Exact Mass: 338.2933
Exact Mass Matches: 338.2933
Found 500 metabolites which its exact mass value is equals to given mass value 338.2933
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Erucic acid
Before genetic engineering, plant breeders were aiming to produce a less-bitter-tasting multi-purpose oil from rapeseed that would appeal to a larger market by making it more palatable for cattle and other livestock. While it was possible to breed out much of the pungent-tasting glucosinolates, one of the dominant erucic acid genes would get stripped out of the genome as well, greatly reducing its valuable erucic acid content. Studies on rats show lipodosis problems when fed high quantities of erucic acid, however, so this did not hinder saleability. Later trials showed that rats had the same problems with other vegetable fatty acids, because rats are poor at metabolising some fats. The plant breeding industry later changed "low erucic acid" to be its unique selling proposition over that of its competitors.; Erucic acid is a monounsaturated omega-9 fatty acid found mainly in the Brassica family of plants such as canola, rapeseed, wallflower seed, mustard seed as well as Brussels spouts and broccoli. Some Brassica cultivars can have up to 40 to 50 percent of their oil recovered as erucic acid. Erucic acid is also known as cis-13-docosenoic acid. The trans isomer is known as brassidic acid. Erucic acid occurs in nature only along with bitter-tasting compounds. Erucic acid has many of the same uses as mineral oils but with the advantage that it is more readily bio-degradable. Its high tolerance to temperature makes it suitable for transmission oil. Its ability to polymerize and dry means it can be - and is - used as a binder for oil paints. Increased levels of eicosenoic acid (20:ln9) and erucic acid (22:1n9) have been found in the red blood cell membranes of autistic subjects with developmental regression (PMID: 16581239). Erucic acid is broken down long-chain acyl-coenzyme A (CoA) dehydrogenase, which is produced in the liver. This enzyme breaks this long chain fatty acid into shorter-chain fatty acids. human infants have relatively low amounts of this enzyme and because of this, babies should not be given foods high in erucic acid.; Erucic acid is a monounsaturated omega-9 fatty acid, denoted 22:1 ?-9. It is prevalent in rapeseed, wallflower seed, and mustard seed, making up 40-50\\% of their oils. Erucic acid is also known as cis-13-docosenoic acid and the trans isomer is known as brassidic acid.; The name erucic means: of or pertaining to eruca; which is a genus of flowering plants in the family Brassicaceae. It is also the Latin for coleworth, which today is better known as kale. Erucic acid is produced naturally (together with other fatty acids) across a great range of green plants, but especially so in members of the brassica family. It is highest in some of the rapeseed varieties of brassicas, kale and mustard being some of the highest, followed by Brussels spouts and broccoli. For industrial purposes, a High-Erucic Acid Rapeseed (HEAR) has been developed. These cultivars can yield 40\\% to 60\\% of the total oil recovered as erucic acid. Erucic acid is a 22-carbon, monounsaturated omega-9 fatty acid found mainly in the Brassica family of plants such as canola, rapeseed, wallflower seed, mustard seed as well as Brussels spouts and broccoli. Some Brassica cultivars can have up to 40 to 50 percent of their oil recovered as erucic acid. Erucic acid is also known as cis-13-docosenoic acid. The trans isomer is known as brassidic acid. Erucic acid occurs in nature only along with bitter-tasting compounds. Erucic acid has many of the same uses as mineral oils but with the advantage that it is more readily bio-degradable. Its high tolerance to temperature makes it suitable for transmission oil. Erucic acid’s ability to polymerize and dry means it can be - and is - used as a binder for oil paints. Increased levels of eicosenoic acid (20:Ln9) and erucic acid (22:1N9) have been found in the red blood cell membranes of autistic subjects with developmental regression (PMID: 16581239 ). Erucic acid is broken down long-chain acyl-coenzyme A (CoA) dehydrogenase, which is produced in the liver. This enzyme breaks this long chain fatty acid into shorter-chain fatty acids. Human infants have relatively low amounts of this enzyme and because of this, babies should not be given foods high in erucic acid. Food-grade rapeseed oil (also known as canola oil) is regulated to a maximum of 2\\% erucic acid by weight in the US and 5\\% in the EU, with special regulations for infant food. Canola was bred from rapeseed cultivars of B. napus and B. rapa at the University of Manitoba, Canada. Canola oil is derived from a variety of rapeseed that is low in erucic acid. Erucic acid is a docosenoic acid having a cis- double bond at C-13. It is found particularly in brassicas - it is a major component of mustard and rapeseed oils and is produced by broccoli, Brussels sprouts, kale, and wallflowers. It is a conjugate acid of an erucate. Erucic acid is a natural product found in Dipteryx lacunifera, Myrtus communis, and other organisms with data available. Erucic Acid is a monounsaturated very long-chain fatty acid with a 22-carbon backbone and a single double bond originating from the 9th position from the methyl end, with the double bond in the cis- configuration. See also: Cod Liver Oil (part of). A docosenoic acid having a cis- double bond at C-13. It is found particularly in brassicas - it is a major component of mustard and rapeseed oils and is produced by broccoli, Brussels sprouts, kale, and wallflowers.
