Exact Mass: 351.19803740000003
Exact Mass Matches: 351.19803740000003
Found 478 metabolites which its exact mass value is equals to given mass value 351.19803740000003
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Isatidine
Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.363 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.358 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.361 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2325 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 177 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 117 INTERNAL_ID 147; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 147 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 137 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 157 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 167 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 127 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 107 D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].
trans-zeatin riboside
C15H21N5O5 (351.15426160000004)
Trans-zeatin riboside, also known as (E)-N-(4-hydroxy-3-methyl-2-butenyl)adenosine or 9-beta-D-ribofuranosyl-trans-zeatin, is a member of the class of compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Trans-zeatin riboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Trans-zeatin riboside can be found in a number of food items such as winter squash, plains prickly pear, dill, and common buckwheat, which makes trans-zeatin riboside a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Acquisition and generation of the data is financially supported in part by CREST/JST. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits.
Jacobine
INTERNAL_ID 2254; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2254 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 115 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 145 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 175 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 155 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 125 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 165 INTERNAL_ID 135; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 135 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 105
Senecionine N-oxide
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2301 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 146 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 176 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 116 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 136 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 166 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 156 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 106 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 126 Senecionine n-oxide is the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Senecionine N-oxide has anti-cancer activity[1][2].
Tryprostatin B
A cyclic dipeptide that is brevianamide F (cyclo-L-Trp-L-Pro) substituted at position 2 on the indole ring by a prenyl group. CONFIDENCE Penicillium amphipolaria
O-beta-D-Xyloxylzeatin
C15H21N5O5 (351.15426160000004)
4,21-dehydrogeissoschizine
An indole alkaloid that is the enol tautomer of geissoschizine, which is also dehydrogenated at the 4,21-position. 1H-Indolo[2,3-a]quinolizin-5-ium, 3-ethylidene-2,3,6,7,12,12b-hexahydro-2-[1-(hydroxymethylene)-2-methoxy-2-oxoethyl]-, [2S-[2α(E),3E,12bβ]]-. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73385-56-5 (retrieved 2024-07-04) (CAS RN: 73385-56-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Dipivefrin
C19H29NO5 (351.20456240000004)
Dipivefrin is only found in individuals that have used or taken this drug. It is a prodrug of adrenaline, which is used to treat glaucoma. It is available as ophthalmic solution (eye drops). Dipivefrin is a prodrug with little or no pharmacologically activity until it is hydrolyzed into epinephrine inside the human eye. The liberated epinephrine, an adrenergic agonist, appears to exert its action by stimulating α- and/or β2-adrenergic receptors, leading to a decrease in aqueous production and an enhancement of outflow facility. The dipivefrin prodrug delivery system is a more efficient way of delivering the therapeutic effects of epinephrine, with fewer side effects than are associated with conventional epinephrine therapy. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EA - Sympathomimetics in glaucoma therapy D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent
Pirenzepine
An antimuscarinic agent that inhibits gastric secretion at lower doses than are required to affect gastrointestinal motility, salivary, central nervous system, cardiovascular, ocular, and urinary function. It promotes the healing of duodenal ulcers and due to its cytoprotective action is beneficial in the prevention of duodenal ulcer recurrence. It also potentiates the effect of other antiulcer agents such as cimetidine and ranitidine. It is generally well tolerated by patients. [PubChem] A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents
Aniflorine
Tamibarotene
C22H25NO3 (351.18343400000003)
Tamibarotene is only found in individuals that have used or taken this drug. It is a novel synthetic retinoid for acute promyelocytic leukaemia (APL). Tamibarotene is currently approved in Japan for treatment of recurrent APL, and is undergoing clinical trials in the United States.Tamibarotene is a specific agonist for retinoic acid receptor alpha/beta with possible binding to retinoid X receptors (RXR). C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent Same as: D01418
4-{[(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)carbonyl]amino}benzoic acid
C22H25NO3 (351.18343400000003)
CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10139; ORIGINAL_PRECURSOR_SCAN_NO 10138 INTERNAL_ID 333; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10139; ORIGINAL_PRECURSOR_SCAN_NO 10138 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10159; ORIGINAL_PRECURSOR_SCAN_NO 10156 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10167; ORIGINAL_PRECURSOR_SCAN_NO 10165 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10197; ORIGINAL_PRECURSOR_SCAN_NO 10194 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10187; ORIGINAL_PRECURSOR_SCAN_NO 10186 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10123; ORIGINAL_PRECURSOR_SCAN_NO 10122 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5493; ORIGINAL_PRECURSOR_SCAN_NO 5489 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5465; ORIGINAL_PRECURSOR_SCAN_NO 5461 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5482; ORIGINAL_PRECURSOR_SCAN_NO 5480 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5469; ORIGINAL_PRECURSOR_SCAN_NO 5467 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5500; ORIGINAL_PRECURSOR_SCAN_NO 5495 CONFIDENCE standard compound; INTERNAL_ID 333; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5570; ORIGINAL_PRECURSOR_SCAN_NO 5568 D009676 - Noxae > D013723 - Teratogens D000970 - Antineoplastic Agents
deoxybrevianamide E
A cyclic dipeptide that is brevianamide F (cyclo-L-Trp-L-Pro) substituted at position 2 on the indole ring by a 1,1-dimethylallyl group.
Usaramine
Usaramine is a pyrrolizidine alkaloid isolated from seeds of Crolatalaria pallida. Usaramine demonstrates a highlighted antibiofilm activity against Staphylococcus epidermidis by reducing more than 50\\% of biofilm formation without killing the bacteria[1]. Usaramine is a pyrrolizidine alkaloid isolated from seeds of Crolatalaria pallida. Usaramine demonstrates a highlighted antibiofilm activity against Staphylococcus epidermidis by reducing more than 50\% of biofilm formation without killing the bacteria[1].
ribosylzeatin
C15H21N5O5 (351.15426160000004)
9-ribosyl-trans-zeatin is a 9-ribosylzeatin having trans-zeatin as the nucleobase. It has a role as a plant metabolite and a cytokinin. It is a nucleoside analogue and a 9-ribosylzeatin. It is functionally related to an adenosine. Zeatin riboside is a natural product found in Rhodococcus fascians, Pseudomonas syringae, and other organisms with data available. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins A 9-ribosylzeatin having trans-zeatin as the nucleobase. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits.
9-(beta-D-Ribofuranosyl)zeatin
C15H21N5O5 (351.15426160000004)
9-(beta-D-Ribofuranosyl)-(Z)-Zeatin is found in alfalfa. Zeatin is a plant hormone derived from the purine adenine. It is a member of the plant growth hormone family known as cytokinins. Zeatin was first discovered in immature corn kernels from the genus Zea. Zeatin and derivatives were discovered to be the primary active ingredient in coconut milk, which has long been known to actively induce plant growth. As in the case of kinetin, zeatin has also been reported to have several in vitro anti-aging effects on human skin fibroblasts.(Wikipedia). Isolated from many plants. (E)-Ribosylzeatin is found in many foods, some of which are cauliflower, chicory, chayote, and wild carrot. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits.
