapentaenoic acid amide of Proline. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Eicosapentaenoyl Proline is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Eicosapentaenoyl Proline is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
Candoxatrilat
C20H33NO7 (399.22569080000005)
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
Epristeride
C25H37NO3 (399.27732920000005)
Phenylalanyl-prolyl-arginine nitrile
Macamide Impurity 10
C26H41NO2 (399.31371260000003)
(9Z,12Z)-N-(3-Methoxybenzyl)octadeca-9,12-dienamide is a natural product found in Lepidium meyenii with data available.
Spiradine F
Myriocin-12-en
C21H37NO6 (399.26207420000003)
[Raw Data] CBA30_Myriocin-12-en_neg_40eV_1-4_01_1594.txt [Raw Data] CBA30_Myriocin-12-en_neg_30eV_1-4_01_1593.txt [Raw Data] CBA30_Myriocin-12-en_neg_20eV_1-4_01_1592.txt [Raw Data] CBA30_Myriocin-12-en_neg_10eV_1-4_01_1579.txt [Raw Data] CBA30_Myriocin-12-en_pos_50eV_1-4_01_1564.txt [Raw Data] CBA30_Myriocin-12-en_pos_40eV_1-4_01_1563.txt [Raw Data] CBA30_Myriocin-12-en_pos_30eV_1-4_01_1562.txt [Raw Data] CBA30_Myriocin-12-en_pos_20eV_1-4_01_1561.txt [Raw Data] CBA30_Myriocin-12-en_pos_10eV_1-4_01_1547.txt
(3Z)-3-[[1,6-dimethyl-2-[(1E,3E)-penta-1,3-dienyl]-4a,5,6,7,8,8a-hexahydro-2H-naphthalen-1-yl]-hydroxymethylidene]-5-(1-hydroxyethyl)pyrrolidine-2,4-dione
5-epi-smenospongorine|epi-smenospongiarine
C25H37NO3 (399.27732920000005)
6-hydroxy-4-methoxyl-5-[(2E,6E)-(3,7,11-trimethyl-2,6,10-dodecatrien-1-yl)oxy]-2,3-dihydro-1H-isoindol-1-one|emeriphenolicin D
(13R)-2alpha,11alpha-dihydroxy-13-isobutyryloxyhetisane|trichodelphinine B
(3Z)-3-[[1,6-dimethyl-2-[(1E,3E)-penta-1,3-dienyl]-4a,5,6,7,8,8a-hexahydro-2H-naphthalen-1-yl]-hydroxymethylidene]-5-(1-hydroxyethyl)pyrrolidine-2,4-dione
Gly Lys Pro Val
Gly Lys Val Pro
Gly Pro Lys Val
Gly Pro Val Lys
Gly Val Lys Pro
Gly Val Pro Lys
Lys Gly Pro Val
Lys Gly Val Pro
Lys Pro Gly Val
Lys Pro Val Gly
Lys Val Gly Pro
Lys Val Pro Gly
Pro Gly Lys Val
Pro Gly Val Lys
Pro Lys Gly Val
Pro Lys Val Gly
Pro Val Gly Lys
Pro Val Lys Gly
Val Gly Lys Pro
Val Gly Pro Lys
Val Lys Gly Pro
Val Lys Pro Gly
Val Pro Gly Lys
Val Pro Lys Gly
CAR 14:2;O2
C21H37NO6 (399.26207420000003)
Benzenemethanaminium,N-dodecyl-N,N-bis(2-hydroxyethyl)-, chloride (1:1)
C23H42ClNO2 (399.29039020000005)
3-De(hydroxymethyl)-3-methyl Salmeterol
C25H37NO3 (399.27732920000005)
butyl 2-methylprop-2-enoate,2-(dimethylamino)ethyl 2-methylprop-2-enoate,methyl 2-methylprop-2-enoate
