Exact Mass: 357.25151000000005

Exact Mass Matches: 357.25151000000005

Found 306 metabolites which its exact mass value is equals to given mass value 357.25151000000005, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Zongorine

(1R,2R,5S,7R,8R,9R,13R,16S,17R)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecan-4-one

C22H31NO3 (357.2303816)


Songorine is a kaurane diterpenoid. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1].

   

Oxybutynin

Benzeneacetic acid, alpha-cyclohexyl-alpha-hydroxy-, 4-(diethylamino)-2-butynyl ester

C22H31NO3 (357.2303816)


Oxybutynin is an anticholinergic medication used to relieve urinary and bladder difficulties, including frequent urination and inability to control urination, by decreasing muscle spasms of the bladder. It competitively antagonizes the M1, M2, and M3 subtypes of the muscarinic acetylcholine receptor. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3025 Oxybutynin is an anticholinergic agent, which inhibits vascular Kv channels in a concentration-dependent manner, with an IC50 of 11.51 μM[1]. Oxybutynin is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   
   

N-Desmethyltamoxifen

(2-{4-[(1Z)-1,2-diphenylbut-1-en-1-yl]phenoxy}ethyl)(methyl)amine

C25H27NO (357.20925320000003)


N-Desmethyltamoxifen is only found in individuals that have used or taken Tamoxifen. N-Desmethyltamoxifen is a metabolite of Tamoxifen. N-desmethyltamoxifen belongs to the family of Stilbenes. These are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent

   

Dihydroretrofractamide B

(2E,4E)-11-(2H-1,3-Benzodioxol-5-yl)-N-(2-methylpropyl)undeca-2,4-dienimidate

C22H31NO3 (357.2303816)


Dihydroretrofractamide B is found in herbs and spices. Dihydroretrofractamide B is an alkaloid from the fruit of Piper nigrum (pepper). Alkaloid from the fruit of Piper nigrum (pepper). Dihydroretrofractamide B is found in herbs and spices and pepper (spice).

   

Leu-Leu-Leu

2-({2-[(2-amino-1-hydroxy-4-methylpentylidene)amino]-1-hydroxy-4-methylpentylidene}amino)-4-methylpentanoic acid

C18H35N3O4 (357.26274300000006)


Leu-leu-leu, also known as Leucyl-leucyl-leucine or Trileucine, is classified as a member of the oligopeptides. Oligopeptides are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds. Leu-leu-leu is considered to be a practically insoluble (in water) and a weak acidic compound. Leu-leu-leu can be found in feces.

   

(9Z)-3-Hydroxydodecenoylcarnitine

3-{[(9Z)-3-hydroxydodec-9-enoyl]oxy}-4-(trimethylammonio)butanoic acid

C19H35NO5 (357.25151000000005)


(9Z)-3-Hydroxydodecenoylcarnitine is an acylcarnitine. More specifically, it is an (9Z)-hydroxydodec-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (9Z)-3-Hydroxydodecenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (9Z)-3-Hydroxydodecenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

5-Methyldodecanoylcarnitine

3-[(5-methyldodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C20H39NO4 (357.28789340000003)


5-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 5-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 5-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

6-Methyldodecanoylcarnitine

3-[(6-methyldodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C20H39NO4 (357.28789340000003)


6-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 6-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 6-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-Methyldodecanoylcarnitine

3-[(3-methyldodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C20H39NO4 (357.28789340000003)


3-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

7-Methyldodecanoylcarnitine

3-[(7-methyldodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C20H39NO4 (357.28789340000003)


7-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 7-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 7-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

11-Methyldodecanoylcarnitine

3-[(11-methyldodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C20H39NO4 (357.28789340000003)


11-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 11-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 11-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 11-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

8-Methyldodecanoylcarnitine

3-[(8-methyldodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C20H39NO4 (357.28789340000003)


8-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 8-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 8-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 8-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

4-Methyldodecanoylcarnitine

3-[(4-methyldodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C20H39NO4 (357.28789340000003)


4-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 4-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 4-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

10-Methyldodecanoylcarnitine

3-[(10-methyldodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C20H39NO4 (357.28789340000003)


10-Methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 10-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 10-Methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 10-Methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

9-methyldodecanoylcarnitine

3-[(9-methyldodecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C20H39NO4 (357.28789340000003)


9-methyldodecanoylcarnitine is an acylcarnitine. More specifically, it is an 9-methyldodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-methyldodecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 9-methyldodecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undec-5-enedioylcarnitine

3-[(10-carboxydec-6-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H31NO6 (357.2151266)


Undec-5-enedioylcarnitine is an acylcarnitine. More specifically, it is an undec-5-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undec-5-enedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undec-5-enedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2E)-Undec-2-enedioylcarnitine

3-[(10-carboxydec-2-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H31NO6 (357.2151266)


(2E)-Undec-2-enedioylcarnitine is an acylcarnitine. More specifically, it is an (2E)-undec-2-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-Undec-2-enedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E)-Undec-2-enedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undec-4-enedioylcarnitine

3-[(10-carboxydec-7-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H31NO6 (357.2151266)


Undec-4-enedioylcarnitine is an acylcarnitine. More specifically, it is an undec-4-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undec-4-enedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undec-4-enedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undec-3-enedioylcarnitine

3-[(10-carboxydec-8-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H31NO6 (357.2151266)


Undec-3-enedioylcarnitine is an acylcarnitine. More specifically, it is an undec-3-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undec-3-enedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undec-3-enedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4E)-3-Hydroxydodec-4-enoylcarnitine

3-[(3-hydroxydodec-4-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H35NO5 (357.25151000000005)


(4E)-3-Hydroxydodec-4-enoylcarnitine is an acylcarnitine. More specifically, it is an (4E)-3-hydroxydodec-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4E)-3-Hydroxydodec-4-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (4E)-3-Hydroxydodec-4-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(6Z)-3-Hydroxydodec-6-enoylcarnitine

3-[(3-hydroxydodec-6-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H35NO5 (357.25151000000005)


(6Z)-3-Hydroxydodec-6-enoylcarnitine is an acylcarnitine. More specifically, it is an (6Z)-3-hydroxydodec-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6Z)-3-Hydroxydodec-6-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (6Z)-3-Hydroxydodec-6-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(8Z)-3-Hydroxydodec-8-enoylcarnitine

3-[(3-hydroxydodec-8-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H35NO5 (357.25151000000005)


(8Z)-3-Hydroxydodec-8-enoylcarnitine is an acylcarnitine. More specifically, it is an (8Z)-3-hydroxydodec-8-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (8Z)-3-Hydroxydodec-8-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (8Z)-3-Hydroxydodec-8-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(7E)-5-Hydroxydodec-7-enoylcarnitine

3-[(5-hydroxydodec-7-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H35NO5 (357.25151000000005)


(7E)-5-Hydroxydodec-7-enoylcarnitine is an acylcarnitine. More specifically, it is an (7E)-5-hydroxydodec-7-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (7E)-5-Hydroxydodec-7-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (7E)-5-Hydroxydodec-7-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(9E)-7-Hydroxydodec-9-enoylcarnitine

3-[(7-hydroxydodec-9-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H35NO5 (357.25151000000005)