Marmeline
C22H25NO3 (351.18343400000003)
Marmeline is found in fruits. Marmeline is an alkaloid from the leaves and unripe fruits of Aegle marmelos (bael
Phenylalanyltryptophan
Phenylalanyltryptophan is a dipeptide composed of phenylalanine and tryptophan. It is an incomplete breakdown product of protein digestion or protein catabolism. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Some dipeptides are known to have physiological or cell-signalling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. H-Phe-Trp-OH (Phenylalanyltryptophan) is an endogenous metabolite[1]. H-Phe-Trp-OH (Phenylalanyltryptophan) is an endogenous metabolite[1].
Tryptophyl-Phenylalanine
Tryptophyl-Phenylalanine is a dipeptide composed of tryptophan and phenylalanine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite.
Sphingosine 1-phosphate (d16:1-P)
Sphingosine 1-phosphate (d16:1-P) is a Sphingosine-1-phosphate. Sphingosine-1-phosphate is a signaling sphingolipid. It is also referred to as a bioactive lipid mediator. Sphingolipids at large form a class of lipids characterized by a particular aliphatic aminoalcohol, which is sphingosine. (Wikipedia)
Trideca-3,6,9-trienoylcarnitine
Trideca-3,6,9-trienoylcarnitine is an acylcarnitine. More specifically, it is an trideca-3,6,9-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Trideca-3,6,9-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Trideca-3,6,9-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Trideca-6,8,10-trienoylcarnitine
Trideca-6,8,10-trienoylcarnitine is an acylcarnitine. More specifically, it is an trideca-6,8,10-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Trideca-6,8,10-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Trideca-6,8,10-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Trideca-7,9,11-trienoylcarnitine
Trideca-7,9,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an trideca-7,9,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Trideca-7,9,11-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Trideca-7,9,11-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Trideca-3,5,7-trienoylcarnitine
Trideca-3,5,7-trienoylcarnitine is an acylcarnitine. More specifically, it is an trideca-3,5,7-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Trideca-3,5,7-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Trideca-3,5,7-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Trideca-5,7,9-trienoylcarnitine
Trideca-5,7,9-trienoylcarnitine is an acylcarnitine. More specifically, it is an trideca-5,7,9-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Trideca-5,7,9-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Trideca-5,7,9-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(3E,5E,9E)-Trideca-3,5,9-trienoylcarnitine
(3E,5E,9E)-Trideca-3,5,9-trienoylcarnitine is an acylcarnitine. More specifically, it is an (3E,5E,9E)-trideca-3,5,9-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (3E,5E,9E)-Trideca-3,5,9-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (3E,5E,9E)-Trideca-3,5,9-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Trideca-4,6,8-trienoylcarnitine
Trideca-4,6,8-trienoylcarnitine is an acylcarnitine. More specifically, it is an trideca-4,6,8-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Trideca-4,6,8-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Trideca-4,6,8-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Trideca-4,7,10-trienoylcarnitine
Trideca-4,7,10-trienoylcarnitine is an acylcarnitine. More specifically, it is an trideca-4,7,10-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Trideca-4,7,10-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Trideca-4,7,10-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Trideca-2,5,8-trienoylcarnitine
Trideca-2,5,8-trienoylcarnitine is an acylcarnitine. More specifically, it is an trideca-2,5,8-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Trideca-2,5,8-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Trideca-2,5,8-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Trideca-2,4,6-trienoylcarnitine
Trideca-2,4,6-trienoylcarnitine is an acylcarnitine. More specifically, it is an trideca-2,4,6-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Trideca-2,4,6-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Trideca-2,4,6-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Trideca-5,8,11-trienoylcarnitine
Trideca-5,8,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an trideca-5,8,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Trideca-5,8,11-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Trideca-5,8,11-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(1R,4E,6S,7S,17R)-4-Ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.014,17]heptadec-11-ene-3,8-dione
(2R,3S,5R)-2-[6-[[(1S,2S)-2-Hydroxycyclopentyl]amino]-9-purinyl]-5-(hydroxymethyl)oxolane-3,4-diol
C15H21N5O5 (351.15426160000004)
Phenol, 2-(2H-benzotriazol-2-yl)-4,6-bis(1,1-dimethylpropyl)-
6-((3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy)-N-methyl-3-pyridinecarboxamide
GSK189254A (GSK189254 free base) is a novel, potent and selective histamine H3 receptor antagonist with pKi values of 9.59-9.90 and 8.51-9.17 for human and rat H3, respectively.
2-Amino-6-[2-[3-(3-methoxyphenyl)phenyl]ethyl]-3,6-dimethyl-5H-pyrimidin-4-one
Estradiol sulfamate
C18H25NO4S (351.15042100000005)
N-[(6R)-6-(Dimethylamino)-6,7,8,9-tetrahydro-5H-carbazol-3-yl]-4-fluorobenzamide
4-Fluoro-N-[3-(1-methylpiperidin-4-yl)-1H-indol-5-yl]benzamide
Senecionine N-oxide
Benzeneacetic acid, 4-(2-(diethylamino)-2-oxoethoxy)-3-ethoxy-, propyl ester
C19H29NO5 (351.20456240000004)
N-[1-[4-[(4-Pyrimidin-2-ylpiperazin-1-yl)methyl]phenyl]cyclopropyl]acetamide
cis-zeatin riboside
C15H21N5O5 (351.15426160000004)
Cis-zeatin riboside is a member of the class of compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Cis-zeatin riboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Cis-zeatin riboside can be found in a number of food items such as american pokeweed, sesbania flower, moth bean, and common chokecherry, which makes cis-zeatin riboside a potential biomarker for the consumption of these food products.
1ST14176
Senecionine N-oxide is a tertiary amine oxide. It is functionally related to a senecionine. Senecionine N-oxide is a natural product found in Dorobaea pimpinellifolia, Senecio gallicus, and other organisms with data available. Senecionine n-oxide is the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Senecionine N-oxide has anti-cancer activity[1][2].
Ursamine
LSM-2938 is a macrolide. Usaramine is a natural product found in Senecio malacitanus, Senecio ceratophylloides, and other organisms with data available. D000970 - Antineoplastic Agents Usaramine is a pyrrolizidine alkaloid isolated from seeds of Crolatalaria pallida. Usaramine demonstrates a highlighted antibiofilm activity against Staphylococcus epidermidis by reducing more than 50\\% of biofilm formation without killing the bacteria[1]. Usaramine is a pyrrolizidine alkaloid isolated from seeds of Crolatalaria pallida. Usaramine demonstrates a highlighted antibiofilm activity against Staphylococcus epidermidis by reducing more than 50\% of biofilm formation without killing the bacteria[1].