C21H37NO6 (399.26207420000003)
5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1-(TRIISOPROPYLSILYL)-1H-INDOLE
C23H38BNO2Si (399.27647179999997)
Epristeride
C25H37NO3 (399.27732920000005)
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058891 - 5-alpha Reductase Inhibitors C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen C471 - Enzyme Inhibitor > C2319 - 5 Alpha-Reductase Inhibitor C1892 - Chemopreventive Agent
bis(2-hydroxyethyl)ammonium tetradecyl sulphate
C18H41NO6S (399.2654446000001)
(2S)-2-[[(4R,5R)-1,3-dimethyl-4,5-diphenylimidazolidin-2-ylidene]amino]-3-phenylpropan-1-ol
butyl prop-2-enoate,methyl 2-methylprop-2-enoate,2-methylprop-2-enamide,2-methylprop-2-enoic acid
C20H33NO7 (399.22569080000005)
sodium 2-[methyl(1-oxohexadecyl)amino]ethanesulphonate
C19H38NNaO4S (399.2419108000001)
1-(TRIISOPROPYLSILYL)-4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-INDOLE
C23H38BNO2Si (399.27647179999997)
(trans,trans)-4-Pentyl-[1,1-bicyclohexyl]-4-carboxylic acid 4-cyano-3-fluorophenyl ester
5-Methoxy-2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole
C21H31B2NO5 (399.23882160000005)
(S)-1-[(R)-2-METHOXY-1-(4-TRIFLUOROMETHYL-PHENYL)-ETHYL]-2-METHYL-4-(4-METHYL-PIPERIDIN-4-YL)-PIPERAZINE
Desvenlafaxine succinate
C20H33NO7 (399.22569080000005)
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D000068760 - Serotonin and Noradrenaline Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators
[4-(3-Aminomethyl-phenyl)-piperidin-1-YL]-(5-phenethyl-pyridin-3-YL)-methanone
N-Cycloheptylglycyl-N-(4-Carbamimidoylbenzyl)-L-Prolinamide
C22H33N5O2 (399.26341180000003)
3-[(1,2,4a,5-Tetramethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl)methyl]-4-hydroxy-5-(2-methylpropylamino)cyclohexa-3,5-diene-1,2-dione
C25H37NO3 (399.27732920000005)
5-Hydroxy-4,4,6-tris(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)-3-oxocyclohexa-1,5-dien-1-olate
C25H35O4- (399.25352100000003)
N-(2-amino-3-phenylpropanoyl)-1-[1-cyano-4-(diaminomethylideneamino)butyl]pyrrolidine-2-carboxamide
(4R,5S,6R,7R,9E,11Z)-13-amino-7-hydroxy-4,6-dimethyl-13-oxotrideca-9,11-dien-5-yl (2E)-3-phenylprop-2-enoate
Aspernidine A
A member of the class of isoindoles that is isoindolin-1-one which is substituted at positions 4, 5 and 6 by hydroxy, triprenyloxy and methoxy groups, respectively. The alkaloid was isolated from the model fungus Aspegillus nidulans.