(9E)-7-Hydroxydodec-9-enoylcarnitine is an acylcarnitine. More specifically, it is an (9E)-7-hydroxydodec-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (9E)-7-Hydroxydodec-9-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (9E)-7-Hydroxydodec-9-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(10E)-8-Hydroxydodec-10-enoylcarnitine

3-[(8-hydroxydodec-10-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H35NO5 (357.25151000000005)


(10E)-8-Hydroxydodec-10-enoylcarnitine is an acylcarnitine. More specifically, it is an (10E)-8-hydroxydodec-10-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (10E)-8-Hydroxydodec-10-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (10E)-8-Hydroxydodec-10-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-oxododecanoylcarnitine

3-[(3-oxododecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C19H35NO5 (357.25151000000005)


3-oxododecanoylcarnitine is an acylcarnitine. More specifically, it is an 3-oxododecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-oxododecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-oxododecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tridecanoylcarnitine

3-(tridecanoyloxy)-4-(trimethylazaniumyl)butanoate

C20H39NO4 (357.28789340000003)


Tridecanoylcarnitine is an acylcarnitine. More specifically, it is an tridecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tridecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tridecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Palmitoyl Threonine

2-(Hexadecanoylamino)-3-hydroxybutanoic acid

C20H39NO4 (357.28789340000003)


N-palmitoyl threonine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Palmitic acid amide of Threonine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Palmitoyl Threonine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Palmitoyl Threonine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Myristoyl Glutamic acid

2-[(1-Hydroxytetradecylidene)amino]pentanedioate

C19H35NO5 (357.25151000000005)


N-myristoyl glutamic acid, also known as N-myristoyl glutamate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Glutamic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Glutamic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Glutamic acid is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

4,17-Dimethyltrilostane

15-hydroxy-2,6,15,16-tetramethyl-5-oxo-7-oxapentacyclo[9.7.0.0^{2,8}.0^{6,8}.0^{12,16}]octadecane-4-carbonitrile

C22H31NO3 (357.2303816)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

N-(8-Amino-1-carboxyoctyl)-alanyl-proline

1-{2-[(8-amino-1-carboxyoctyl)amino]propanoyl}pyrrolidine-2-carboxylic acid

C17H31N3O5 (357.2263596)


   

Enecadin

4-(4-Fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride

C21H28FN3O (357.221629)


C26170 - Protective Agent > C1509 - Neuroprotective Agent

   

Epostane

5,15-dihydroxy-2,6,15,16-tetramethyl-7-oxapentacyclo[9.7.0.0^{2,8}.0^{6,8}.0^{12,16}]octadec-4-ene-4-carbonitrile

C22H31NO3 (357.2303816)


   

Pentolame

14-[(5-hydroxypentyl)amino]-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2(7),3,5-trien-5-ol

C23H35NO2 (357.266765)


   

Phencynonate

3-Methyl-3-azabicyclo[3.3.1]nonan-9-yl 2-cyclopentyl-2-hydroxy-2-phenylacetic acid

C22H31NO3 (357.2303816)


   

(5alpha)-23-Methyl-4-aza-21-norchol-1-ene-3,20-dione

2,15-dimethyl-14-(3-methylbutanoyl)-6-azatetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-3-en-5-one

C23H35NO2 (357.266765)


   

Piperchabamide D

(2E,10E)-11-(2H-1,3-Benzodioxol-5-yl)-N-(butan-2-yl)undeca-2,10-dienimidate

C22H31NO3 (357.2303816)


Piperchabamide d is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Piperchabamide d can be found in pepper (spice), which makes piperchabamide d a potential biomarker for the consumption of this food product.

   

delta-9-tetrahydrocannabinolate

1-Hydroxy-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromene-2-carboxylic acid

C22H29O4 (357.2065734)


delta9-tetrahydrocannabinolate is also known as thca or δ9-tetrahydrocannabinolic acid. delta9-tetrahydrocannabinolate is practically insoluble (in water) and a moderately acidic compound (based on its pKa). delta9-tetrahydrocannabinolate can be found in a number of food items such as devilfish, arrowhead, potato, and cereals and cereal products, which makes delta9-tetrahydrocannabinolate a potential biomarker for the consumption of these food products.

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Yuzurimic acid B

(+)-Yuzurimic acid B

C22H31NO3 (357.2303816)


   
   

12-epi-Dehydronapelline

(+)-12-Epidehydronapelline

C22H31NO3 (357.2303816)


   

Oroboidin|pyrrole-3-carboxylic acid 13-oxo-dodecahydro-7,14-methano-dipyrido[1,2-a;1,2-e][1,5]diazocin-2-yl ester

Oroboidin|pyrrole-3-carboxylic acid 13-oxo-dodecahydro-7,14-methano-dipyrido[1,2-a;1,2-e][1,5]diazocin-2-yl ester

C20H27N3O3 (357.20523120000007)


   

songorine hydrochloride

songorine hydrochloride

C22H31NO3 (357.2303816)


   
   

2-(12-Hydroxy-12-methyltridecyl)quinoline-4(1H)-one

2-(12-Hydroxy-12-methyltridecyl)quinoline-4(1H)-one

C23H35NO2 (357.266765)


   
   

3-oxo 18-hydroxy 20S-dimethylamino 1,4-pregnadiene|oxo-3 hydroxy-18 dimethylamino-20(S) pregnadiene-1,4

3-oxo 18-hydroxy 20S-dimethylamino 1,4-pregnadiene|oxo-3 hydroxy-18 dimethylamino-20(S) pregnadiene-1,4

C23H35NO2 (357.266765)


   
   
   

daphnezomine L methyl ester

daphnezomine L methyl ester

C23H35NO2 (357.266765)


   
   
   
   
   
   
   

Oxybutynin

Oxybutynin (Ditropan)

C22H31NO3 (357.2303816)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents CONFIDENCE standard compound; INTERNAL_ID 2516 CONFIDENCE standard compound; INTERNAL_ID 8497 Oxybutynin is an anticholinergic agent, which inhibits vascular Kv channels in a concentration-dependent manner, with an IC50 of 11.51 μM[1]. Oxybutynin is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Putative (3-hydroxyoctadecanoyl)glycine

Putative (3-hydroxyoctadecanoyl)glycine

C20H39NO4 (357.28789340000003)


   

songorine

(1R,2R,5R,7R,8S,13R,16S,17R)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecan-4-one

C22H31NO3 (357.2303816)


Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1].