aphidicolin
A tetracyclic diterpenoid that has an tetradecahydro-8,11a-methanocyclohepta[a]naphthalene skeleton with two hydroxymethyl substituents at positions 4 and 9, two methyl substituents at positions 4 and 11b and two hydroxy substituents at positions 3 and 9. An antibiotic with antiviral and antimitotical properties. Aphidicolin is a reversible inhibitor of eukaryotic nuclear DNA replication. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors
Clofilium
C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators
11,12-DiHETrE
11,12-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Arachidonic acid may be oxygenated by cytochrome P450 in several ways. Epoxidation of the double bonds leads to the regio- and enantioselective formation of four epoxyeicosatrienoic acids (EETs), which are hydrolyzed by epoxide hydrolase to vicinal diols (DHETs). 11,12-DiHETrE excretion is increased in healthy pregnant women compared with nonpregnant female volunteers, and increased even further in patients with pregnancy-induced hypertension (PIH). The physiological significance of arachidonic acid epoxides has been debated and it is unknown whether they play a role in pregnancy and parturition. Vasodilative effects, inhibition of cyclooxygenase, or inhibition of platelet aggregation by EETs have been observed only at micromolar concentrations. On the other hand, effects on the stimulus-secretion coupling during hormone release have been found in the nanomolar and picomolar range. (PMID: 9440131, 2198572) [HMDB] 11,12-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Arachidonic acid may be oxygenated by cytochrome P450 in several ways. Epoxidation of the double bonds leads to the regio- and enantioselective formation of four epoxyeicosatrienoic acids (EETs), which are hydrolyzed by epoxide hydrolase to vicinal diols (DHETs). 11,12-DiHETrE excretion is increased in healthy pregnant women compared with nonpregnant female volunteers, and increased even further in patients with pregnancy-induced hypertension (PIH). The physiological significance of arachidonic acid epoxides has been debated and it is unknown whether they play a role in pregnancy and parturition. Vasodilative effects, inhibition of cyclooxygenase, or inhibition of platelet aggregation by EETs have been observed only at micromolar concentrations. On the other hand, effects on the stimulus-secretion coupling during hormone release have been found in the nanomolar and picomolar range. (PMID: 9440131, 2198572).
14,15-DiHETrE
14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR ). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR . shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065) [HMDB] 14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR, shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065).
8,9-DiHETrE
8,9-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid (AA) metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. P450converts AA to 8,9- dihydroxyeicosatrienoic acid. This enzymatic pathway was first described in liver; however, it is now clear that AA can be metabolized by P450 in many tissues including the pituitary gland, eye, kidney, adrenal gland, and blood vessels. (PMID: 17431031, 11700990) [HMDB] 8,9-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid (AA) metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. P450converts AA to 8,9- dihydroxyeicosatrienoic acid. This enzymatic pathway was first described in liver; however, it is now clear that AA can be metabolized by P450 in many tissues including the pituitary gland, eye, kidney, adrenal gland, and blood vessels. (PMID: 17431031, 11700990).