1-Butyl-3-[2-(4-ethyl-1-piperazinyl)-4-methyl-6-quinolinyl]-1-methylthiourea
C22H33N5S (399.24565380000007)
2-(dimethylamino)-N-ethyl-N-[[(2R,3S,4R)-3-[4-(3-fluorophenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]acetamide
1-[[(2S,3R,4R)-1-acetyl-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]-3-propylurea
(2S,3R,4S)-3-[4-(1-cyclohexenyl)phenyl]-2-(hydroxymethyl)-4-[(propan-2-ylamino)methyl]-N-propyl-1-azetidinecarboxamide
N-[[(2S,3R,4S)-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]-2-(dimethylamino)-N-propan-2-ylacetamide
1-[[(2S,3R,4S)-1-(cyclopentylmethyl)-4-(hydroxymethyl)-3-[4-[(E)-prop-1-enyl]phenyl]azetidin-2-yl]methyl]-3-propan-2-ylurea
2-(dimethylamino)-N-ethyl-N-[[(2S,3R,4S)-3-[4-(3-fluorophenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]acetamide
N-[[(2S,3S,4R)-1-acetyl-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]-2-(dimethylamino)acetamide
N-[[(2R,3R,4S)-1-acetyl-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]-2-(dimethylamino)acetamide
1-[[(2S,3S,4R)-1-acetyl-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]-3-propylurea
1-[[(2R,3R,4S)-1-acetyl-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]-3-propylurea
(2R,3S)-6-[cyclohexyl(oxo)methyl]-2-(hydroxymethyl)-3-phenyl-N-propyl-1,6-diazaspiro[3.3]heptane-1-carboxamide
(E,4S)-4-[[(2S)-2-[[(2S)-2-(diaminomethylideneazaniumyl)-3-hydroxypropanoyl]amino]-3-methylbutanoyl]-methylamino]-2,5-dimethylhex-2-enoate
(2S,3R)-8-(2-cyclohexylethynyl)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2R,3S)-8-(2-cyclohexylethynyl)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2R,3S)-8-(2-cyclohexylethynyl)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2S,3R)-8-(2-cyclohexylethynyl)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
N-[[(2S,3R,4R)-1-acetyl-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]-2-(dimethylamino)acetamide
N-[[(2R,3S,4S)-1-acetyl-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]-2-(dimethylamino)acetamide
1-[[(2R,3S,4S)-1-acetyl-4-(hydroxymethyl)-3-[4-[(E)-prop-1-enyl]phenyl]azetidin-2-yl]methyl]-3-cyclopentyl-1-methylurea
1-[[(2R,3S,4S)-1-acetyl-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]-3-propylurea
1-[[(2S,3R,4S)-1-acetyl-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-2-azetidinyl]methyl]-3-propylurea
(2S,3R,4R)-3-[4-(1-cyclohexenyl)phenyl]-2-(hydroxymethyl)-N-propan-2-yl-4-[(propan-2-ylamino)methyl]-1-azetidinecarboxamide
(2R,3S,4S)-3-[4-(1-cyclohexenyl)phenyl]-2-(hydroxymethyl)-N-propan-2-yl-4-[(propan-2-ylamino)methyl]-1-azetidinecarboxamide
(2S,3R,4R)-3-[4-(1-cyclohexenyl)phenyl]-2-(hydroxymethyl)-4-[(propan-2-ylamino)methyl]-N-propyl-1-azetidinecarboxamide
(2R,3R)-6-[cyclohexyl(oxo)methyl]-2-(hydroxymethyl)-3-phenyl-N-propyl-1,6-diazaspiro[3.3]heptane-1-carboxamide
(2S,3R)-6-[cyclohexyl(oxo)methyl]-2-(hydroxymethyl)-3-phenyl-N-propyl-1,6-diazaspiro[3.3]heptane-1-carboxamide
(2S,3S)-6-[cyclohexyl(oxo)methyl]-2-(hydroxymethyl)-3-phenyl-N-propyl-1,6-diazaspiro[3.3]heptane-1-carboxamide
(2E)-16-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]hexadec-2-enoate
(E,15R)-15-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxyhexadec-2-enoate
methyl (E)-2-[(3R,4R,6R,7S,8aR)-6-ethyl-4-methyl-2-oxospiro[1H-indole-3,1-3,5,6,7,8,8a-hexahydro-2H-indolizin-4-ium]-7-yl]-3-methoxyprop-2-enoate
(6Z,9Z,12Z,15Z,18Z,21Z)-N-(2-hydroxyethyl)tetracosa-6,9,12,15,18,21-hexaenamide
C26H41NO2 (399.31371260000003)
deacetoxyvindolinium(1+)
The conjugate acid of deacetoxyvindoline arising from protonation of the tertiary amino group; major species at pH 7.3.
colupulone(1-)
A beta-bitter acid(1-) that is the conjugate base of colupulone, obtained by deprotonation of one of the enolic hydroxy groups. It is the major microspecies at pH 7.3 (according to Marvin v 6.2.0.).
(5Z)-13-carboxytridec-5-enoylcarnitine
C21H37NO6 (399.26207420000003)
An O-acylcarnitine having (5Z)-13-carboxytridec-5-enoyl as the acyl substituent.
