Exact Mass: 357.2701354
Exact Mass Matches: 357.2701354
Found 255 metabolites which its exact mass value is equals to given mass value 357.2701354
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Zongorine
Songorine is a kaurane diterpenoid. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1].
Oxybutynin
Oxybutynin is an anticholinergic medication used to relieve urinary and bladder difficulties, including frequent urination and inability to control urination, by decreasing muscle spasms of the bladder. It competitively antagonizes the M1, M2, and M3 subtypes of the muscarinic acetylcholine receptor. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3025 Oxybutynin is an anticholinergic agent, which inhibits vascular Kv channels in a concentration-dependent manner, with an IC50 of 11.51 μM[1]. Oxybutynin is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Dihydroretrofractamide B
Dihydroretrofractamide B is found in herbs and spices. Dihydroretrofractamide B is an alkaloid from the fruit of Piper nigrum (pepper). Alkaloid from the fruit of Piper nigrum (pepper). Dihydroretrofractamide B is found in herbs and spices and pepper (spice).
Leu-Leu-Leu
C18H35N3O4 (357.26274300000006)
Leu-leu-leu, also known as Leucyl-leucyl-leucine or Trileucine, is classified as a member of the oligopeptides. Oligopeptides are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds. Leu-leu-leu is considered to be a practically insoluble (in water) and a weak acidic compound. Leu-leu-leu can be found in feces.
(9Z)-3-Hydroxydodecenoylcarnitine
C19H35NO5 (357.25151000000005)
(9Z)-3-Hydroxydodecenoylcarnitine is an acylcarnitine. More specifically, it is an (9Z)-hydroxydodec-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (9Z)-3-Hydroxydodecenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (9Z)-3-Hydroxydodecenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
5-Methyldodecanoylcarnitine
C20H39NO4 (357.28789340000003)
5-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 5-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 5-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
6-Methyldodecanoylcarnitine
C20H39NO4 (357.28789340000003)
6-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 6-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 6-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3-Methyldodecanoylcarnitine
C20H39NO4 (357.28789340000003)
3-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
7-Methyldodecanoylcarnitine
C20H39NO4 (357.28789340000003)
7-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 7-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 7-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
11-Methyldodecanoylcarnitine
C20H39NO4 (357.28789340000003)
11-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 11-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 11-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 11-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
8-Methyldodecanoylcarnitine
C20H39NO4 (357.28789340000003)
8-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 8-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 8-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 8-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
4-Methyldodecanoylcarnitine
C20H39NO4 (357.28789340000003)
4-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 4-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 4-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
10-Methyldodecanoylcarnitine
C20H39NO4 (357.28789340000003)
10-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 10-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 10-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 10-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
9-methyldodecanoylcarnitine
C20H39NO4 (357.28789340000003)
9-methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 9-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 9-methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4E)-3-Hydroxydodec-4-enoylcarnitine
C19H35NO5 (357.25151000000005)
(4E)-3-Hydroxydodec-4-enoylcarnitine is an acylcarnitine. More specifically, it is an (4E)-3-hydroxydodec-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4E)-3-Hydroxydodec-4-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (4E)-3-Hydroxydodec-4-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(6Z)-3-Hydroxydodec-6-enoylcarnitine