5,6-DHET
5,6-DHET is an epoxide intermediate in the oxygenation of arachidonic acid by hepatic monooxygenases pathway. 5,6-DHET is the hydrolysis metabolite of cis-5(6)Epoxy-cis-8,11,14-eicosatrienoic acid by epoxide hydrolases. Many drugs, chemicals, and endogenous compounds are oxygenated in mammalian tissues and in some instances reactive and potentially toxic or carcinogenic epoxides are formed. Naturally occurring olefins may also be oxygenated by mammalian enzymes. The most well known are lipoxygenases and microsomal cytochrome P-450-linked monooxygenases. The epoxides may be chemically labile or may be enzymatically hydrolyzed. When arene or olefinic epoxides are formed by microsomal P-450-linked monooxygenases, they are often rapidly converted to less reactive trans-diols through the action of microsomal epoxide hydrolases. (PMID: 6801052, 6548162) [HMDB] 5,6-DHET is an epoxide intermediate in the oxygenation of arachidonic acid by hepatic monooxygenases pathway. 5,6-DHET is the hydrolysis metabolite of cis-5(6)Epoxy-cis-8,11,14-eicosatrienoic acid by epoxide hydrolases. Many drugs, chemicals, and endogenous compounds are oxygenated in mammalian tissues and in some instances reactive and potentially toxic or carcinogenic epoxides are formed. Naturally occurring olefins may also be oxygenated by mammalian enzymes. The most well known are lipoxygenases and microsomal cytochrome P-450-linked monooxygenases. The epoxides may be chemically labile or may be enzymatically hydrolyzed. When arene or olefinic epoxides are formed by microsomal P-450-linked monooxygenases, they are often rapidly converted to less reactive trans-diols through the action of microsomal epoxide hydrolases. (PMID: 6801052, 6548162).
Cetoleic acid
Cetoleic acid is a poly-unsaturated fatty acid. Source: fish oils and rapeseed. Found as a lipid membrane component.
Phytyl acetate
Phytyl acetate is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive .
Sterebin E
Sterebin F is a constituent of Stevia rebaudiana (stevia) Constituent of Stevia rebaudiana (stevia)
12-Keto-tetrahydro-leukotriene B4
12-keto-tetrahydro-Leukotriene B4 is an inactivated enzymatic metabolite of leukotriene B4(LTB4), product of the human liver enzyme leukotriene B4 (LTB4) 12-hydroxydehydrogenase, also found in the porcine kidney and other mammals. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 17623009, 8394361, 9667737)Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 12-keto-tetrahydro-Leukotriene B4 is an inactivated enzymatic metabolite of leukotriene B4(LTB4), product of the human liver enzyme leukotriene B4 (LTB4) 12-hydroxydehydrogenase, also found in the porcine kidney and other mammals. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 17623009, 8394361, 9667737)
10,11-dihydro-leukotriene B4
10,11-dihydro-leukotriene B4 is the metabolite of lipid omega-oxidation of leukotriene B4 (LTB4). LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region, and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by omega-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the omega-carboxy position and after CoA ester formation (PMID: 7649996, 17623009, 2853166, 6088485). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 10,11-Dihydro-leukotriene B4 is the metabolite of lipid omega-oxidation of leukotriene B4 (LTB4). LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 7649996, 17623009, 2853166, 6088485)
6,7-dihydro-12-epi-LTB4
6,7-dihydro-12-epi-LTB4 is formed when leukotriene B4 (LTB4) is metabolized by beta-oxidation. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 8632343, 9667737). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 6,7-dihydro-12-epi-LTB4 is formed when leukotriene B4 (LTB4) is metabolized by beta-oxidation. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 8632343, 9667737)
Catelaidic acid
Catelaidic acid is found in fats and oils. Catelaidic acid is a constituent of partially hydrogenated fish oil Constituent of partially hydrogenated fish oil. Catelaidic acid is found in fats and oils and fishes.
7,9-Docosanedione
7,9-Docosanedione is found in fats and oils. 7,9-Docosanedione is a constituent of the pollen of Helianthus annuus (sunflower) Constituent of the pollen of Helianthus annuus (sunflower). 7,9-Docosanedione is found in fats and oils.
6,8-Docosanedione
6,8-Docosanedione is a constituent of the pollen of Helianthus annuus (sunflower) Constituent of the pollen of Helianthus annuus (sunflower)
5,7-Docosanedione
5,7-Docosanedione is found in fats and oils. 5,7-Docosanedione is a constituent of the pollen of Helianthus annuus (sunflower) Constituent of the pollen of Helianthus annuus (sunflower). 5,7-Docosanedione is found in fats and oils.
4,6-Docosanedione
4,6-Docosanedione is found in fats and oils. 4,6-Docosanedione is a constituent of the pollen of Helianthus annuus (sunflower) Constituent of the pollen of Helianthus annuus (sunflower). 4,6-Docosanedione is found in fats and oils.