YM-47522
A cinnamate ester obtained by the formal condensation of the carboxy group of trans-cinnamic acid with the 9-hydroxy group of 7,9-dihydroxy-8,10-dimethyltrideca-2,4-dienamide (the 4R,5S,6R,7R,9E,11Z stereoisomer). It is obtained from the fermentation broth of Bacillus sp.YL-03709B and exhibits antifungal activity.
oscr#27(1-)
A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#27, obtained by deprotonation of the carboxy group; major species at pH 7.3.
NA-Ala 22:6(4Z,7Z,10Z,13Z,16Z,19Z)
C25H37NO3 (399.27732920000005)
(±)-J-113397
(±)-J-113397 is a potent and selective non-peptidyl ORL1 receptor antagonist with a Ki of 1.8 nM for cloned human ORL1. J-113397 inhibited nociceptin/orphanin FQ-stimulated GTPγS binding to CHO cells expressing ORL1 with an IC50 value of 5.3 nM. J-113397 can be used for researching the physiological roles of nociceptin/orphanin FQ[1].
(2z,4e,7s,8s,9r,10s)-7-hydroxy-8,10-dimethyl-9-{[(2e)-3-phenylprop-2-enoyl]oxy}trideca-2,4-dienimidic acid
(1r,2r,5s,7r,8r,13s,18s,21s)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-yl acetate
3-{[(1r,2s,4ar,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-2-hydroxy-5-[(2-methylpropyl)amino]cyclohexa-2,5-diene-1,4-dione
C25H37NO3 (399.27732920000005)
(5s)-3-[(1r,2s,4ar,6r,8ar)-1,6-dimethyl-2-[(1e,3e)-penta-1,3-dien-1-yl]-4a,5,6,7,8,8a-hexahydro-2h-naphthalene-1-carbonyl]-5-[(1s)-1-hydroxyethyl]-5h-pyrrole-2,4-diol
11-ethyl-16-hydroxy-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-19-yl acetate
(2s,4s,5s,8r,10s,13r,14r,16s,17r,19r)-11-ethyl-16-hydroxy-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-19-yl acetate
6-methoxy-5-[(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)oxy]-3h-isoindole-1,4-diol
(1r,2r,4s,5r,8s,10r,12s,13s,14r,16r,17r,19r)-11-ethyl-16-hydroxy-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-19-yl acetate
6-methoxy-5-{[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}-3h-isoindole-1,4-diol
1-[(6s,8r,11r,12s,14r,15r,16r)-6-(dimethylamino)-14-hydroxy-7,7,12,16-tetramethyltetracyclo[9.7.0.0³,⁸.0¹²,¹⁶]octadeca-1(18),2-dien-15-yl]ethanone
C26H41NO2 (399.31371260000003)
11-acetyl-1,19-epoxydenudatine
{"Ingredient_id": "HBIN000334","Ingredient_name": "11-acetyl-1,19-epoxydenudatine","Alias": "NA","Ingredient_formula": "C24H33NO4","Ingredient_Smile": "CCN1C2C3CC4C2(C5CCC4(C1O5)C)C6C37CCC(C6OC(=O)C)C(=C)C7O","Ingredient_weight": "399.5 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "388","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101589674","DrugBank_id": "NA"}
(5r,7r,10s)-isopterocarpolon β-d-gluco-pyranoside
{"Ingredient_id": "HBIN011912","Ingredient_name": "(5r,7r,10s)-isopterocarpolon \u03b2-d-gluco-pyranoside","Alias": "NA","Ingredient_formula": "C21H35O7","Ingredient_Smile": "CC1=CC(=O)CC2(C1CC(CC2)C(C)(C)OC3C(C(C(C(O3)CO)O)O)O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT16073","TCMID_id": "11631","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3-[(2r,3r,5s,6r)-6-[(2r)-butan-2-yl]-3,5-dimethyloxan-2-yl]-2,4-dimethoxy-5-phenylpyridin-1-ium-1-olate