   

Farnesyl Thiosalicylic Acid Amide

Farnesyl Thiosalicylic Acid Amide

C22H31NOS (357.21262360000003)


   
   

Dihydroretrofractamide B

(2E,4E)-11-(2H-1,3-benzodioxol-5-yl)-N-(2-methylpropyl)undeca-2,4-dienamide

C22H31NO3 (357.2303816)


   

5(S),6(R)-Lipoxin A4-d5

5(S),6(R)-Lipoxin A4-d5

C20H27D5O5 (357.25634809)


   

Type IV cyanolipid 18:3 ester

(1-cyano-2-methylprop-2-en-1-yl) 9Z,12Z,15Z-octadecatrienoate

C23H35NO2 (357.266765)


   

Type III cyanolipid 18:3 ester

Octadec-9Z,12Z,15Z-trienoic acid, 3-cyano-2-methyl-2-propen-1-yl ester

C23H35NO2 (357.266765)


   

CAR 12:1;O

3-{[(9Z)-3-hydroxydodec-9-enoyl]oxy}-4-(trimethylammonio)butanoate;cis-3-hydroxydodec-9-enoylcarnitine

C19H35NO5 (357.25151000000005)


   

NA 20:1;O3

N-hexadecanoyl-threonine

C20H39NO4 (357.28789340000003)


   

Bacillamidin B

(1?R)-10-methyldodecanoyl dimethylaspartate

C19H35NO5 (357.25151000000005)


   
   
   
   

6-(4-Cyclopentylpiperazin-1-yl)pyridine-3-boronic acid pinacol ester

6-(4-Cyclopentylpiperazin-1-yl)pyridine-3-boronic acid pinacol ester

C20H32BN3O2 (357.25874419999997)


   

2,3-Epoxy-16-(1-pyrrolidinyl)androstan-17-one

2,3-Epoxy-16-(1-pyrrolidinyl)androstan-17-one

C23H35NO2 (357.266765)


   
   

N,N-dibenzyl-1-(phenylmethoxymethyl)cyclopropan-1-amine

N,N-dibenzyl-1-(phenylmethoxymethyl)cyclopropan-1-amine

C25H27NO (357.20925320000003)


   

DIBUTYLOCTYL MALATE

DIBUTYLOCTYL MALATE

C20H37O5- (357.2640852)


   

sodium 1-(carboxymethyl)-4,5-dihydro-1-(2-hydroxyethyl)-2-nonyl-1H-imidazolium hydroxide

sodium 1-(carboxymethyl)-4,5-dihydro-1-(2-hydroxyethyl)-2-nonyl-1H-imidazolium hydroxide

C16H34N2NaO5+ (357.2365294)


   

Esoxybutynin

Esoxybutynin

C22H31NO3 (357.2303816)


C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent

   

tert-Butyl 6-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

tert-Butyl 6-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

C20H28BNO4 (357.21112780000004)


   

tert-Butyl 6-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

tert-Butyl 6-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

C20H28BNO4 (357.21112780000004)


   

tert-Butyl 7-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

tert-Butyl 7-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

C20H28BNO4 (357.21112780000004)


   

(R)-1,1,2-TRIPHENYL-2-(PIPERIDIN-1-YL)ETHANOL

(R)-1,1,2-TRIPHENYL-2-(PIPERIDIN-1-YL)ETHANOL

C25H27NO (357.20925320000003)


   

N,N-Di-n-octyl-3-oxapentanedioic Acid Monoamide

N,N-Di-n-octyl-3-oxapentanedioic Acid Monoamide

C20H39NO4 (357.28789340000003)


   

dodecyl-(2-hydroxyethyl)-dimethylazanium,perchlorate

dodecyl-(2-hydroxyethyl)-dimethylazanium,perchlorate

C16H36ClNO5 (357.22818760000007)


   

(S)-1,1,2-TRIPHENYL-2-(PIPERIDIN-1-YL)ETHANOL

(S)-1,1,2-TRIPHENYL-2-(PIPERIDIN-1-YL)ETHANOL

C25H27NO (357.20925320000003)


   
   

1-(TERT-BUTYLDIMETHYLSILYL)-3-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-INDOLE

1-(TERT-BUTYLDIMETHYLSILYL)-3-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-INDOLE

C20H32BNO2Si (357.22952419999996)


   
   

1,3,5-tribenzyl-1,3,5-triazinane

1,3,5-tribenzyl-1,3,5-triazinane

C24H27N3 (357.22048620000004)


   

Cetylpyridinium chloride monohydrate

Cetylpyridinium chloride monohydrate

C21H40ClNO (357.27982600000007)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent

   
   

alpha-Bencynonatine

alpha-Bencynonatine

C22H31NO3 (357.2303816)


   

(r)-Oxybutynin

(r)-Oxybutynin

C22H31NO3 (357.2303816)


C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent

   

(2S,3S)-2-[[(2S,3S)-2-[[(2S,3S)-2-amino-3-methylpentanoyl]amino]-3-methylpentanoyl]amino]-3-methylpentanoic acid

(2S,3S)-2-[[(2S,3S)-2-[[(2S,3S)-2-amino-3-methylpentanoyl]amino]-3-methylpentanoyl]amino]-3-methylpentanoic acid

C18H35N3O4 (357.26274300000006)


   

S-(2-acetamidoethyl) hexadecanethioate

S-(2-acetamidoethyl) hexadecanethioate

C20H39NO2S (357.2701354)


   

delta-9-tetrahydrocannabinolate

1-Hydroxy-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromene-2-carboxylic acid

C22H29O4 (357.2065734)


delta9-tetrahydrocannabinolate is also known as thca or δ9-tetrahydrocannabinolic acid. delta9-tetrahydrocannabinolate is practically insoluble (in water) and a moderately acidic compound (based on its pKa). delta9-tetrahydrocannabinolate can be found in a number of food items such as devilfish, arrowhead, potato, and cereals and cereal products, which makes delta9-tetrahydrocannabinolate a potential biomarker for the consumption of these food products. Δ9-tetrahydrocannabinolate is also known as thca or δ9-tetrahydrocannabinolic acid. Δ9-tetrahydrocannabinolate is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Δ9-tetrahydrocannabinolate can be found in a number of food items such as devilfish, arrowhead, potato, and cereals and cereal products, which makes Δ9-tetrahydrocannabinolate a potential biomarker for the consumption of these food products.

   

(5alpha)-23-Methyl-4-aza-21-norchol-1-ene-3,20-dione

2,15-dimethyl-14-(3-methylbutanoyl)-6-azatetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-3-en-5-one

C23H35NO2 (357.266765)


   

Cannabichromenate

Cannabichromenate

C22H29O4- (357.2065734)


A hydroxy monocarboxylic acid anion that is the conjugate base of cannabichromenic acid, obtained by deprotonation of the carboxy group. Major species at pH 7.3.

   

Cannabidiolate

Cannabidiolate

C22H29O4- (357.2065734)


A dihydroxybenzoate that is the conjugate base of cannabidiolic acid, obtained by deprotonation of the carboxy group.

   
   

Delta(9)-tetrahydrocannabinolate

Delta(9)-tetrahydrocannabinolate

C22H29O4- (357.2065734)


A hydroxy monocarboxylic acid anion that is the conjugate base of Delta(9)-tetrahydrocannabinolic acid, obtained by deprotonation of the carboxy group.