15-Hydroperoxyeicosa-8Z,11Z,13E-trienoate
This compound belongs to the family of Hydroperoxyeicosatrienoic Acids. These are eicosanoic acids with an attached hydroperoxyl group and three CC double bonds
N-butyl Oleate
N-butyl Oleate, also known as 1-Butyl oleic acid or Butyl 9-octadecenoate, is classified as a member of the Fatty acid esters. Fatty acid esters are carboxylic ester derivatives of a fatty acid. N-butyl Oleate is considered to be practically insoluble (in water) and basic. N-butyl Oleate is a fatty ester lipid molecule
(+-)-Zoapatanol
5,8,11-Eicosatrienoic acid, 14,15-dihydroxy-, (5Z,8Z,11Z)-
3-Epiaphidicolin
(3S,4S)-4-[(E,2S,6R,8S,9R,10R)-9-Hydroxy-4,6,8,10-tetramethyl-7-oxododec-4-en-2-yl]-3-methyloxetan-2-one
15-Docosenoic acid
15-docosenoic acid is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. 15-docosenoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 15-docosenoic acid can be found in peanut, which makes 15-docosenoic acid a potential biomarker for the consumption of this food product.
Docosenic acid
Docosenic acid, also known as docosenate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Docosenic acid is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Docosenic acid can be found in peanut, which makes docosenic acid a potential biomarker for the consumption of this food product.
Docosenoic acid
Docosenoic acid, also known as docosenoate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Docosenoic acid is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Docosenoic acid can be found in common buckwheat, which makes docosenoic acid a potential biomarker for the consumption of this food product.
Kirel
Kirenol is a diterpenoid. Kirenol is a natural product found in Sigesbeckia orientalis, Sigesbeckia glabrescens, and Sigesbeckia pubescens with data available. Kirenol is isolated from Siegesbeckia orientalis with anti-inflammatory and analgesic activity[1]. Kirenol is isolated from Siegesbeckia orientalis with anti-inflammatory and analgesic activity[1].
(ent-13S)-15,16-Dihydroxy-8(17)-labden-18-oic acid
8alpha,12R-Epoxy-13E-labden-1beta,6beta,11alpha-triol
(ent-6alpha,8alpha,13E)-6,8-Dihydroxy-13-labden-15-oic acid
(3S,4S)-4-[(E,2S,6R,8S,9R,10R)-9-Hydroxy-4,6,8,10-tetramethyl-7-oxododec-4-en-2-yl]-3-methyloxetan-2-one
(E,Z,Z)-3,7,11-Trihydroxymethyl-15-methyl-2,6,10,14-hexadecatetraen-1-ol
ballodiolic acid
A diterpenoid that is 3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid substituted by methyl groups at positions 5, 6 and 8a and a 5-hydroxy-3-(hydroxymethyl)pentyl group at position 5 (the 4aR,5S,6R,8aR stereoisomer). It is isolated from the whole plant of Ballota limbata (Syn.Otostegia limbata) and acts as a lipoxygenase inhibitor.
(1S,2E,4S,8R,11S,12R)-8,11-Epoxy-4,12-dihydroxy-2-cembren-6-one
14-(3-hydroxyisovaleryloxy)-nerolidol|14-<3-hydroxyisovaleryloxy>-nerolidol
1beta-(2-Methylbutyryloxy)-5beta-hydroxy-bisabolol|1beta-<2-Methylbutyryloxy>-5beta-hydroxy-bisabolol
(Z)-8beta,17-epoxy-14,15,16-trihydroxylabd-12-ene|8beta,17-epoxy-12(E)-labdene-14xi,15,16-triol|aulacocarpin C
2beta,13-dihydroxy-7beta-hydroperoxylabda-8,14-diene
(3alpha,16alpha)-ent-kaurane-3,16,17,19-tetrol|(3alpha,4alpha,16alpha)-ent-kauran-3,16,17,18-tetraol|16beta-(-)-Kauran-3alpha,16,17,19-tetrol
(1S,2E,4S,8S,11S)-4,8,11-Trihydroxy-2,12(20)-cembradien-6-one
(ent-8alpha,13R)-8,13-Epoxy-hydroxy-15-labdanoic acid|8beta,13beta-epoxy-18-hydroxy-ent-labdan-15-oic acid
15,15,16,16-Tetrahydro-3-(15-Hexadecynylidene)dihydro-4-hydroxy-5-methyl-2(3H)-furanone|Dihydromakubanolid A
ent-8,15R-epoxypimara-3beta,12alpha,16-triol|ent-8,15S-epoxypimara-3beta,12alpha,16-triol
(1S,2E,4R,6R,7E,10E,12S)-12-hydroperoxy-2,7,10-cembratriene-4,6-diol
ent-13-epi-8,13-epoxy-14R,15-dihydroxylabdan-3-one
(9Z,12Z)-6-Ac-6-Hydroxy-9,12-octadecadienoic acid|6-acetoxylinoleic acid
(ent-13xi)-3,4-Seco-7-labdene-3,15-dioic acid|5beta,9betaH,10alpha,3,4-seco-labd-7-en-3,15-dioic acid
3, 18-Dihydroxypalarosane|3alpha-19-Dihydroxypalarosan
2beta,6beta,16alpha,17-tetrahydroxy-ent-kaurane|pterokaurane M3