Usaramin
LSM-2938 is a macrolide. Usaramine is a natural product found in Senecio malacitanus, Senecio ceratophylloides, and other organisms with data available. D000970 - Antineoplastic Agents Usaramine is a pyrrolizidine alkaloid isolated from seeds of Crolatalaria pallida. Usaramine demonstrates a highlighted antibiofilm activity against Staphylococcus epidermidis by reducing more than 50\\% of biofilm formation without killing the bacteria[1]. Usaramine is a pyrrolizidine alkaloid isolated from seeds of Crolatalaria pallida. Usaramine demonstrates a highlighted antibiofilm activity against Staphylococcus epidermidis by reducing more than 50\% of biofilm formation without killing the bacteria[1].
9-Ribosyl-cis-zeatin
C15H21N5O5 (351.15426160000004)
Stemonidine
C19H29NO5 (351.20456240000004)
CID 5250922 is a natural product found in Stemona japonica with data available.
2-(2H-Benzo[d][1,2,3]triazol-2-yl)-4,6-di-tert-pentylphenol
Senecivernine N-oxide
A pyrrolizine alkaloid that is produced by a hybrid species of Jacobaea. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2280
(+)-3alpha-(3,4,5-trimethoxybenzoyloxy)tropan-6beta-ol|3alpha-(3,4,5-Trimethoxybenzoyloxy)tropan-6beta-ol
22N-Tetrahydroalstonin|4-methyl-3,4,4a,5,7,8,13,13b,14,14a-decahydro-indolo[2,3:3,4]pyrido[1,2-b][2,7]naphthyridine-1-carboxylic acid ethyl ester
12,13-(Xi)-ethane-1,1-diyldioxy-(13betaH,14betaH)-14,19-dihydro-20-nor-crotalanane-11,15-dione|Monocrotalinin|Monocrotalinine|O,O-(Xi)-ethane-1,1-diyl-monocrotaline
3-[1-(3-methyl-but-2-enyl)-indol-3-ylmethyl]-hexahydro-pyrrolo[1,2-a]pyrazine-1,4-dione|cyclo(N-prenyl-L-tryptophyl-L-prolyl)|Cyclo-L-prolyl-L-|N-prenyl-cyclo-L-tryptophyl-L-proline
8-Azabicyclo[3.2.1]octane-3,6-diol, 8-methyl-2-(phenylmethyl)-, 6-benzoate
C22H25NO3 (351.18343400000003)
JWH 250 5-hydroxyindole metabolite
C22H25NO3 (351.18343400000003)
JWH 250 N-(5-hydroxypentyl) metabolite
C22H25NO3 (351.18343400000003)
(S)-2-((S)-3-(1H-Imidazol-4-yl)-2-((S)-pyrrolidine-2-carboxamido)Propanamido)-3-methylbutanoic acid
Jacobine
Jacobine is a pyrrolizine alkaloid. Jacobine is a natural product found in Crotalaria micans, Senecio brasiliensis, and other organisms with data available.
Integerrimine N-oxide
Integerrimine N-oxide is a natural product found in Senecio nebrodensis and Senecio brasiliensis with data available.
1ST40320
Retrorsine is a macrolide. Retrorsine is a natural product found in Crotalaria spartioides, Senecio malacitanus, and other organisms with data available. D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].
9-Ribosyl-trans-zeatin
C15H21N5O5 (351.15426160000004)
CONFIDENCE standard compound; ML_ID 23
Cis-Zeatin-riboside-[d5]
C15H21N5O5 (351.15426160000004)
Acquisition and generation of the data is financially supported by the Max-Planck-Society
Cis-Zeatin-riboside
C15H21N5O5 (351.15426160000004)
Acquisition and generation of the data is financially supported by the Max-Planck-Society
trans-Zeatin-riboside
C15H21N5O5 (351.15426160000004)
Acquisition and generation of the data is financially supported by the Max-Planck-Society
Trans-Zeatin-riboside-[d5]
C15H21N5O5 (351.15426160000004)
Acquisition and generation of the data is financially supported by the Max-Planck-Society
Trans-zeatin riboside
C15H21N5O5 (351.15426160000004)
trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits.
9-ribosylzeatin
C15H21N5O5 (351.15426160000004)
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.545 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.538 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.540
(S)-8-(2-hydroxy-2,2-diphenylacetoxy)-1-methyl-1-azoniabicyclo[2.2.2]octane
C22H25NO3 (351.18343400000003)
N-3-oxo-hexadec-11(Z)-enoyl-L-Homoserine lactone
JWH 250 N-(4-hydroxypentyl) metabolite
C22H25NO3 (351.18343400000003)
Phe-TRP
A dipeptide formed from L-phenylalanine and L-tryptophan residues.
TRP-Phe
A dipeptide formed from L-tryptophan and L-phenylalanine residues.
Marmeline
C22H25NO3 (351.18343400000003)
ribosylzeatin
C15H21N5O5 (351.15426160000004)
trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits.