   

(4Z)-6-{3-[(1E,3E,5Z,7E,9S,11Z)-9-hydroxytetradeca-1,3,5,7,11-pentaen-1-yl]oxiran-2-yl}hex-4-enoate

(4Z)-6-{3-[(1E,3E,5Z,7E,9S,11Z)-9-hydroxytetradeca-1,3,5,7,11-pentaen-1-yl]oxiran-2-yl}hex-4-enoate

C22H29O4- (357.2065734)


   

4,5-epoxy-17R-hydroxy-docosahexaenoate

4,5-epoxy-17R-hydroxy-docosahexaenoate

C22H29O4- (357.2065734)


   

7(8)-epoxy-17R-hydroxy-docosahexaenoate

7(8)-epoxy-17R-hydroxy-docosahexaenoate

C22H29O4- (357.2065734)


   

4(5)-epoxy-17S-hydroxy-docosahexaenoate

4(5)-epoxy-17S-hydroxy-docosahexaenoate

C22H29O4- (357.2065734)


   
   
   

(9Z,12Z,15Z,18Z,21Z)-Tetracosapentaenoate

(9Z,12Z,15Z,18Z,21Z)-Tetracosapentaenoate

C24H37O2- (357.2793402)


A tetracosapentaenoate that is the conjugate base of (9Z,12Z,15Z,18Z,21Z)-tetracosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

delta-9-tetrahydrocannabinolate

delta-9-tetrahydrocannabinolate

C22H29O4- (357.2065734)


   
   
   
   
   
   
   
   
   
   
   

17-(5-Hydroxypentylamino)-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-3-ol

17-(5-Hydroxypentylamino)-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-3-ol

C23H35NO2 (357.266765)


   

Undec-5-enedioylcarnitine

Undec-5-enedioylcarnitine

C18H31NO6 (357.2151266)


   

Undec-4-enedioylcarnitine

Undec-4-enedioylcarnitine

C18H31NO6 (357.2151266)


   

Undec-3-enedioylcarnitine

Undec-3-enedioylcarnitine

C18H31NO6 (357.2151266)


   

(2E)-Undec-2-enedioylcarnitine

(2E)-Undec-2-enedioylcarnitine

C18H31NO6 (357.2151266)


   

(4E)-3-Hydroxydodec-4-enoylcarnitine

(4E)-3-Hydroxydodec-4-enoylcarnitine

C19H35NO5 (357.25151000000005)


   

(6Z)-3-Hydroxydodec-6-enoylcarnitine

(6Z)-3-Hydroxydodec-6-enoylcarnitine

C19H35NO5 (357.25151000000005)


   

(8Z)-3-Hydroxydodec-8-enoylcarnitine

(8Z)-3-Hydroxydodec-8-enoylcarnitine

C19H35NO5 (357.25151000000005)


   

(7E)-5-Hydroxydodec-7-enoylcarnitine

(7E)-5-Hydroxydodec-7-enoylcarnitine

C19H35NO5 (357.25151000000005)


   

(9E)-7-Hydroxydodec-9-enoylcarnitine

(9E)-7-Hydroxydodec-9-enoylcarnitine

C19H35NO5 (357.25151000000005)


   

(10E)-8-Hydroxydodec-10-enoylcarnitine

(10E)-8-Hydroxydodec-10-enoylcarnitine

C19H35NO5 (357.25151000000005)


   

(2E,10E)-11-(1,3-benzodioxol-5-yl)-N-butan-2-ylundeca-2,10-dienamide

(2E,10E)-11-(1,3-benzodioxol-5-yl)-N-butan-2-ylundeca-2,10-dienamide

C22H31NO3 (357.2303816)


   
   

N-[2-[[(2S)-3-methyl-1-[[(2S)-3-methyl-1-oxobutan-2-yl]amino]-1-oxobutan-2-yl]amino]-2-oxoethyl]carbamic acid tert-butyl ester

N-[2-[[(2S)-3-methyl-1-[[(2S)-3-methyl-1-oxobutan-2-yl]amino]-1-oxobutan-2-yl]amino]-2-oxoethyl]carbamic acid tert-butyl ester

C17H31N3O5 (357.2263596)


   

2-Oxospartein-13-yl 1H-pyrrole-2-carboxylate

2-Oxospartein-13-yl 1H-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

3-Hydroxydecanoyl-3-hydroxydecanoate

3-Hydroxydecanoyl-3-hydroxydecanoate

C20H37O5- (357.2640852)


   

9alpha-Hydroxy-3-oxo-23,24-bisnorchola-1,4-dien-22-oate(1-)

9alpha-Hydroxy-3-oxo-23,24-bisnorchola-1,4-dien-22-oate(1-)

C22H29O4- (357.2065734)


   

3-Hydroxy-9-oxo-9,10-seco-23,24-bisnorchola-1,3,5(10)-trien-22-oate

3-Hydroxy-9-oxo-9,10-seco-23,24-bisnorchola-1,3,5(10)-trien-22-oate

C22H29O4- (357.2065734)


   

(R,R)-3-(3-hydroxydecanoyloxy)decanoate

(R,R)-3-(3-hydroxydecanoyloxy)decanoate

C20H37O5- (357.2640852)


   

6-Chloro-1-pyrollidino-4-triisopropylsilyloxycyclohexene

6-Chloro-1-pyrollidino-4-triisopropylsilyloxycyclohexene

C19H36ClNOSi (357.22545560000003)


   

(3R)-3-tridecanoyloxy-4-(trimethylazaniumyl)butanoate

(3R)-3-tridecanoyloxy-4-(trimethylazaniumyl)butanoate

C20H39NO4 (357.28789340000003)


   

(1S,2aR,8bR)-4-[cyclobutyl(oxo)methyl]-1-(hydroxymethyl)-N-propyl-1,2a,3,8b-tetrahydroazeto[2,3-c]quinoline-2-carboxamide

(1S,2aR,8bR)-4-[cyclobutyl(oxo)methyl]-1-(hydroxymethyl)-N-propyl-1,2a,3,8b-tetrahydroazeto[2,3-c]quinoline-2-carboxamide

C20H27N3O3 (357.20523120000007)


   

(1R,2aS,8bS)-4-[cyclobutyl(oxo)methyl]-1-(hydroxymethyl)-N-propyl-1,2a,3,8b-tetrahydroazeto[2,3-c]quinoline-2-carboxamide

(1R,2aS,8bS)-4-[cyclobutyl(oxo)methyl]-1-(hydroxymethyl)-N-propyl-1,2a,3,8b-tetrahydroazeto[2,3-c]quinoline-2-carboxamide

C20H27N3O3 (357.20523120000007)


   

(2E,4E,6S,8R,10E)-7,9-Dimethoxy-3,6,8-trimethyl-11-phenylundeca-2,4,10-trienamide

(2E,4E,6S,8R,10E)-7,9-Dimethoxy-3,6,8-trimethyl-11-phenylundeca-2,4,10-trienamide

C22H31NO3 (357.2303816)


   

(6Z,9Z,12Z,15Z,18Z)-Tetracosapentaenoate

(6Z,9Z,12Z,15Z,18Z)-Tetracosapentaenoate

C24H37O2- (357.2793402)


A polyunsaturated fatty acid anion that is the conjugate base of (6Z,9Z,12Z,15Z,18Z)-tetracosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(2E)-13-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]tridec-2-enoate

(2E)-13-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]tridec-2-enoate

C19H33O6- (357.22770180000003)


   

(E,12R)-12-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxytridec-2-enoate

(E,12R)-12-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxytridec-2-enoate

C19H33O6- (357.22770180000003)


   

(3R)-4-[dimethyl(trideuteriomethyl)azaniumyl]-3-tridecanoyloxybutanoate

(3R)-4-[dimethyl(trideuteriomethyl)azaniumyl]-3-tridecanoyloxybutanoate

C20H39NO4 (357.28789340000003)


   

N-Acetylvalylleucylalanine methyl ester

N-Acetylvalylleucylalanine methyl ester

C17H31N3O5 (357.2263596)


   

N-Acetyl-valyl-leucyl-alanine methylester

N-Acetyl-valyl-leucyl-alanine methylester

C17H31N3O5 (357.2263596)


   

N-Desmethyltamoxifen

N-Desmethyltamoxifen

C25H27NO (357.20925320000003)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent

   

(9Z)-3-hydroxydodecenoylcarnitine

(9Z)-3-hydroxydodecenoylcarnitine

C19H35NO5 (357.25151000000005)


An O-acylcarnitine having (9Z)-3-hydroxydodecenoyl as the acyl substituent.