9,13:15,16-diepoxylabdane-6beta,15alpha-diol|leoleorin E
9,13:15,16-diepoxylabdane-6beta,16beta-diol|leoleorin F
9,13-epoxylabd-5-ene-7beta,15,16-triol|leoleorin J
(1S,2E,4S,6R,7E,11S)-11-hydroperoxy-2,7,12(20)-cembratriene-4,6-diol
2beta,15alpha,16alpha,17-Tetrahydroxy-(-)-kauran|2beta,15alpha,16alpha,17-tetrahydroxy-ent-kaurane
(2E,4betaH,5beta,6beta,7E,10alpha)-2,7-Dolabelladiene-5,6,10,18-tetrol
(1S,2E,4S,6R,7S,8R,11S)-8,11-Epoxy-2,12(20)-cembradiene-4,6,7-triol
(ent-2alpha, 3alpha, 15R)-8(14)-Pimarene-2, 3, 15, 16-tetrol|2beta,3beta,15,16-tetrahydroxy-ent-pimar-8(14)-en
amentotaxin A|labda-8(20),14-diene-7,12,13,18-tetrol
(ent-1beta,11beta,15?)-1,11,15,16-Devadaranetetrol|ent-devadaran-1beta,11beta,15xi,16-tetraol|erythroxydiol X
(4R,8S,9R,14S)-4alpha,8beta,9alpha,14alpha-tetrahydroxydolast-1(15)-ene
3-Hexadecyldihydro-4-hydroxy-5-methylene-2(3H)-furanone
9-Isovaleryloxy-geraniolisovelerat|octa-2Z/6E-diene-1,8-diol diisovalerate
4-Deoxy,4,18-didehydro,4?鈥?18-epoxide-4,15,16-Trihydroxy-4,5-seco-5-rosanone|ent-15xi,16-dihydroxy-4xi,18-epoxypictan-5-one
(-)-cladiell-11-ene-3,6,7-triol|(?)-cladiell-11-ene-3,6,7-triol|cladiell-11-ene-3,6,7-triol
2beta,13-dihydroxy-7beta-hydroperoxylabda-8(17),14-diene
(2beta,3alpha,16alpha)-ent-kaurane-2,3,16,17-tetrol
5-isovalerate of ferutriol|6-(3-Methylbutanoyl)9-Daucene-4,6,8-triol
Sterebin E
Sterebin E is a natural product found in Stevia rebaudiana with data available.
5-[4a,5-bis(hydroxymethyl)-1,2-dimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-methylpentanoic acid
C20H34O4_1-Naphthalenecarboxylic acid, decahydro-6-hydroxy-5-[(3Z)-5-hydroxy-3-methyl-3-penten-1-yl]-1,4a,6-trimethyl-, (1S,4aS,5R,6R)
2-(2-hydroxybut-3-en-2-yl)-3a,6,6,9a-tetramethyl-2,4,5,5a,7,8,9,9b-octahydro-1H-benzo[e][1]benzofuran-4,5-diol
11,12-DHET-[d11]
CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0230.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0230.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0230.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000157.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000157.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000157.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000157.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000157.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000157.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]
14,15-DHET-[d11]
CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0224.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0224.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0224.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000155.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000155.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000155.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000155.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000155.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000155.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]
8,9-DHET-[d11]
CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0235.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0235.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0235.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000159.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000159.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000159.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000159.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000159.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0000159.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]
11-deoxy-PGE1
D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Origin: Plant; SubCategory_DNP: Lipids, Prostaglandins
N-butyl-N-(1-(cyclohexylamino)-1-oxobutan-2-yl)-4-methylpentanamide
2-(2-hydroxybut-3-en-2-yl)-3a,6,6,9a-tetramethyl-2,4,5,5a,7,8,9,9b-octahydro-1H-benzo[e][1]benzofuran-4,5-diol_major
2-(2-hydroxybut-3-en-2-yl)-3a,6,6,9a-tetramethyl-2,4,5,5a,7,8,9,9b-octahydro-1H-benzo[e][1]benzofuran-4,5-diol_98.9\\%
8R,9S-epoxy-10S-hydroxy-11Z,14Z-eicosadienoic acid.