4-{2-[3-(2-Furyl)phenyl]ethyl}-6-(3-methylbutoxy)-2-pyrimidinamin e
1-Benzyl 5-methyl N-{[(2-methyl-2-propanyl)oxy]carbonyl}-L-glutam ate
1-Benzyl 5-methyl N-{[(2-methyl-2-propanyl)oxy]carbonyl}-D-glutam ate
endo-8-Methyl-8-azabicyclo[3.2.1]octan-3-yl 2-hydroxy-2,2-diphenylacetate
C22H25NO3 (351.18343400000003)
moquizone
C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents
4-CYANO-3-FLUOROPHENYL 4-(TRANS-4-ETHYLCYCLOHEXYL)-BENZOATE
4-(1-BOC-piperidin-4-yloxy)-2-methoxyphenylboronic acid
4-(1-BOC-piperidin-4-yloxy)-3-methoxyphenylboronic acid
TERT-BUTYL ((S)-1-((S)-2-CARBAMOYLPYRROLIDIN-1-YL)-3-(1H-IMIDAZOL-4-YL)-1-OXOPROPAN-2-YL)CARBAMATE
Pipoxolan
C22H25NO3 (351.18343400000003)
C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent
Urea, N-[2-[(3-cyano-8-methyl-2-quinolinyl)amino]ethyl]-N-cyclohexyl- (9CI)
(S)-(+)-2-DIBENZYLAMINO-3-PHENYL-1-PROPANOL
C22H25NO3 (351.18343400000003)
3-(2,2-DIETHOXY-ETHOXY)-PIPERIDINE-1-CARBOXYLIC ACID BENZYL ESTER
C19H29NO5 (351.20456240000004)
1H-Benzimidazole-5-carboxylic acid, 2-[[[4-(aminoiminomethyl)phenyl]amino]methyl]-1-methyl-, ethyl ester
N-[(2-Methyl-1H-benzimidazol-1-yl)acetyl]-L-phenylalanine
sodium N-(2-carboxyethyl)-N-dodecyl-beta-alaninate
C18H34NNaO4 (351.23854040000003)
5-[4-(TERT-BUTYL)PHENYL]-4-(4-ISOPROPYLPHENYL)-4H-1,2,4-TRIAZOLE-3-THIOL
(1R,2S)-trans-2-(Fmoc-aminomethyl)cyclohexanol
C22H25NO3 (351.18343400000003)
1-TERT-BUTYL 2-METHYL 4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-PYRROLE-1,2-DICARBOXYLATE
sebacic acid, compound with 2,2,2-nitrilotriethanol
Fendiline Hydrochloride
D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators
1,5-Pentanediaminium,N1,N1,N1,N5,N5,N5-hexaethyl-, bromide (1:2)
(1S,2R)-trans-2-(Fmoc-aminomethyl)cyclohexanol
C22H25NO3 (351.18343400000003)
4-(4-(4-(4-METHOXYPHENYL)PIPERAZIN-1-YL)PHENYL)-1H-1,2,4-TRIAZOL-5(4H)-ONE
N,N-DIMETHYL-N-DODECYL-N-(2-HYDROXY-3-SULFOPROPYL)AMMONIUM BETAINE
1H-Benzimidazole,2-[1-[(1-cyclopentyl-1H-tetrazol-5-yl)methyl]-4-piperidinyl]-(9CI)
LY 344864
LY 344864 is a selective, orally active 5-HT1F receptor agonist with a Ki of 6 nM. LY 344864 is a full agonist producing an effect similar in magnitude to serotonin itself. LY 344864 can cross the blood brain barrier to some extent[1].
Phenadoxone
C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist
Adipiplon
C18H18FN7 (351.16076400000003)
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Saxagliptin Hydrochloride
C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98086 - Dipeptidyl Peptidase-4 Inhibitor D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D054795 - Incretins D007004 - Hypoglycemic Agents > D054873 - Dipeptidyl-Peptidase IV Inhibitors D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors C471 - Enzyme Inhibitor > C783 - Protease Inhibitor
3-[butyl[4-[(4-nitrophenyl)azo]phenyl]amino]propiononitrile
LY 334370
D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists LY334370 is a selective 5-HT1F receptor agonist with a Ki of 1.6 nM.
1-(3-AZIDO-2,3-DIDEOXY-5-O-PIVALOYL-BETA-D-ERYTHRO-PENTOFURANOSYL)-THYMINE
C15H21N5O5 (351.15426160000004)
3-(1-(tert-Butyldimethylsilyl)-1H-indol-5-yl)benzoic acid
Estradiol 3-sulfamate
C18H25NO4S (351.15042100000005)
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Bisegliptin
C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98086 - Dipeptidyl Peptidase-4 Inhibitor C471 - Enzyme Inhibitor > C783 - Protease Inhibitor
prostaglandin E2(1-)
The conjugate base of prostaglandin E2; major species at pH 7.3.
LY 344864 racemate
LY 344864 racemate is a 5-HT1F receptor agonist extracted from patent US 5708187 A.
N-((1S,trans)-2-Hydroxycyclopentyl)adenosine
C15H21N5O5 (351.15426160000004)
D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058913 - Purinergic Agonists D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites GR79236 is a highly potent, selective and orally active adenosine A1 receptor agonist with a Kis of 3.1 nM and 1300 nM for A1 and A2 receptors, respectively. GR79236 has anti-nociceptive and anti-inflammatory actions[1][2]. GR79236 is a highly potent, selective and orally active adenosine A1 receptor agonist with a Kis of 3.1 nM and 1300 nM for A1 and A2 receptors, respectively. GR79236 has anti-nociceptive and anti-inflammatory actions[1][2].
3-(difluoromethyl)-N-(7-fluoro-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1-methyl-1H-pyrazole-4-carboxamide
C18H20F3N3O (351.15583860000004)
Carbol-Fuchsin
C21H22ClN3 (351.15021620000005)
D004396 - Coloring Agents > D012394 - Rosaniline Dyes
8-(Mesitylthio)-9-(pent-4-yn-1-yl)-9H-purin-6-amine
C19H21N5S (351.15175860000005)
2-methyl-3-[(2-methyl-1H-indol-3-yl)-(2-pyridinyl)methyl]-1H-indole
8-[1-(3-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-yl]-1,4-dioxa-8-azaspiro[4.5]decane
(1S,2S,3R,4S,5R,6S)-4-(hydroxymethyl)-6-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}cyclohexane-1,2,3,5-tetrol
4-(2-(2-Chlorophenyl)ethyl)amino-8-methoxy-3,10-dimethyl-2,9-dioxatricyclo(4,3,1,0(3,7))decane
C19H26ClNO3 (351.16011160000005)
(6r)-2-Amino-6-[2-(3-Methoxybiphenyl-3-Yl)ethyl]-3,6-Dimethyl-5,6-Dihydropyrimidin-4(3h)-One
(2S)-4-Methyl-2-(3-phenylthioureido)-N-((3S)-tetrahydro-2-hydroxy-3-furanyl)pentanamide
Tamibarotene
C22H25NO3 (351.18343400000003)
C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent
1H-indazol-3-yl-[2-[6-methyl-4-(methylamino)pyridin-2-yl]morpholin-4-yl]methanone
(1R,4Z,6S,7S,17R)-4-Ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.014,17]heptadec-11-ene-3,8-dione
prostaglandin I2(1-)
D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Conjugate base of prostaglandin I2.
thromboxane A2(1-)
Conjugate base of thromboxane A2 arising from deprotonation of the carboxylic acid function. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
prostaglandin D2(1-)
A prostaglandin carboxylic acid anion that is the conjugate base of prostaglandin D2., obtained by deprotonation of the carboxy group; major species at pH 7.3.
(5S,6E,8Z,10E,12E,14R,15S)-5,14,15-Trihydroxyicosa-6,8,10,12-tetraenoate
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
(5S,6R,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoate
15-dehydro-prostaglandin E1(1-)
Conjugate base of 15-dehydro-prostaglandin E1.
(5S,6Z,8E,10E,12R,14Z)-5,12,20-Trihydroxyicosa-6,8,10,14-tetraenoate
2-Azaniumyl-3-hydroxy-15-methylhexadecane-1-sulfonate
13,14-dihydro-15-oxo-prostaglandin E2(1-)
Conjugate base of 13,14-dihydro-15-oxo-prostaglandin E2.
(5S,15S)-5-hydroperoxy-15-HETE(1-)
5-hydroperoxy-15-HETE(1-) that has 5S,15S configuration. The conjugate base of (5S,15S)-5-hydroperoxy-15-HETE. The major species at pH 7.3.