   

Leu-Leu-Leu

Leu-Leu-Leu

C18H35N3O4 (357.26274300000006)


A tripeptide formed from three L-leucine residues.

   

oscr#21(1-)

oscr#21(1-)

C19H33O6 (357.22770180000003)


A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#21, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

ascr#21(1-)

ascr#21(1-)

C19H33O6 (357.22770180000003)


Conjugate base of ascr#21

   

tetracosapentaenoate

tetracosapentaenoate

C24H37O2 (357.2793402)


A polyunsaturated fatty acid anion that is the conjugate base of tetracosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

AcCa(13:0)

AcCa(13:0)

C20H39NO4 (357.28789340000003)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   

Tridecylcarnitine

(3-carboxy-2-tridecanoyloxypropyl)-trimethylazanium

C20H39NO4 (357.2878934)


   
   

16-(dimethylamino)-6,13-dimethyl-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-18-en-8-one

16-(dimethylamino)-6,13-dimethyl-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-18-en-8-one

C23H35NO2 (357.266765)


   

(1r,2r,3s,5s,7r,8r,12r,13s,18s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol

(1r,2r,3s,5s,7r,8r,12r,13s,18s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol

C22H31NO3 (357.2303816)


   

(1r,2r,5r,7r,8r,9r,10r,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

(1r,2r,5r,7r,8r,9r,10r,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

C22H31NO3 (357.2303816)


   

12-ethyl-7,17-dihydroxy-14-methyl-6-methylidene-12-azahexacyclo[8.7.1.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]nonadecan-4-one

12-ethyl-7,17-dihydroxy-14-methyl-6-methylidene-12-azahexacyclo[8.7.1.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]nonadecan-4-one

C22H31NO3 (357.2303816)


   

(1r,2s,3s,5s,7r,8r,12r,13s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol

(1r,2s,3s,5s,7r,8r,12r,13s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol

C22H31NO3 (357.2303816)


   

(1r,5r,11s,12s,14r,16r,17s,18r,20r,21r)-5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol

(1r,5r,11s,12s,14r,16r,17s,18r,20r,21r)-5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol

C22H31NO3 (357.2303816)


   

(1r,2r,7r,8s,9r,10r,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

(1r,2r,7r,8s,9r,10r,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

C22H31NO3 (357.2303816)


   

(1s,6s,7s,9r,10s,15r,18s,19r,22s)-9-hydroxy-6,18-dimethyl-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-4-one

(1s,6s,7s,9r,10s,15r,18s,19r,22s)-9-hydroxy-6,18-dimethyl-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-4-one

C22H31NO3 (357.2303816)


   

(1r,3e,5s,10r)-14-hydroxy-3,17,17-trimethyl-7-methylidene-15-azatricyclo[8.5.2.0¹³,¹⁶]heptadeca-3,13(16),14-trien-5-yl acetate

(1r,3e,5s,10r)-14-hydroxy-3,17,17-trimethyl-7-methylidene-15-azatricyclo[8.5.2.0¹³,¹⁶]heptadeca-3,13(16),14-trien-5-yl acetate

C22H31NO3 (357.2303816)


   

n-(1,4-dimethoxy-1,4-dioxobutan-2-yl)-10-methyldodecanimidic acid

n-(1,4-dimethoxy-1,4-dioxobutan-2-yl)-10-methyldodecanimidic acid

C19H35NO5 (357.25151000000005)


   

(6r,7s,10s,15r,16s,18s,19r,22s)-6,18-dimethyl-4-oxo-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-16-ium-16-olate

(6r,7s,10s,15r,16s,18s,19r,22s)-6,18-dimethyl-4-oxo-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-16-ium-16-olate

C22H31NO3 (357.2303816)


   

n-[(2r)-1,4-dimethoxy-1,4-dioxobutan-2-yl]-10-methyldodecanimidic acid

n-[(2r)-1,4-dimethoxy-1,4-dioxobutan-2-yl]-10-methyldodecanimidic acid

C19H35NO5 (357.25151000000005)


   

(1r,2s,5r,7r,8r,9r,10s,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

(1r,2s,5r,7r,8r,9r,10s,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

C22H31NO3 (357.2303816)


   

16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

[(1r,7r,7ar)-7-hydroxy-hexahydro-1h-pyrrolizin-1-yl]methyl (2r,3r)-2-hydroxy-2-methyl-3-{[(2s)-2-methylbutanoyl]oxy}butanoate

[(1r,7r,7ar)-7-hydroxy-hexahydro-1h-pyrrolizin-1-yl]methyl (2r,3r)-2-hydroxy-2-methyl-3-{[(2s)-2-methylbutanoyl]oxy}butanoate

C18H31NO6 (357.2151266)


   

(1r,2r,4s,5r,8s,10r,12s,13s,14r,16r,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

(1r,2r,4s,5r,8s,10r,12s,13s,14r,16r,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

C22H31NO3 (357.2303816)


   

(1s,2r,5r,7r,8r,10s,11r,14s,17s,18r)-12-ethyl-7,17-dihydroxy-14-methyl-6-methylidene-12-azahexacyclo[8.7.1.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]nonadecan-4-one

(1s,2r,5r,7r,8r,10s,11r,14s,17s,18r)-12-ethyl-7,17-dihydroxy-14-methyl-6-methylidene-12-azahexacyclo[8.7.1.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]nonadecan-4-one

C22H31NO3 (357.2303816)


   

(1r,6r,9s,10r,13r,16r,17s,23s)-10-hydroxy-17-methyl-11-oxa-19-azahexacyclo[14.6.1.0¹,¹³.0²,⁶.0⁹,¹³.0¹⁹,²³]tricos-2-en-20-one

(1r,6r,9s,10r,13r,16r,17s,23s)-10-hydroxy-17-methyl-11-oxa-19-azahexacyclo[14.6.1.0¹,¹³.0²,⁶.0⁹,¹³.0¹⁹,²³]tricos-2-en-20-one

C22H31NO3 (357.2303816)


   

(2r,5s,8r,10s,12s,13s,14r,16s,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

(2r,5s,8r,10s,12s,13s,14r,16s,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

C22H31NO3 (357.2303816)


   

6-(5,6-dimethylhept-3-en-2-yl)-3-(2-hydroxyethyl)-5a-methyl-5h,6h,7h,8h,8ah-cyclopenta[e]indol-2-one

6-(5,6-dimethylhept-3-en-2-yl)-3-(2-hydroxyethyl)-5a-methyl-5h,6h,7h,8h,8ah-cyclopenta[e]indol-2-one

C23H35NO2 (357.266765)


   

2-[(3r)-3-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-3-hydroxypropyl]-3-(4-hydroxybutyl)cyclohex-2-en-1-one