(1r,2r,4s,5r,8s,10r,12r,13r,14r,15s,16s,18s)-11-ethyl-18-hydroxy-5-methyl-17-methylidene-9-oxa-11-azaheptacyclo[14.2.2.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-15-yl acetate
1,11-dihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,9h,10h,11h-cycloundeca[d]isoindole-12,15-dione
{7-[(2-methylbutanoyl)oxy]-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-yl}methyl 2,3-dihydroxy-2-(1-hydroxyethyl)-3-methylbutanoate
C20H33NO7 (399.22569080000005)
(9z,12z)-n-[2-(4-hydroxyphenyl)ethyl]octadeca-9,12-dienimidic acid
C26H41NO2 (399.31371260000003)
(2s)-4-{[(1s,2r,4as,6r,8ar)-1,6-dimethyl-2-[(1e,3e)-penta-1,3-dien-1-yl]-4a,5,6,7,8,8a-hexahydro-2h-naphthalen-1-yl](hydroxy)methylidene}-5-hydroxy-2-(1-hydroxyethyl)-2h-pyrrol-3-one
[(4ar,5s,6r,8as)-5-(3-hydroxy-3-methylpent-4-en-1-yl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]methyl 1h-pyrrole-2-carboxylate
C25H37NO3 (399.27732920000005)
(1r,2r,4s,5r,8s,13s,14r,16s,17r,19r)-11-ethyl-16-hydroxy-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-19-yl acetate
3-{[(1s,2r,4ar,8ar)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-4-hydroxy-5-[(2-methylpropyl)amino]cyclohexa-3,5-diene-1,2-dione
C25H37NO3 (399.27732920000005)
(1r,2r,4s,5r,8s,10r,12s,13s,14r,16s,17r,19r)-11-ethyl-16-hydroxy-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-19-yl acetate
4-methoxy-5-{[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}-3h-isoindole-1,6-diol
4-[5-(1-cyano-1-methylethyl)-2-methyloxolan-2-yl]-3,5-dihydroxy-1,6-dimethyl-octahydronaphthalene-1,6-dicarbonitrile
(4e,11e)-20-hydroxy-11,15,16-trimethyl-18-(2-methylpropyl)-2,7-dioxa-19-azatetracyclo[11.7.0.0¹,¹⁷.0⁶,⁸]icosa-4,11,14,19-tetraen-3-one
3-[(2e)-5-[(1r,3r)-1,3-dimethyl-2-methylidenecyclohexyl]pent-2-en-1-yl]-4-hydroxy-5-[(3-methylbutyl)amino]cyclohexa-3,5-diene-1,2-dione
C25H37NO3 (399.27732920000005)
n-[2-(4-hydroxyphenyl)ethyl]octadeca-9,12-dienimidic acid
C26H41NO2 (399.31371260000003)
11-ethyl-19-hydroxy-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-16-yl acetate
(1s,2r,5s,7r,8r,12s,13s,18r,20s)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-20-yl acetate
(1s,3s,8r,11s,12s,14r,15s,16r)-15-[(1s)-1-(dimethylamino)ethyl]-14-hydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-4-en-6-one
C26H41NO2 (399.31371260000003)
(1r,2r,5r,7r,8r,9r,10r,13r,16r,17r)-11-ethyl-16-hydroxy-13-methyl-6-methylidene-4-oxo-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-7-yl acetate
(2s,5s,8r,10s,12s,13r,14r,16r,17r,19r)-11-ethyl-19-hydroxy-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-16-yl acetate
(2r,3s,6r)-6-[(8s)-8-hydroxydodecyl]-2-methylpiperidin-3-yl (2z)-3-(methylsulfanyl)prop-2-enoate