C19H35NO5 (357.25151000000005)
(6Z)-3-Hydroxydodec-6-enoylcarnitine is an acylcarnitine. More specifically, it is an (6Z)-3-hydroxydodec-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6Z)-3-Hydroxydodec-6-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (6Z)-3-Hydroxydodec-6-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(8Z)-3-Hydroxydodec-8-enoylcarnitine
C19H35NO5 (357.25151000000005)
(8Z)-3-Hydroxydodec-8-enoylcarnitine is an acylcarnitine. More specifically, it is an (8Z)-3-hydroxydodec-8-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (8Z)-3-Hydroxydodec-8-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (8Z)-3-Hydroxydodec-8-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(7E)-5-Hydroxydodec-7-enoylcarnitine
C19H35NO5 (357.25151000000005)
(7E)-5-Hydroxydodec-7-enoylcarnitine is an acylcarnitine. More specifically, it is an (7E)-5-hydroxydodec-7-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (7E)-5-Hydroxydodec-7-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (7E)-5-Hydroxydodec-7-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(9E)-7-Hydroxydodec-9-enoylcarnitine
C19H35NO5 (357.25151000000005)
(9E)-7-Hydroxydodec-9-enoylcarnitine is an acylcarnitine. More specifically, it is an (9E)-7-hydroxydodec-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (9E)-7-Hydroxydodec-9-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (9E)-7-Hydroxydodec-9-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(10E)-8-Hydroxydodec-10-enoylcarnitine
C19H35NO5 (357.25151000000005)
(10E)-8-Hydroxydodec-10-enoylcarnitine is an acylcarnitine. More specifically, it is an (10E)-8-hydroxydodec-10-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (10E)-8-Hydroxydodec-10-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (10E)-8-Hydroxydodec-10-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3-oxododecanoylcarnitine
C19H35NO5 (357.25151000000005)
3-oxododecanoylcarnitine is an acylcarnitine. More specifically, it is an 3-oxododecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-oxododecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-oxododecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Tridecanoylcarnitine
C20H39NO4 (357.28789340000003)
Tridecanoylcarnitine is an acylcarnitine. More specifically, it is an tridecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tridecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tridecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Palmitoyl Threonine
C20H39NO4 (357.28789340000003)
N-palmitoyl threonine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Palmitic acid amide of Threonine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Palmitoyl Threonine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Palmitoyl Threonine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Myristoyl Glutamic acid
C19H35NO5 (357.25151000000005)
N-myristoyl glutamic acid, also known as N-myristoyl glutamate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Glutamic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Glutamic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Glutamic acid is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
4,17-Dimethyltrilostane
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
N-(8-Amino-1-carboxyoctyl)-alanyl-proline
Enecadin
C26170 - Protective Agent > C1509 - Neuroprotective Agent
Epostane
Pentolame
(5alpha)-23-Methyl-4-aza-21-norchol-1-ene-3,20-dione
Piperchabamide D
Piperchabamide d is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Piperchabamide d can be found in pepper (spice), which makes piperchabamide d a potential biomarker for the consumption of this food product.
2-(12-Hydroxy-12-methyltridecyl)quinoline-4(1H)-one
3-oxo 18-hydroxy 20S-dimethylamino 1,4-pregnadiene|oxo-3 hydroxy-18 dimethylamino-20(S) pregnadiene-1,4
Oxybutynin
G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents CONFIDENCE standard compound; INTERNAL_ID 2516 CONFIDENCE standard compound; INTERNAL_ID 8497 Oxybutynin is an anticholinergic agent, which inhibits vascular Kv channels in a concentration-dependent manner, with an IC50 of 11.51 μM[1]. Oxybutynin is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Putative (3-hydroxyoctadecanoyl)glycine
C20H39NO4 (357.28789340000003)
songorine
Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1].