2-[(3r)-3-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-3-hydroxypropyl]-3-(4-hydroxybutyl)cyclohex-2-en-1-one

C18H31NO6 (357.2151266)


   

dodecyl({4-methoxy-1h,1'h-[2,2'-bipyrrol]-5-yl}methylidene)amine

dodecyl({4-methoxy-1h,1'h-[2,2'-bipyrrol]-5-yl}methylidene)amine

C22H35N3O (357.277998)


   

(1s,6s,7s,10s,14r,15s,18s,19r,22s)-6,18-dimethyl-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docosane-4,9-dione

(1s,6s,7s,10s,14r,15s,18s,19r,22s)-6,18-dimethyl-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docosane-4,9-dione

C22H31NO3 (357.2303816)


   

(5ar,6r,8ar)-6-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-3-(2-hydroxyethyl)-5a-methyl-5h,6h,7h,8h,8ah-cyclopenta[e]indol-2-one

(5ar,6r,8ar)-6-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-3-(2-hydroxyethyl)-5a-methyl-5h,6h,7h,8h,8ah-cyclopenta[e]indol-2-one

C23H35NO2 (357.266765)


   

1-{3-[(1s,2r,8s,9r,10s)-11-methyl-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone

1-{3-[(1s,2r,8s,9r,10s)-11-methyl-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone

C22H35N3O (357.277998)


   

5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol

5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol

C22H31NO3 (357.2303816)


   

(1r,2r,4s,5r,8s,13s,14r,16s,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

(1r,2r,4s,5r,8s,13s,14r,16s,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

C22H31NO3 (357.2303816)


   

(1s,2s,4r,7s,8r,10s,11r,12r)-8-hydroxy-11-methyl-22-methylidene-13-oxa-16-azahexacyclo[9.6.3.2⁴,⁷.0¹,¹⁰.0²,⁷.0¹²,¹⁶]docosan-6-one

(1s,2s,4r,7s,8r,10s,11r,12r)-8-hydroxy-11-methyl-22-methylidene-13-oxa-16-azahexacyclo[9.6.3.2⁴,⁷.0¹,¹⁰.0²,⁷.0¹²,¹⁶]docosan-6-one

C22H31NO3 (357.2303816)


   

(2e,10e)-11-(2h-1,3-benzodioxol-5-yl)-n-(2-methylpropyl)undeca-2,10-dienimidic acid

(2e,10e)-11-(2h-1,3-benzodioxol-5-yl)-n-(2-methylpropyl)undeca-2,10-dienimidic acid

C22H31NO3 (357.2303816)


   

(1r,5r,12s,16r,17s,18r,20r,21r)-5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol

(1r,5r,12s,16r,17s,18r,20r,21r)-5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol

C22H31NO3 (357.2303816)


   

6-(11,12-dihydroxydodecyl)-2-methylpiperidin-3-yl acetate

6-(11,12-dihydroxydodecyl)-2-methylpiperidin-3-yl acetate

C20H39NO4 (357.28789340000003)


   

1-hydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,12h-cyclonona[d]isoindole-11,13-dione

1-hydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,12h-cyclonona[d]isoindole-11,13-dione

C22H31NO3 (357.2303816)


   

1-{3-[(1r,8s,9r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone

1-{3-[(1r,8s,9r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone

C22H35N3O (357.277998)


   

(4r,7r,10s,14r,15s,18r,20s,21s)-11,15-dimethyl-19-oxa-17-azaheptacyclo[12.6.1.0¹,¹¹.0⁴,²⁰.0⁷,²⁰.0¹⁰,¹⁸.0¹⁷,²¹]henicosane-3-carboxylic acid

(4r,7r,10s,14r,15s,18r,20s,21s)-11,15-dimethyl-19-oxa-17-azaheptacyclo[12.6.1.0¹,¹¹.0⁴,²⁰.0⁷,²⁰.0¹⁰,¹⁸.0¹⁷,²¹]henicosane-3-carboxylic acid

C22H31NO3 (357.2303816)


   

11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

C22H31NO3 (357.2303816)


   

(1r,2s,4s,9r,10r)-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1r,2s,4s,9r,10r)-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

11-(2h-1,3-benzodioxol-5-yl)-n-(2-methylpropyl)undeca-2,10-dienimidic acid

11-(2h-1,3-benzodioxol-5-yl)-n-(2-methylpropyl)undeca-2,10-dienimidic acid

C22H31NO3 (357.2303816)


   

(1s,6r,7s,10r,15r,18s,19r,22s)-6,18-dimethyl-4-oxo-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-16-ium-16-olate

(1s,6r,7s,10r,15r,18s,19r,22s)-6,18-dimethyl-4-oxo-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-16-ium-16-olate

C22H31NO3 (357.2303816)


   

1-{3-[11-methyl-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone

1-{3-[11-methyl-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone

C22H35N3O (357.277998)


   

(1r,2s,4s,9s,10r)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1r,2s,4s,9s,10r)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

(3r,3as,4s,8ar)-3-hydroxy-3-isopropyl-6,8a-dimethyl-1,2,3a,4,5,8-hexahydroazulen-4-yl 2-aminobenzoate

(3r,3as,4s,8ar)-3-hydroxy-3-isopropyl-6,8a-dimethyl-1,2,3a,4,5,8-hexahydroazulen-4-yl 2-aminobenzoate

C22H31NO3 (357.2303816)


   

2-(12-hydroxy-12-methyltridecyl)-3h-quinolin-4-one

2-(12-hydroxy-12-methyltridecyl)-3h-quinolin-4-one

C23H35NO2 (357.266765)


   

(1s,4s,5r,8s,13r,14r,15s,16r,18r)-11-ethyl-5-methyl-17-methylidene-9-oxa-11-azaheptacyclo[14.2.2.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-15,18-diol

(1s,4s,5r,8s,13r,14r,15s,16r,18r)-11-ethyl-5-methyl-17-methylidene-9-oxa-11-azaheptacyclo[14.2.2.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-15,18-diol

C22H31NO3 (357.2303816)


   

(2e,4e,6s,7s,8r,9s,10e)-7,9-dimethoxy-3,6,8-trimethyl-11-phenylundeca-2,4,10-trienimidic acid

(2e,4e,6s,7s,8r,9s,10e)-7,9-dimethoxy-3,6,8-trimethyl-11-phenylundeca-2,4,10-trienimidic acid

C22H31NO3 (357.2303816)


   

(2e,4e,6e,8e)-9-(1,3-dimethyl-2h-imidazol-4-yl)-n-[(3s,4r)-4-methyl-2-oxohexan-3-yl]nona-2,4,6,8-tetraenimidic acid

(2e,4e,6e,8e)-9-(1,3-dimethyl-2h-imidazol-4-yl)-n-[(3s,4r)-4-methyl-2-oxohexan-3-yl]nona-2,4,6,8-tetraenimidic acid

C21H31N3O2 (357.2416146)


   

(1s,2s,4r,7s,8r,10s,11r,12s)-8-hydroxy-11-methyl-22-methylidene-13-oxa-16-azahexacyclo[9.6.3.2⁴,⁷.0¹,¹⁰.0²,⁷.0¹²,¹⁶]docosan-6-one