(5S,7E,9E,11Z,13E,15S)-15-hydroperoxy-5-hydroxyicosa-7,9,11,13-tetraenoate
(5S,6E,8Z,11Z,13E,15R)-5-hydroperoxy-15-hydroxyicosa-6,8,11,13-tetraenoate
methyl (1S,16S,20S)-16-methyl-17-oxa-3-aza-13-azoniapentacyclo[11.8.0.02,10.04,9.015,20]henicosa-2(10),4,6,8,14,18-hexaene-19-carboxylate
(1R,4E,6S,7S,17R)-4-Ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.014,17]heptadec-11-ene-3,8-dione
(2R,3S,5R)-2-[6-[[(1S,2S)-2-Hydroxycyclopentyl]amino]-9-purinyl]-5-(hydroxymethyl)oxolane-3,4-diol
C15H21N5O5 (351.15426160000004)
D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058913 - Purinergic Agonists D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites
N-(2-aminophenyl)-1-butyl-4-hydroxy-2-oxo-3-quinolinecarboxamide
8-{[butyl(ethyl)amino]methyl}-7-hydroxy-4-phenyl-2H-chromen-2-one
C22H25NO3 (351.18343400000003)
N-[(3-phenyl-1,2,4-oxadiazol-5-yl)methyl]-2-(2,3,5-trimethylphenoxy)acetamide
4-[(1-methyl-2-oxo-4-quinolinyl)oxy]-N-(4-methyl-2-pyridinyl)butanamide
2-(4-benzoylphenoxy)-N-(4-methylcyclohexyl)acetamide
C22H25NO3 (351.18343400000003)
N-(3-allyl-2-hydroxybenzylidene)-4-[(4-methylphenyl)amino]butanohydrazide
(E)-N-cyclohexyl-3-(4-nitrophenyl)-N-pyridin-2-ylprop-2-enamide
N-{4-[4-(2-methylbenzoyl)-1-piperazinyl]phenyl}propanamide
N-[2-(cyclohexen-1-yl)ethyl]-2-(4-oxochromeno[4,3-c]pyrazol-1-yl)acetamide
20-hydroxy-6-trans-leukotriene B4(1-)
A leukotriene anion that is the conjugate base of 20-hydroxy-6-trans-leukotriene B4 arising from deprotonation of the carboxylic acid function; major species at pH 7.3.
13,14-dihydro-15-oxolipoxin A4(1-)
A hydroxy fatty acid anion obtained by deprotonation of the carboxy function of 13,14-dihydro-15-oxolipoxin A4; major species at pH 7.3.
(12S)-hydroperoxy-(14R,15S)-epoxy-(5Z,8Z,10E)-icosatrienoate
A polyunsaturated fatty acid anion that is the conjugate base of (12S)-hydroperoxy-(14R,15S)-EET, obtained by deprotonation of the carboxy group; major species at pH 7.3.
(12S)-hydroperoxy-(14S,15R)-epoxy-(5Z,8Z,10E)-icosatrienoate
A polyunsaturated fatty acid anion that is the conjugate base of (12S)-hydroperoxy-(14S,15R)-epoxy-(5Z,8Z,10E)-icosatrienoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
(5S)-hydroperoxy-(14R,15S)-epoxy-(6E,8Z,11Z)-icosatrienoate
A polyunsaturated fatty acid anion that is the conjugate base of (5S)-hydroperoxy-(14R,15S)-epoxy-(6E,8Z,11Z)-icosatrienoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
(8S)-hydroperoxy-(14S,15R)-epoxy-(5Z,9E,11Z)-icosatrienoate
A polyunsaturated fatty acid anion that is the conjugate base of (8S)-hydroperoxy-(14S,15R)-epoxy-(5Z,9E,11Z)-icosatrienoate, obtained by deprotonation of the carboxy group; major species at pH 7.3.
4-[5-(4-methoxyphenyl)-3-isoxazolyl]-N-(2-pyridinylmethyl)butanamide
N-[(2-methoxyphenyl)methyl]-2-methyl-3-prop-2-enoxy-6-indazolecarboxamide
6-(3,5-dimethyl-4-isoxazolyl)-N-[(1-methyl-2-piperidinyl)methyl]-4-quinazolinamine
2-(Diethylaminomethyl)-4-spiro[1,6-dihydrobenzo[h]quinazoline-5,1-cyclohexane]one
(5S,6Z,8E,10E,12R,14Z)-5,12,19-trihydroxyicosa-6,8,10,14-tetraenoate
(5S,6Z,8E,10E,12R,14Z)-5,12,18-trihydroxyicosa-6,8,10,14-tetraenoate
1-butyl-4-hydroxy-N-(3-methyl-2-pyridinyl)-2-oxo-3-quinolinecarboxamide
(5S,6E,8Z,11Z,13E,15S)-15-hydroperoxy-5-hydroxyicosa-6,8,11,13-tetraenoate
beta-D-tyvelosyl-(1->3)-N-acetyl-beta-D-galactosamine
N,N-bis(2-methoxyethyl)-2-(4-methylphenyl)quinazolin-4-amine
N-(9-ethyl-3-carbazolyl)-2-(2-oxolanylmethylamino)acetamide
2-[(2S,3R,6S)-3-[[(3-fluoroanilino)-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]-N,N-dimethylacetamide
C17H22FN3O4 (351.15942640000003)
2-[(2S,3S,6R)-3-[[(3-fluoroanilino)-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]-N,N-dimethylacetamide
C17H22FN3O4 (351.15942640000003)
(1S,5R)-N-(2-fluorophenyl)-7-[4-[(E)-prop-1-enyl]phenyl]-3,6-diazabicyclo[3.1.1]heptane-3-carboxamide
1-[(2S,3S)-2-(hydroxymethyl)-6-[oxo(2-pyridinyl)methyl]-3-phenyl-1,6-diazaspiro[3.3]heptan-1-yl]ethanone
1-[(2S,3R)-2-(hydroxymethyl)-6-[oxo(2-pyridinyl)methyl]-3-phenyl-1,6-diazaspiro[3.3]heptan-1-yl]ethanone
2-[(2S,3R,6R)-3-[[(3-fluoroanilino)-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]-N,N-dimethylacetamide
C17H22FN3O4 (351.15942640000003)
2-[(2R,3S,6S)-3-[[(3-fluoroanilino)-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]-N,N-dimethylacetamide
C17H22FN3O4 (351.15942640000003)
2-[(2R,3S,6R)-3-[[(3-fluoroanilino)-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]-N,N-dimethylacetamide
C17H22FN3O4 (351.15942640000003)
2-[(2R,3R,6S)-3-[[(3-fluoroanilino)-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]-N,N-dimethylacetamide
C17H22FN3O4 (351.15942640000003)
2-[(2S,3S,6S)-3-[[(3-fluoroanilino)-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]-N,N-dimethylacetamide
C17H22FN3O4 (351.15942640000003)
2-[(2R,3R,6R)-3-[[(3-fluoroanilino)-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]-N,N-dimethylacetamide
C17H22FN3O4 (351.15942640000003)
1-[(2R,3R)-2-(hydroxymethyl)-6-[oxo(2-pyridinyl)methyl]-3-phenyl-1,6-diazaspiro[3.3]heptan-1-yl]ethanone
1-Hydroxy-5-methoxy-3-methyl-6-[[7-(3-methyl-1,3-butadienyl)-1H-indole-3-yl]methyl]pyrazine-2(1H)-one
5-hydroperoxy-15-HETE(1-)
An icosanoid anion that is the conjugate base of 5-hydroperoxy-15-HETE, obtained by deprotonation of the carboxy group; major species at pH 7.3.