Dihydroretrofractamide B
Type III cyanolipid 18:3 ester
CAR 12:1;O
C19H35NO5 (357.25151000000005)
6-(4-Cyclopentylpiperazin-1-yl)pyridine-3-boronic acid pinacol ester
C20H32BN3O2 (357.25874419999997)
sodium 1-(carboxymethyl)-4,5-dihydro-1-(2-hydroxyethyl)-2-nonyl-1H-imidazolium hydroxide
Esoxybutynin
C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent
N,N-Di-n-octyl-3-oxapentanedioic Acid Monoamide
C20H39NO4 (357.28789340000003)
dodecyl-(2-hydroxyethyl)-dimethylazanium,perchlorate
C16H36ClNO5 (357.22818760000007)
1-(TERT-BUTYLDIMETHYLSILYL)-3-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-INDOLE
C20H32BNO2Si (357.22952419999996)
Cetylpyridinium chloride monohydrate
C21H40ClNO (357.27982600000007)
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
(r)-Oxybutynin
C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent
(2S,3S)-2-[[(2S,3S)-2-[[(2S,3S)-2-amino-3-methylpentanoyl]amino]-3-methylpentanoyl]amino]-3-methylpentanoic acid
C18H35N3O4 (357.26274300000006)
(5alpha)-23-Methyl-4-aza-21-norchol-1-ene-3,20-dione
(9Z,12Z,15Z,18Z,21Z)-Tetracosapentaenoate
A tetracosapentaenoate that is the conjugate base of (9Z,12Z,15Z,18Z,21Z)-tetracosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
17-(5-Hydroxypentylamino)-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-3-ol
(4E)-3-Hydroxydodec-4-enoylcarnitine
C19H35NO5 (357.25151000000005)
(6Z)-3-Hydroxydodec-6-enoylcarnitine
C19H35NO5 (357.25151000000005)
(8Z)-3-Hydroxydodec-8-enoylcarnitine
C19H35NO5 (357.25151000000005)
(7E)-5-Hydroxydodec-7-enoylcarnitine
C19H35NO5 (357.25151000000005)
(9E)-7-Hydroxydodec-9-enoylcarnitine
C19H35NO5 (357.25151000000005)
(10E)-8-Hydroxydodec-10-enoylcarnitine
C19H35NO5 (357.25151000000005)
(2E,10E)-11-(1,3-benzodioxol-5-yl)-N-butan-2-ylundeca-2,10-dienamide
N-[2-[[(2S)-3-methyl-1-[[(2S)-3-methyl-1-oxobutan-2-yl]amino]-1-oxobutan-2-yl]amino]-2-oxoethyl]carbamic acid tert-butyl ester
6-Chloro-1-pyrollidino-4-triisopropylsilyloxycyclohexene
C19H36ClNOSi (357.22545560000003)
(3R)-3-tridecanoyloxy-4-(trimethylazaniumyl)butanoate
C20H39NO4 (357.28789340000003)
(2E,4E,6S,8R,10E)-7,9-Dimethoxy-3,6,8-trimethyl-11-phenylundeca-2,4,10-trienamide
(6Z,9Z,12Z,15Z,18Z)-Tetracosapentaenoate
A polyunsaturated fatty acid anion that is the conjugate base of (6Z,9Z,12Z,15Z,18Z)-tetracosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
(2E)-13-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]tridec-2-enoate
C19H33O6- (357.22770180000003)
(E,12R)-12-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxytridec-2-enoate
C19H33O6- (357.22770180000003)
(3R)-4-[dimethyl(trideuteriomethyl)azaniumyl]-3-tridecanoyloxybutanoate
C20H39NO4 (357.28789340000003)
(9Z)-3-hydroxydodecenoylcarnitine
C19H35NO5 (357.25151000000005)
An O-acylcarnitine having (9Z)-3-hydroxydodecenoyl as the acyl substituent.
Leu-Leu-Leu
C18H35N3O4 (357.26274300000006)
A tripeptide formed from three L-leucine residues.
oscr#21(1-)
A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#21, obtained by deprotonation of the carboxy group; major species at pH 7.3.