(1s,2s,4r,7s,8r,10s,11r,12s)-8-hydroxy-11-methyl-22-methylidene-13-oxa-16-azahexacyclo[9.6.3.2⁴,⁷.0¹,¹⁰.0²,⁷.0¹²,¹⁶]docosan-6-one

C22H31NO3 (357.2303816)


   

methyl (1s,4r,7s,8s,10r,11r,12r,16s)-7-ethyl-2-oxa-14-azaheptacyclo[9.7.2.0¹,¹².0⁴,⁸.0⁴,¹⁶.0⁷,¹⁴.0⁸,¹²]icosane-10-carboxylate

methyl (1s,4r,7s,8s,10r,11r,12r,16s)-7-ethyl-2-oxa-14-azaheptacyclo[9.7.2.0¹,¹².0⁴,⁸.0⁴,¹⁶.0⁷,¹⁴.0⁸,¹²]icosane-10-carboxylate

C22H31NO3 (357.2303816)


   

10-hydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricos-21-en-4-one

10-hydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricos-21-en-4-one

C22H31NO3 (357.2303816)


   

1-(3-{7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-yl}-5,6-dihydro-4h-pyridin-1-yl)ethanone

1-(3-{7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-yl}-5,6-dihydro-4h-pyridin-1-yl)ethanone

C22H35N3O (357.277998)


   

11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

C22H31NO3 (357.2303816)


   

(1s,6r,7s,10s,15r,18s,19r,22s)-6,18-dimethyl-4-oxo-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-16-ium-16-olate

(1s,6r,7s,10s,15r,18s,19r,22s)-6,18-dimethyl-4-oxo-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-16-ium-16-olate

C22H31NO3 (357.2303816)


   

(1s,5s,11s,12s,14r,16r,18s,20r,21r)-5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol

(1s,5s,11s,12s,14r,16r,18s,20r,21r)-5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol

C22H31NO3 (357.2303816)


   

(3r,4r,10s,14s,19s)-18-(hydroxymethyl)-14-methyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-7(20)-ene-3-carboxylic acid

(3r,4r,10s,14s,19s)-18-(hydroxymethyl)-14-methyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-7(20)-ene-3-carboxylic acid

C22H31NO3 (357.2303816)


   

(1s,2s,4s,9r,10r)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1s,2s,4s,9r,10r)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

(1r,3s,5s,7r,8r,12r,13s,18s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol

(1r,3s,5s,7r,8r,12r,13s,18s,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol

C22H31NO3 (357.2303816)


   

(1r,3r,4r,10s,14s,15r,18r,19s)-18-(hydroxymethyl)-14-methyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-7(20)-ene-3-carboxylic acid

(1r,3r,4r,10s,14s,15r,18r,19s)-18-(hydroxymethyl)-14-methyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-7(20)-ene-3-carboxylic acid

C22H31NO3 (357.2303816)


   

2-{3-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-3-hydroxypropyl}-3-(4-hydroxybutyl)cyclohex-2-en-1-one

2-{3-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-3-hydroxypropyl}-3-(4-hydroxybutyl)cyclohex-2-en-1-one

C18H31NO6 (357.2151266)


   

methyl 3-[(1s,2s,7r,10s,13r,14r)-14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadeca-3,11-dien-2-yl]propanoate

methyl 3-[(1s,2s,7r,10s,13r,14r)-14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadeca-3,11-dien-2-yl]propanoate

C23H35NO2 (357.266765)


   

(1s,2r,4s,5r,8s,10r,12r,13s,14r,16r,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

(1s,2r,4s,5r,8s,10r,12r,13s,14r,16r,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

C22H31NO3 (357.2303816)


   

3-hydroxy-3-isopropyl-6,8a-dimethyl-1,2,3a,4,5,8-hexahydroazulen-4-yl 2-aminobenzoate

3-hydroxy-3-isopropyl-6,8a-dimethyl-1,2,3a,4,5,8-hexahydroazulen-4-yl 2-aminobenzoate

C22H31NO3 (357.2303816)


   

(1s,5s,10r,11s,14r,15s,18s)-14-isopropyl-11-methyl-6-oxa-16-azahexacyclo[14.4.1.0¹,⁵.0⁵,¹⁰.0¹⁰,¹⁵.0¹¹,¹⁸]henicosan-7-one

(1s,5s,10r,11s,14r,15s,18s)-14-isopropyl-11-methyl-6-oxa-16-azahexacyclo[14.4.1.0¹,⁵.0⁵,¹⁰.0¹⁰,¹⁵.0¹¹,¹⁸]henicosan-7-one

C23H35NO2 (357.266765)


   

methyl (1s,2s,5r,6s,9s,15s,16s)-5-isopropyl-2-methyl-7-azapentacyclo[10.5.1.0¹,⁶.0²,⁹.0¹⁵,¹⁸]octadec-12(18)-ene-16-carboxylate

methyl (1s,2s,5r,6s,9s,15s,16s)-5-isopropyl-2-methyl-7-azapentacyclo[10.5.1.0¹,⁶.0²,⁹.0¹⁵,¹⁸]octadec-12(18)-ene-16-carboxylate

C23H35NO2 (357.266765)


   

(1r,7r,10s,11r,15s,18r,23r)-10-hydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricos-21-en-4-one

(1r,7r,10s,11r,15s,18r,23r)-10-hydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricos-21-en-4-one

C22H31NO3 (357.2303816)


   

9-hydroxy-6,18-dimethyl-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-4-one

9-hydroxy-6,18-dimethyl-5-oxa-16-azahexacyclo[14.5.1.0¹,⁶.0⁷,¹⁵.0¹⁰,¹⁴.0¹⁹,²²]docos-13-en-4-one

C22H31NO3 (357.2303816)


   

3-{[(1r,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-4-hydroxy-5-(methylamino)cyclohexa-3,5-diene-1,2-dione

3-{[(1r,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-4-hydroxy-5-(methylamino)cyclohexa-3,5-diene-1,2-dione

C22H31NO3 (357.2303816)


   

(1r,2r,5r,7r,8s,9r,10r,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

(1r,2r,5r,7r,8s,9r,10r,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

C22H31NO3 (357.2303816)


   

methyl 7-ethyl-2-oxa-14-azaheptacyclo[9.7.2.0¹,¹².0⁴,⁸.0⁴,¹⁶.0⁷,¹⁴.0⁸,¹²]icosane-10-carboxylate

methyl 7-ethyl-2-oxa-14-azaheptacyclo[9.7.2.0¹,¹².0⁴,⁸.0⁴,¹⁶.0⁷,¹⁴.0⁸,¹²]icosane-10-carboxylate

C22H31NO3 (357.2303816)


   

14-hydroxy-3,17,17-trimethyl-7-methylidene-15-azatricyclo[8.5.2.0¹³,¹⁶]heptadeca-3,13(16),14-trien-5-yl acetate

14-hydroxy-3,17,17-trimethyl-7-methylidene-15-azatricyclo[8.5.2.0¹³,¹⁶]heptadeca-3,13(16),14-trien-5-yl acetate

C22H31NO3 (357.2303816)


   

(3s,3ar,4s,6as,13ar)-1-hydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,12h-cyclonona[d]isoindole-11,13-dione

(3s,3ar,4s,6as,13ar)-1-hydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,12h-cyclonona[d]isoindole-11,13-dione