C22H41NO3S (399.28069960000005)
(5s)-3-[(1r,2s,4ar,6r,8ar)-1,6-dimethyl-2-[(1z,3e)-penta-1,3-dien-1-yl]-4a,5,6,7,8,8a-hexahydro-2h-naphthalene-1-carbonyl]-5-[(1s)-1-hydroxyethyl]-5h-pyrrole-2,4-diol
(1r,3s,5s,7r,8r,12r,13r,18s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-yl acetate
(1s,2s,4s,5s,8r,10s,12s,13r,14r,16s,17r,19r)-11-ethyl-16-hydroxy-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-19-yl acetate
(2r,3s,6r)-6-[(8r)-8-hydroxydodecyl]-2-methylpiperidin-3-yl (2e)-3-(methylsulfanyl)prop-2-enoate
C22H41NO3S (399.28069960000005)
(2z,4e,7r,8r,9s,10r)-7-hydroxy-8,10-dimethyl-9-{[(2e)-3-phenylprop-2-enoyl]oxy}trideca-2,4-dienimidic acid
{7-[(3-hydroxy-3-methylbutanoyl)oxy]-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-yl}methyl 2,3-dihydroxy-2-isopropylbutanoate
C20H33NO7 (399.22569080000005)
(1s,2s,4s,5'r,6r,8r,9s,12s,13r,16s)-5',9,13-trimethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-18-en-16-ol
C26H41NO2 (399.31371260000003)
(2r,3s,6r)-6-(8-hydroxydodecyl)-2-methylpiperidin-3-yl (2e)-3-(methylsulfanyl)prop-2-enoate
C22H41NO3S (399.28069960000005)
(1r,2r,3s,5s,7r,8r,12r,13r,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-yl acetate
(3s,3ar,4s,6as,11r,15ar)-1,11-dihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,9h,10h,11h-cycloundeca[d]isoindole-12,15-dione
3-{[(1r,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-2-hydroxy-5-[(2-methylpropyl)amino]cyclohexa-2,5-diene-1,4-dione
C25H37NO3 (399.27732920000005)
(1r,2r,4s,5r,8s,10r,12r,13s,14r,16r,17r,19r)-11-ethyl-19-hydroxy-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-16-yl acetate
(7r,12r,13r,18s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-yl acetate
(2r,3s,6r)-6-(8-hydroxydodecyl)-2-methylpiperidin-3-yl (2z)-3-(methylsulfanyl)prop-2-enoate
C22H41NO3S (399.28069960000005)
3-{[2-(but-2-en-2-yl)-3,8-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl](hydroxy)methylidene}-5-isopropyl-1-methylpyrrolidine-2,4-dione
C25H37NO3 (399.27732920000005)
(1s,2s,4s,5s,8r,10s,12s,13r,14r,16r,17r,19r)-11-ethyl-19-hydroxy-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-16-yl acetate
(1r,2s,3s,5s,7r,8r,12r,13r,18s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-yl acetate
11-ethyl-16-hydroxy-13-methyl-6-methylidene-4-oxo-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-7-yl acetate
5',9,13-trimethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-18-en-16-ol
C26H41NO2 (399.31371260000003)
(2r,3s,6s)-6-[(8s)-8-hydroxydodecyl]-2-methylpiperidin-3-yl (2z)-3-(methylsulfanyl)prop-2-enoate
C22H41NO3S (399.28069960000005)
(9z,12z)-n-[(3-methoxyphenyl)methyl]octadeca-9,12-dienimidic acid
C26H41NO2 (399.31371260000003)
3-[(1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl)methyl]-2-hydroxy-5-[(2-methylpropyl)amino]cyclohexa-2,5-diene-1,4-dione
C25H37NO3 (399.27732920000005)