tetracosapentaenoate
A polyunsaturated fatty acid anion that is the conjugate base of tetracosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
AcCa(13:0)
C20H39NO4 (357.28789340000003)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
16-(dimethylamino)-6,13-dimethyl-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-18-en-8-one
(1r,2r,3s,5s,7r,8r,12r,13s,18s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol
(1r,2r,5r,7r,8r,9r,10r,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one
12-ethyl-7,17-dihydroxy-14-methyl-6-methylidene-12-azahexacyclo[8.7.1.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]nonadecan-4-one
(1r,2s,3s,5s,7r,8r,12r,13s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol
(1r,5r,11s,12s,14r,16r,17s,18r,20r,21r)-5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol
(1r,2r,7r,8s,9r,10r,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one
(1s,6s,7s,9r,10s,15r,18s,19r,22s)-9-hydroxy-6,18-dimethyl-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-4-one
(1r,3e,5s,10r)-14-hydroxy-3,17,17-trimethyl-7-methylidene-15-azatricyclo[8.5.2.0¹³,¹⁶]heptadeca-3,13(16),14-trien-5-yl acetate
n-(1,4-dimethoxy-1,4-dioxobutan-2-yl)-10-methyldodecanimidic acid
C19H35NO5 (357.25151000000005)
(6r,7s,10s,15r,16s,18s,19r,22s)-6,18-dimethyl-4-oxo-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-16-ium-16-olate
n-[(2r)-1,4-dimethoxy-1,4-dioxobutan-2-yl]-10-methyldodecanimidic acid
C19H35NO5 (357.25151000000005)
(1r,2s,5r,7r,8r,9r,10s,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one
(1r,2r,4s,5r,8s,10r,12s,13s,14r,16r,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol
(1s,2r,5r,7r,8r,10s,11r,14s,17s,18r)-12-ethyl-7,17-dihydroxy-14-methyl-6-methylidene-12-azahexacyclo[8.7.1.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]nonadecan-4-one
(1r,6r,9s,10r,13r,16r,17s,23s)-10-hydroxy-17-methyl-11-oxa-19-azahexacyclo[14.6.1.0¹,¹³.0²,⁶.0⁹,¹³.0¹⁹,²³]tricos-2-en-20-one
(2r,5s,8r,10s,12s,13s,14r,16s,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol
6-(5,6-dimethylhept-3-en-2-yl)-3-(2-hydroxyethyl)-5a-methyl-5h,6h,7h,8h,8ah-cyclopenta[e]indol-2-one
dodecyl({4-methoxy-1h,1'h-[2,2'-bipyrrol]-5-yl}methylidene)amine
(1s,6s,7s,10s,14r,15s,18s,19r,22s)-6,18-dimethyl-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docosane-4,9-dione
(5ar,6r,8ar)-6-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-3-(2-hydroxyethyl)-5a-methyl-5h,6h,7h,8h,8ah-cyclopenta[e]indol-2-one
1-{3-[(1s,2r,8s,9r,10s)-11-methyl-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone
5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol
(1r,2r,4s,5r,8s,13s,14r,16s,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol
(1s,2s,4r,7s,8r,10s,11r,12r)-8-hydroxy-11-methyl-22-methylidene-13-oxa-16-azahexacyclo[9.6.3.2⁴,⁷.0¹,¹⁰.0²,⁷.0¹²,¹⁶]docosan-6-one
(2e,10e)-11-(2h-1,3-benzodioxol-5-yl)-n-(2-methylpropyl)undeca-2,10-dienimidic acid
(1r,5r,12s,16r,17s,18r,20r,21r)-5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol
6-(11,12-dihydroxydodecyl)-2-methylpiperidin-3-yl acetate
C20H39NO4 (357.28789340000003)
1-hydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,12h-cyclonona[d]isoindole-11,13-dione
1-{3-[(1r,8s,9r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone
(4r,7r,10s,14r,15s,18r,20s,21s)-11,15-dimethyl-19-oxa-17-azaheptacyclo[12.6.1.0¹,¹¹.0⁴,²⁰.0⁷,²⁰.0¹⁰,¹⁸.0¹⁷,²¹]henicosane-3-carboxylic acid
11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one