C22H31NO3 (357.2303816)


   

methyl 3-{14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadeca-3,11-dien-2-yl}propanoate

methyl 3-{14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadeca-3,11-dien-2-yl}propanoate

C23H35NO2 (357.266765)


   

1-{3-[(1s,2r,8s,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone

1-{3-[(1s,2r,8s,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone

C22H35N3O (357.277998)


   

dodecyl({[(z,5z)-4-methoxy-1h-[2,2'-bipyrrolyliden]-5-ylidene]methyl})amine

dodecyl({[(z,5z)-4-methoxy-1h-[2,2'-bipyrrolyliden]-5-ylidene]methyl})amine

C22H35N3O (357.277998)


   

(2s)-n-[2-(1h-indol-3-yl)ethyl]-3-methyl-2-(3-methyl-2-oxobutanamido)butanimidic acid

(2s)-n-[2-(1h-indol-3-yl)ethyl]-3-methyl-2-(3-methyl-2-oxobutanamido)butanimidic acid

C20H27N3O3 (357.20523120000007)


   

14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

(2s,3s,6r)-6-(11,12-dihydroxydodecyl)-2-methylpiperidin-3-yl acetate

(2s,3s,6r)-6-(11,12-dihydroxydodecyl)-2-methylpiperidin-3-yl acetate

C20H39NO4 (357.28789340000003)


   

(1r,2s,5s,6r,9r,12s,13r,16r)-16-(dimethylamino)-6,13-dimethyl-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-18-en-8-one

(1r,2s,5s,6r,9r,12s,13r,16r)-16-(dimethylamino)-6,13-dimethyl-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-18-en-8-one

C23H35NO2 (357.266765)


   

(1r,5s,7r,8r,9r,13r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

(1r,5s,7r,8r,9r,13r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

C22H31NO3 (357.2303816)


   

(1s,2s,4s,9r,10r)-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1s,2s,4s,9r,10r)-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

(1r,2r,5r,7r,8r,9r,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

(1r,2r,5r,7r,8r,9r,13r,16s,17r)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

C22H31NO3 (357.2303816)


   

methyl (1s,2s,5r,6s,9s,15r,16r)-5-isopropyl-2-methyl-7-azapentacyclo[10.5.1.0¹,⁶.0²,⁹.0¹⁵,¹⁸]octadec-12(18)-ene-16-carboxylate

methyl (1s,2s,5r,6s,9s,15r,16r)-5-isopropyl-2-methyl-7-azapentacyclo[10.5.1.0¹,⁶.0²,⁹.0¹⁵,¹⁸]octadec-12(18)-ene-16-carboxylate

C23H35NO2 (357.266765)


   

7,9-dimethoxy-3,6,8-trimethyl-11-phenylundeca-2,4,10-trienimidic acid

7,9-dimethoxy-3,6,8-trimethyl-11-phenylundeca-2,4,10-trienimidic acid

C22H31NO3 (357.2303816)


   

(1s,2r,4s,5r,8s,10r,12r,13r,14r,15s,16r,18r)-11-ethyl-5-methyl-17-methylidene-9-oxa-11-azaheptacyclo[14.2.2.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-15,18-diol

(1s,2r,4s,5r,8s,10r,12r,13r,14r,15s,16r,18r)-11-ethyl-5-methyl-17-methylidene-9-oxa-11-azaheptacyclo[14.2.2.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-15,18-diol

C22H31NO3 (357.2303816)


   

(1s,2r,4s,5s,8r,10s,12s,13s,14r,16s,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

(1s,2r,4s,5s,8r,10s,12s,13s,14r,16s,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

C22H31NO3 (357.2303816)


   

methyl 5-isopropyl-2-methyl-7-azapentacyclo[10.5.1.0¹,⁶.0²,⁹.0¹⁵,¹⁸]octadec-12(18)-ene-16-carboxylate

methyl 5-isopropyl-2-methyl-7-azapentacyclo[10.5.1.0¹,⁶.0²,⁹.0¹⁵,¹⁸]octadec-12(18)-ene-16-carboxylate

C23H35NO2 (357.266765)


   

(1r,2s,3s,5s,7r,8r,12r,13r,18r,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol

(1r,2s,3s,5s,7r,8r,12r,13r,18r,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol

C22H31NO3 (357.2303816)


   

(2e,4e,6e,8z)-9-(1,3-dimethyl-2h-imidazol-4-yl)-n-[(3s,4r)-4-methyl-2-oxohexan-3-yl]nona-2,4,6,8-tetraenimidic acid

(2e,4e,6e,8z)-9-(1,3-dimethyl-2h-imidazol-4-yl)-n-[(3s,4r)-4-methyl-2-oxohexan-3-yl]nona-2,4,6,8-tetraenimidic acid

C21H31N3O2 (357.2416146)


   

(1r,2s,3s,5s,7r,8r,12r,13r,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol

(1r,2s,3s,5s,7r,8r,12r,13r,21r)-12-methyl-4-methylidene-14,19-dioxa-17-azaheptacyclo[10.7.2.2²,⁵.0²,⁷.0⁸,¹⁸.0⁸,²¹.0¹³,¹⁷]tricosan-3-ol

C22H31NO3 (357.2303816)


   

(2r,4s,5r,8s,10r,12r,13s,14r,16r,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

(2r,4s,5r,8s,10r,12r,13s,14r,16r,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

C22H31NO3 (357.2303816)


   

(1r,2r,4s,5r,8s,10r,12r,13s,14r,16r,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

(1r,2r,4s,5r,8s,10r,12r,13s,14r,16r,17r,19r)-11-ethyl-5-methyl-18-methylidene-9-oxa-11-azaheptacyclo[15.2.1.0¹,¹⁴.0²,¹².0⁴,¹³.0⁵,¹⁰.0⁸,¹³]icosane-16,19-diol

C22H31NO3 (357.2303816)


   

15-hydroxy-5,15-dimethyl-7-oxa-10-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁶,¹⁰.0¹²,¹⁷.0¹⁷,²¹]docosan-19-one

15-hydroxy-5,15-dimethyl-7-oxa-10-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁶,¹⁰.0¹²,¹⁷.0¹⁷,²¹]docosan-19-one

C22H31NO3 (357.2303816)


   

(1s,2s,4s,9r,10s)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1s,2s,4s,9r,10s)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

1-{3-[(1r,8s,9r)-11-methyl-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone

1-{3-[(1r,8s,9r)-11-methyl-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-8-yl]-5,6-dihydro-4h-pyridin-1-yl}ethanone

C22H35N3O (357.277998)


   

2-(12-hydroxy-12-methyltridecyl)-1h-quinolin-4-one

2-(12-hydroxy-12-methyltridecyl)-1h-quinolin-4-one

C23H35NO2 (357.266765)


   

(1s,5s,11s,12s,14r,16r,17s,18s,20r,21r)-5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol

(1s,5s,11s,12s,14r,16r,17s,18s,20r,21r)-5-methyl-15-methylidene-10-oxa-7-azaheptacyclo[12.6.2.0¹,¹¹.0⁵,²⁰.0⁷,¹¹.0¹²,¹⁷.0¹⁷,²¹]docosane-16,18-diol

C22H31NO3 (357.2303816)