4,6-diphenyl-N-[(E)-pyridin-3-ylmethylideneamino]pyrimidin-2-amine
(5Z,13E,15S,17Z)-9alpha,11alpha,15-Trihydroxyprosta-5,13,17-trien-1-Oate
butanethioic acid S-[4-[(6S,10bR)-1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinolin-6-yl]phenyl] ester
(2S)-hydroxy[(9Z,12Z,15Z)-octadeca-9,12,15-trienoylamino]acetic acid
2-(2H-Benzo[d][1,2,3]triazol-2-yl)-4,6-dipentylphenol
1H-indazol-3-yl-[(2S)-2-[6-methyl-4-(methylamino)pyridin-2-yl]morpholin-4-yl]methanone
1-[Diethyl[(E)-2-phenylethenyl]silyl]-2-(diethylsilyl)benzene
(1R,4Z,6R,7R,14R,17R)-4-ethylidene-7-hydroxy-6,7-dimethyl-14-oxido-2,9-dioxa-14-azoniatricyclo[9.5.1.014,17]heptadec-11-ene-3,8-dione
pirenzepine
A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents
dipivefrin
C19H29NO5 (351.20456240000004)
S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EA - Sympathomimetics in glaucoma therapy D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent
Am 80
C22H25NO3 (351.18343400000003)
C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent Same as: D01418
lipoxin B4(1-)
A hydroxy fatty acid anion obtained by the deprotonation of the carboxy group of lipoxin B4: major species at pH 7.3.
Am 580
C22H25NO3 (351.18343400000003)
D009676 - Noxae > D013723 - Teratogens D000970 - Antineoplastic Agents
19-hydroxyleukotriene B4(1-)
A leukotriene anion that is the conjugate base of 19-hydroxyleukotriene B4, obtained by deprotonation of the carboxy group; major species at pH 7.3.
beta-D-Tyvp-(1->3)-beta-D-GalpNAc
An amino disaccharide consisting of N-acetyl-beta-D-galactosamine having a beta-D-tyvelosyl residue attached at the 3-position.
(5S)-hydroxy-(15S)-hydroperoxy-(6E,8Z,11Z,13E)-icosatetraenoate
An hydroperoxy(hydroxy)icosatetraenoate that is the conjugate base of (5S)-hydroxy-(15S)-hydroperoxy-(6E,8Z,11Z,13E)-icosatetraenoic acid; major species at pH 7.3.
lipoxin A4(1-)
A hydroxy fatty acid anion obtained by deprotonation of the carboxy function of lipoxin A4: major species at pH 7.3.
18-hydroxyleukotriene B4(1-)
A leukotriene anion that is the conjugate base of 18-hydroxyleukotriene B4, obtained by deprotonation of the carboxy group; major species at pH 7.3.
20-hydroxy-leukotriene B4(1-)
Conjugate base of 20-hydroxy-leukotriene B4 arising from deprotonation of the carboxylic acid function.
hexadecasphing-4-enine-1-phosphate
A sphingoid 1-phosphate that is hexadecasphing-4-enine substituted by a phospho group at position 1.
NAB-14
NAB-14 is a potent, selective, orally active and non-competitive GluN2C/2D antagonists with an IC50 of 580 nM for GluN1/GluN2D. NAB-14 shows >800-fold selective for recombinant GluN2C and GluN2D over GluN2A and GluN2B. NAB-14 can cross the blood-brain-barrier[1].
NPY5RA-972
NPY5RA-972 is an orally active, central nervous system (CNS) penetrating, potent and selective NPY Y5 receptor antagonist that prevents feeding driven by activation of this receptor[1].
(3r,8s,11ar,11br)-5-[(3r)-3-amino-3-carboxypropyl]-8-hydroxy-1h,2h,3h,8h,9h,10h,11h,11ah,11bh-pyrido[2,1-f]1,6-naphthyridine-3-carboxylic acid
1-hydroxy-5-methoxy-3-methyl-6-{[7-(3-methylbuta-1,3-dien-1-yl)-1h-indol-3-yl]methyl}pyrazin-2-one
16-methoxy-6,11,11-trimethyl-5,8,13-triazatetracyclo[10.7.0.0³,⁸.0¹⁴,¹⁹]nonadeca-1(12),2,9,14,16,18-hexaene-4,7-dione
(1'r,2s,3r,6'r,7'r,17'r)-7'-hydroxy-3,6',7'-trimethyl-2',9'-dioxa-14'-azaspiro[oxirane-2,4'-tricyclo[9.5.1.0¹⁴,¹⁷]heptadecan]-11'-ene-3',8'-dione
(3s,8as)-1-hydroxy-3-{[1-(3-methylbut-2-en-1-yl)indol-3-yl]methyl}-3h,6h,7h,8h,8ah-pyrrolo[1,2-a]pyrazin-4-one
(1r,7r,11r,12r,17s)-4-ethylidene-7,12-dihydroxy-7-methyl-6-methylidene-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadecane-3,8-dione
(1s,12s,15s,20r)-15-hydroxy-1,16,16,20-tetramethyl-3-azapentacyclo[10.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]icosa-2(10),4,6,8-tetraen-17-one
(1s,4e,6s,7r,16r,17r)-4-ethylidene-7,16-dihydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
(1r,4e,6r,7r,17r)-7-hydroxy-4-(2-hydroxyethylidene)-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
(2e)-n-[(2r)-2-hydroxy-2-{4-[(3-methylbut-2-en-1-yl)oxy]phenyl}ethyl]-3-phenylprop-2-enimidic acid
C22H25NO3 (351.18343400000003)
(8r,9r,11z,14r,15s,16r)-11-ethylidene-8,15-dihydroxy-8,9-dimethyl-6,13-dioxa-1-azatricyclo[12.2.1.0⁴,¹⁶]heptadec-3-ene-7,12-dione
6-hydroxy-5,7,8-trimethyl-2,10,19-trioxa-15-azatetracyclo[10.5.1.1⁵,⁸.0¹⁵,¹⁸]nonadec-12-ene-3,9-dione