11-(2h-1,3-benzodioxol-5-yl)-n-(2-methylpropyl)undeca-2,10-dienimidic acid
(1s,6r,7s,10r,15r,18s,19r,22s)-6,18-dimethyl-4-oxo-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-16-ium-16-olate
1-{3-[11-methyl-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone
(3r,3as,4s,8ar)-3-hydroxy-3-isopropyl-6,8a-dimethyl-1,2,3a,4,5,8-hexahydroazulen-4-yl 2-aminobenzoate
2-(12-hydroxy-12-methyltridecyl)-3h-quinolin-4-one
(1s,4s,5r,8s,13r,14r,15s,16r,18r)-11-ethyl-5-methyl-17-methylidene-9-oxa-11-azaheptacyclo[14.2.2.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-15,18-diol
(2e,4e,6s,7s,8r,9s,10e)-7,9-dimethoxy-3,6,8-trimethyl-11-phenylundeca-2,4,10-trienimidic acid
(2e,4e,6e,8e)-9-(1,3-dimethyl-2h-imidazol-4-yl)-n-[(3s,4r)-4-methyl-2-oxohexan-3-yl]nona-2,4,6,8-tetraenimidic acid
(1s,2s,4r,7s,8r,10s,11r,12s)-8-hydroxy-11-methyl-22-methylidene-13-oxa-16-azahexacyclo[9.6.3.2⁴,⁷.0¹,¹⁰.0²,⁷.0¹²,¹⁶]docosan-6-one
methyl (1s,4r,7s,8s,10r,11r,12r,16s)-7-ethyl-2-oxa-14-azaheptacyclo[9.7.2.0¹,¹².0⁴,⁸.0⁴,¹⁶.0⁷,¹⁴.0⁸,¹²]icosane-10-carboxylate
10-hydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricos-21-en-4-one
1-(3-{7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-yl}-5,6-dihydro-4h-pyridin-1-yl)ethanone
11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol
(1s,6r,7s,10s,15r,18s,19r,22s)-6,18-dimethyl-4-oxo-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-16-ium-16-olate
(1s,5s,11s,12s,14r,16r,18s,20r,21r)-5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol
(3r,4r,10s,14s,19s)-18-(hydroxymethyl)-14-methyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-7(20)-ene-3-carboxylic acid
(1r,3s,5s,7r,8r,12r,13s,18s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol
(1r,3r,4r,10s,14s,15r,18r,19s)-18-(hydroxymethyl)-14-methyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-7(20)-ene-3-carboxylic acid
methyl 3-[(1s,2s,7r,10s,13r,14r)-14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadeca-3,11-dien-2-yl]propanoate
(1s,2r,4s,5r,8s,10r,12r,13s,14r,16r,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol
3-hydroxy-3-isopropyl-6,8a-dimethyl-1,2,3a,4,5,8-hexahydroazulen-4-yl 2-aminobenzoate
(1s,5s,10r,11s,14r,15s,18s)-14-isopropyl-11-methyl-6-oxa-16-azahexacyclo[14.4.1.0¹,⁵.0⁵,¹⁰.0¹⁰,¹⁵.0¹¹,¹⁸]henicosan-7-one
methyl (1s,2s,5r,6s,9s,15s,16s)-5-isopropyl-2-methyl-7-azapentacyclo[10.5.1.0¹,⁶.0²,⁹.0¹⁵,¹⁸]octadec-12(18)-ene-16-carboxylate
(1r,7r,10s,11r,15s,18r,23r)-10-hydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricos-21-en-4-one
9-hydroxy-6,18-dimethyl-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-4-one
3-{[(1r,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-4-hydroxy-5-(methylamino)cyclohexa-3,5-diene-1,2-dione
(1r,2r,5r,7r,8s,9r,10r,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one
methyl 7-ethyl-2-oxa-14-azaheptacyclo[9.7.2.0¹,¹².0⁴,⁸.0⁴,¹⁶.0⁷,¹⁴.0⁸,¹²]icosane-10-carboxylate
14-hydroxy-3,17,17-trimethyl-7-methylidene-15-azatricyclo[8.5.2.0¹³,¹⁶]heptadeca-3,13(16),14-trien-5-yl acetate
(3s,3ar,4s,6as,13ar)-1-hydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,12h-cyclonona[d]isoindole-11,13-dione
methyl 3-{14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadeca-3,11-dien-2-yl}propanoate
1-{3-[(1s,2r,8s,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone
dodecyl({[(z,5z)-4-methoxy-1h-[2,2'-bipyrrolyliden]-5-ylidene]methyl})amine
(2s,3s,6r)-6-(11,12-dihydroxydodecyl)-2-methylpiperidin-3-yl acetate
C20H39NO4 (357.28789340000003)