20-hydroxy-11,15,16-trimethyl-18-(2-methylpropyl)-2,7-dioxa-19-azatetracyclo[11.7.0.0¹,¹⁷.0⁶,⁸]icosa-4,11,14,19-tetraen-3-one
6-methoxy-2-(10-methoxy-3,7,9,11-tetramethyltrideca-2,5,7,11-tetraen-1-yl)-3-methylpyridin-4-ol
C25H37NO3 (399.27732920000005)
(4z)-5-hydroxy-4-[hydroxy({1,3,6-trimethyl-2-[(1e,3e)-penta-1,3-dien-1-yl]-4a,5,6,7,8,8a-hexahydro-2h-naphthalen-1-yl})methylidene]-2-(hydroxymethyl)-2h-pyrrol-3-one
6-(8-hydroxydodecyl)-2-methylpiperidin-3-yl 3-(methylsulfanyl)prop-2-enoate
C22H41NO3S (399.28069960000005)
(6s,23r)-20-hydroxy-6,23-dimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosan-17-one
C26H41NO2 (399.31371260000003)
(7r,12r,20s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-20-yl acetate
(2z,4e)-7-hydroxy-8,10-dimethyl-9-{[(2e)-3-phenylprop-2-enoyl]oxy}trideca-2,4-dienimidic acid
[(7r,7ar)-7-{[(2r)-2-methylbutanoyl]oxy}-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-yl]methyl (2r)-2,3-dihydroxy-2-[(1s)-1-hydroxyethyl]-3-methylbutanoate
C20H33NO7 (399.22569080000005)
4-{[1,6-dimethyl-2-(penta-1,3-dien-1-yl)-4a,5,6,7,8,8a-hexahydro-2h-naphthalen-1-yl](hydroxy)methylidene}-5-hydroxy-2-(1-hydroxyethyl)-2h-pyrrol-3-one
1-[6-(dimethylamino)-14-hydroxy-7,7,12,16-tetramethyltetracyclo[9.7.0.0³,⁸.0¹²,¹⁶]octadeca-1(18),2-dien-15-yl]ethanone
C26H41NO2 (399.31371260000003)
(2r,2'r,4'as,6'r,8'as)-4,6'-dihydroxy-2',5',5',7,8'a-pentamethyl-3,3',4',4'a,6',7',8,8'-octahydro-2'h-spiro[furo[2,3-e]isoindole-2,1'-naphthalen]-6-one
(2r,3s,6r)-6-[(8s)-8-hydroxydodecyl]-2-methylpiperidin-3-yl (2e)-3-(methylsulfanyl)prop-2-enoate
C22H41NO3S (399.28069960000005)
(1s,3s,4r,4as,5s,6r,8as)-4-[(2r,5s)-5-(1-cyano-1-methylethyl)-2-methyloxolan-2-yl]-3,5-dihydroxy-1,6-dimethyl-octahydronaphthalene-1,6-dicarbonitrile
(1r,4e,6r,8s,11e,13s,16r,17s,18s)-20-hydroxy-11,15,16-trimethyl-18-(2-methylpropyl)-2,7-dioxa-19-azatetracyclo[11.7.0.0¹,¹⁷.0⁶,⁸]icosa-4,11,14,19-tetraen-3-one
methyl (1'r,5's,11'r,12'r)-6-isopropyl-3'-methyl-9'-oxo-2,4-dihydro-3'-azaspiro[pyran-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate
[(7r,7ar)-7-[(2-methylbutanoyl)oxy]-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-yl]methyl (2r)-2,3-dihydroxy-2-[(1s)-1-hydroxyethyl]-3-methylbutanoate
C20H33NO7 (399.22569080000005)
6-methoxy-2-[(2e,5e,7e,9r,10r,11e)-10-methoxy-3,7,9,11-tetramethyltrideca-2,5,7,11-tetraen-1-yl]-3-methylpyridin-4-ol
C25H37NO3 (399.27732920000005)
7-hydroxy-8,10-dimethyl-9-[(3-phenylprop-2-enoyl)oxy]trideca-2,4-dienimidic acid
4-methoxy-5-[(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)oxy]-3h-isoindole-1,6-diol
(1r,2r,4s,5r,8s,10r,12r,13s,14r,16s,17r,19r)-11-ethyl-19-hydroxy-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosan-16-yl acetate
(3z,5r)-3-{[(1s,2s,4ar,8s,8ar)-2-[(2e)-but-2-en-2-yl]-3,8-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl](hydroxy)methylidene}-5-isopropyl-1-methylpyrrolidine-2,4-dione
C25H37NO3 (399.27732920000005)