(1r,4z,6s,7s,17r)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
1-hydroxy-3-{[2-(3-methylbut-2-en-1-yl)-1h-indol-3-yl]methyl}-3h,6h,7h,8h,8ah-pyrrolo[1,2-a]pyrazin-4-one
(2r,3r,4s,5s)-2-(6-{[(2z)-4-hydroxy-3-methylbut-2-en-1-yl]amino}purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol
C15H21N5O5 (351.15426160000004)
3-methanesulfonyl-n-methyl-n-(2-{4-[(3-methylbut-2-en-1-yl)oxy]phenyl}ethyl)prop-2-enamide
C18H25NO4S (351.15042100000005)
(1r,7ar)-7-({[(2e)-2-(hydroxymethyl)but-2-enoyl]oxy}methyl)-2,3,5,7a-tetrahydro-1h-pyrrolizin-1-yl (2z)-4-hydroxy-3-methylbut-2-enoate
1-hydroxy-3-{[2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methyl}-3h,6h,7h,8h,8ah-pyrrolo[1,2-a]pyrazin-4-one
(1e,3s,5z,10s,11r)-2,6,10-trimethyl-1-(2-methyl-1,3-thiazol-4-yl)trideca-1,5-diene-3,11-diol
C20H33NO2S (351.22318780000006)
(8r,9r,11e,14r,15s)-11-ethylidene-8,15-dihydroxy-8,9-dimethyl-6,13-dioxa-1-azatricyclo[12.2.1.0⁴,¹⁶]heptadec-3-ene-7,12-dione
2-{6-[(4-hydroxy-3-methylbut-2-en-1-yl)amino]purin-9-yl}-5-(hydroxymethyl)oxolane-3,4-diol
C15H21N5O5 (351.15426160000004)
2-hydroxy-10-methyl-4-phenyl-6-[(1e)-prop-1-en-1-yl]-6h,6ah,7h,8h,9h,10h,10ah-isochromeno[4,3-c]pyridin-1-one
C22H25NO3 (351.18343400000003)
12β-hydroxyacetylfawcettiine
C19H29NO5 (351.20456240000004)
{"Ingredient_id": "HBIN000749","Ingredient_name": "12\u03b2-hydroxyacetylfawcettiine","Alias": "NA","Ingredient_formula": "C19H29NO5","Ingredient_Smile": "CC(=O)OC1CCC23C4CCCN2CCCC3(C1CC4OC(=O)C)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "38574","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
(1r,4e,6s,7r,17s)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
4-ethylidene-7-hydroxy-6-(hydroxymethyl)-7-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
4-ethylidene-7,16-dihydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
(2s)-2-{[(2s)-2-amino-1-hydroxy-3-(1h-indol-3-yl)propylidene]amino}-3-phenylpropanoic acid
6-methyl-1-{[3-(4-methylpent-3-en-1-yl)oxiran-2-yl]methyl}-9h-carbazole-2,7-diol
C22H25NO3 (351.18343400000003)
(2r,5s,10s,11r)-2,6,6,10-tetramethyl-15-azapentacyclo[11.6.1.0²,¹¹.0⁵,¹⁰.0¹⁶,²⁰]icosa-1(19),13,16(20)-triene-17,18-dione
(1r,5r,7s,8s,18r)-7-hydroxy-5,7,8-trimethyl-2,10,19-trioxa-15-azatetracyclo[10.5.1.1⁵,⁸.0¹⁵,¹⁸]nonadec-12-ene-3,9-dione
(1r,4e,6r,7r,17r)-4-ethylidene-7-hydroxy-6,7-dimethyl-3,8-dioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-en-14-ium-14-olate
7-({[2-(hydroxymethyl)but-2-enoyl]oxy}methyl)-2,3,5,7a-tetrahydro-1h-pyrrolizin-1-yl 4-hydroxy-3-methylbut-2-enoate
(2s,3e,12bs)-3-ethylidene-2-(1-hydroxy-3-methoxy-3-oxoprop-1-en-2-yl)-1h,2h,6h,7h,12h,12bh-5λ⁵-indolo[2,3-a]quinolizin-5-ylium
5-(3-amino-3-carboxypropyl)-8-hydroxy-1h,2h,3h,8h,9h,10h,11h,11ah,11bh-pyrido[2,1-f]1,6-naphthyridine-3-carboxylic acid
(1s,4z,6r,7r)-4-ethylidene-7,16-dihydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
(2e)-n-{4-[(3-aminopropyl)amino]butyl}-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enimidic acid
C18H29N3O4 (351.21579540000005)
11-ethylidene-8,15-dihydroxy-8,9-dimethyl-6,13-dioxa-1-azatricyclo[12.2.1.0⁴,¹⁶]heptadec-3-ene-7,12-dione
(3s,8as)-1-hydroxy-3-{[2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methyl}-3h,6h,7h,8h,8ah-pyrrolo[1,2-a]pyrazin-4-one
4,5-bis[(4-methoxyphenyl)methyl]-1,3-dimethylimidazol-2-imine
(4z)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
(2z)-n-(2-hydroxy-2-{4-[(3-methylbut-2-en-1-yl)oxy]phenyl}ethyl)-3-phenylprop-2-enimidic acid
C22H25NO3 (351.18343400000003)
methyl 3-[(dimethylcarbamoyl)methyl]-2-(4-methylphenyl)imidazo[1,2-a]pyridine-6-carboxylate
n-(2-hydroxy-2-{4-[(3-methylbut-2-en-1-yl)oxy]phenyl}ethyl)-3-phenylprop-2-enimidic acid
C22H25NO3 (351.18343400000003)
(1r,4z,6s,7s,17s)-4-ethylidene-7-hydroxy-6-(hydroxymethyl)-7-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
15-hydroxy-1,16,16,20-tetramethyl-3-azapentacyclo[10.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]icosa-2(10),4,6,8-tetraen-17-one
1-hydroxy-3-{[1-(3-methylbut-2-en-1-yl)indol-3-yl]methyl}-3h,6h,7h,8h,8ah-pyrrolo[1,2-a]pyrazin-4-one
(3s,8as)-1-hydroxy-3-{[2-(3-methylbut-2-en-1-yl)-1h-indol-3-yl]methyl}-3h,6h,7h,8h,8ah-pyrrolo[1,2-a]pyrazin-4-one
2,6,6,10-tetramethyl-15-azapentacyclo[11.6.1.0²,¹¹.0⁵,¹⁰.0¹⁶,²⁰]icosa-1(19),13,16(20)-triene-17,18-dione
(1s,4e,6s,7r,17s)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
2-methyl-4-({8-methyl-6-[(3-methylbut-2-enoyl)oxy]-8-azabicyclo[3.2.1]octan-3-yl}oxy)-4-oxobut-2-enoic acid
(2s,3r)-3-chloro-2-(3,4-dimethylpent-3-en-1-yl)-2-(methoxymethyl)-3,4-dihydro-1h-quinoline-6-carboxylic acid
C19H26ClNO3 (351.16011160000005)
(1r,4r,5s)-1-[(s)-(1s)-cyclohex-2-en-1-yl(hydroxy)methyl]-3-hydroxy-4-(1-hydroxyhexyl)-5-methyl-6-oxa-2-azabicyclo[3.2.0]hept-2-en-7-one
C19H29NO5 (351.20456240000004)
4-[(8as)-7-(4-methoxyphenyl)-1,2,3,5,8,8a-hexahydroindolizin-6-yl]-2-methoxyphenol
C22H25NO3 (351.18343400000003)
(3s,3ar,4as,5r,7s,7as,8r,9as)-5,7-dihydroxy-4a,8-dimethyl-3-(piperidin-1-ylmethyl)-decahydroazuleno[6,5-b]furan-2-one
(3s,8as)-1-hydroxy-3-({2-[(2r)-3-methylbut-3-en-2-yl]-1h-indol-3-yl}methyl)-3h,6h,7h,8h,8ah-pyrrolo[1,2-a]pyrazin-4-one
(5ar)-2-ethanimidoyl-1-hydroxy-5,5-dimethyl-10-(methylamino)-5ah,6h-naphtho[2,3-a]pyrrolizine-3,11-dione
(1s,2r,3r,5s,6s)-2-benzyl-3-hydroxy-8-methyl-8-azabicyclo[3.2.1]octan-6-yl benzoate
C22H25NO3 (351.18343400000003)
(1r,6r,7s,17s)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
(8r,9r,11e,14r,15s,16r)-11-ethylidene-8,15-dihydroxy-8,9-dimethyl-6,13-dioxa-1-azatricyclo[12.2.1.0⁴,¹⁶]heptadec-3-ene-7,12-dione
(2s,3s)-3-[(1s)-12-carboxy-1-hydroxy-6-oxododecyl]-2-isocyano-2-[(1e)-prop-1-en-1-yl]oxirane
C19H29NO5 (351.20456240000004)
(8r,9r,11e,14s,15r,16s)-11-ethylidene-8,15-dihydroxy-8,9-dimethyl-6,13-dioxa-1-azatricyclo[12.2.1.0⁴,¹⁶]heptadec-3-ene-7,12-dione
(1r,5s,6r,7r,8s,18r)-6-hydroxy-5,7,8-trimethyl-2,10,19-trioxa-15-azatetracyclo[10.5.1.1⁵,⁸.0¹⁵,¹⁸]nonadec-12-ene-3,9-dione
(1r,6r,7s)-4-ethylidene-7-hydroxy-6,14-dimethyl-2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-ene-3,8,17-trione
(1r,4e,6r,7r,14r,17r)-4-ethylidene-7-hydroxy-6,7-dimethyl-3,8-dioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-en-14-ium-14-olate
2-ethanimidoyl-1-hydroxy-5,5-dimethyl-10-(methylamino)-5ah,6h-naphtho[2,3-a]pyrrolizine-3,11-dione
7-({[(2z)-2-(hydroxymethyl)but-2-enoyl]oxy}methyl)-2,3,5,7a-tetrahydro-1h-pyrrolizin-1-yl (2e)-4-hydroxy-3-methylbut-2-enoate
(1r,4e,6r,7r,17s)-4-ethylidene-7-hydroxy-6-(hydroxymethyl)-7-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
(1r,4z,6s,7r,17r)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
(2r,3r)-3-chloro-2-(3,4-dimethylpent-3-en-1-yl)-2-(methoxymethyl)-3,4-dihydro-1h-quinoline-6-carboxylic acid
C19H26ClNO3 (351.16011160000005)
3-chloro-2-(3,4-dimethylpent-3-en-1-yl)-2-(methoxymethyl)-3,4-dihydro-1h-quinoline-6-carboxylic acid
C19H26ClNO3 (351.16011160000005)
(2z,6r,9z)-4-hydroxy-16-methoxy-6,11,11-trimethyl-5,8,13-triazatetracyclo[10.7.0.0³,⁸.0¹⁴,¹⁹]nonadeca-1(12),2,4,9,14,16,18-heptaen-7-one
4-ethylidene-7,12-dihydroxy-7-methyl-6-methylidene-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadecane-3,8-dione
(1s,4e,6r,7r,16r,17r)-4-ethylidene-7,16-dihydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
(2e)-2-methyl-4-{[(1r,3r,5s,6r)-8-methyl-6-[(3-methylbut-2-enoyl)oxy]-8-azabicyclo[3.2.1]octan-3-yl]oxy}-4-oxobut-2-enoic acid
(2s,3r,4s,5r)-2-(6-{[(2z)-4-hydroxy-3-methylbut-2-en-1-yl]amino}purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol
C15H21N5O5 (351.15426160000004)
2-benzyl-3-hydroxy-8-methyl-8-azabicyclo[3.2.1]octan-6-yl benzoate
C22H25NO3 (351.18343400000003)
(1r,4z,6r,7s,16s,17s)-4-ethylidene-7,16-dihydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
(2e)-3-methanesulfonyl-n-methyl-n-(2-{4-[(3-methylbut-2-en-1-yl)oxy]phenyl}ethyl)prop-2-enamide
C18H25NO4S (351.15042100000005)
7-hydroxy-5,7,8-trimethyl-2,10,19-trioxa-15-azatetracyclo[10.5.1.1⁵,⁸.0¹⁵,¹⁸]nonadec-12-ene-3,9-dione
4-[(8ar)-7-(3,4-dimethoxyphenyl)-1,2,3,5,8,8a-hexahydroindolizin-6-yl]phenol
C22H25NO3 (351.18343400000003)
(1r,4z,7r,11r,12r,17s)-4-ethylidene-7,12-dihydroxy-7-methyl-6-methylidene-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadecane-3,8-dione
2,6,10-trimethyl-1-(2-methyl-1,3-thiazol-4-yl)trideca-1,5-diene-3,11-diol
C20H33NO2S (351.22318780000006)
4-[7-(3,4-dimethoxyphenyl)-1,2,3,5,8,8a-hexahydroindolizin-6-yl]phenol
C22H25NO3 (351.18343400000003)
(1s,4z,6r,7r,16s,17r)-4-ethylidene-7,16-dihydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
5-{[(2z)-4-heptyl-5-methylpyrrol-2-ylidene]methyl}-4-methoxy-1h,1'h-2,2'-bipyrrole
2-methoxy-4-[7-(4-methoxyphenyl)-1,2,3,5,8,8a-hexahydroindolizin-6-yl]phenol
C22H25NO3 (351.18343400000003)