di-tert-butyl alpha,alpha,alpha,alpha-tetramethyl-(p-phenylenedimethylene) diperoxide
(4E,6R,8S,9E,11S)-6,8-Dihydroxy-4,8-dimethyl-11-(1-methylethyl)-14-oxo-4,9-pentadecadienal
(1S,2E,4S,7E,11S,12R)-4,11-12-Trihydroxycembra-2,7-dien-6-one
(1S,2E,4S,8S,11S,12R)-4,12-Dihydroxy-2-cembren-8,11-epoxybridged-6-one
(1S,2E,4S,6R,7E,11S)-Cembra-2,7,12(20)-triene-4,6-11-hydroperoxide
(1S,2E,4R,6R,7E,11S)-Cembra-2,7,12(20)-triene-4,6-diol-11-hydroperoxide
(1S,2E,4S,6R,7E,10E,12R)-Cembra-2,7,10-triene-4,6,diol-12-hydroperoxide
(1S,2E,4R,6R,7E,10E,12S)-Cembra-2,7,10-triene-4,6-diol-12-hydroperoxide
(1S,2E,4S,8R,11S,12R)-4,12-Dihydroxycembra-2-en-8,11-epoxybridged-6-one
(1S,2E,4S,8R,11S,12S)-4,12-Dihydroxy-2-cembren-8,11-epoxybridged-6-one
(1S,4aS,5R,6R)-6-hydroxy-5-[(Z)-5-hydroxy-3-methylpent-3-enyl]-1,4a,6-trimethyl-3,4,5,7,8,8a-hexahydro-2H-naphthalene-1-carboxylic acid
5-[4a,5-Bis(hydroxymethyl)-1,2-dimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-methylpentanoic acid
4-[(1E,3Z)-5-hydroxy-3-methylpenta-1,3-dienyl]-3,4a,8,8-tetramethyl-2,4,5,6,7,8a-hexahydro-1H-naphthalene-1,2,3-triol
N-oleoylglycinate
An N-acylglycinate resulting from the deprotonation of the carboxy group of N-oleoylglycine. It is believed to be an intermediate in oleamide biosynthesis. The major species at pH 7.3.
(2S,5R,6R,7R,10S,12R,13R)-6,13-bis(hydroxymethyl)-2,6-dimethyltetracyclo[10.3.1.01,10.02,7]hexadecane-5,13-diol
4-[(E)-9-hydroxy-4,6,8,10-tetramethyl-7-oxododec-4-en-2-yl]-3-methyloxetan-2-one
7-[2-[(E)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoic acid
9-[(6Z)-3-hydroxy-6-(2-hydroxyethylidene)-2-methyloxepan-2-yl]-2,6-dimethylnon-2-en-5-one
(2E)-5-[(1R,2R,4aR,5R,8aS)-2-hydroxy-5-(hydroxymethyl)-2,5,8a-trimethyldecahydronaphthalen-1-yl]-3-methylpent-2-enoic acid
17-Hydroxycyclooctatin, (rel)-
A natural product found in Streptomyces species.
(5Z,8Z,11Z,14R,15R)-14,15-dihydroxyicosa-5,8,11-trienoic acid
(15S)-hydroperoxy-(8Z,11Z,13E)-eicosatrienoic acid
12-HPE(8,10,14)TrE
A hydroperoxy fatty acid that is (8Z,10E,14Z)-icosatrienoic acid in which the hydroperoxy group is located at position 12.
12(S)-HPE(5,8,10)TrE
A hydroperoxy fatty acid that is (5Z,8Z,10E)-icosatrienoic acid in which the hydroperoxy group is located at the 12(S)-position.
12(S)-HPE(8,10,14)TrE
A hydroperoxy fatty acid that is (8Z,10E,14Z)-icosatrienoic acid in which the hydroperoxy group is located at the 12(S)-position.
3-(2,4-Cyclopentadien-1-ylidene)-5alpha-androstan-17beta-ol
(5Z,8Z,11R,12R,14Z)-11,12-dihydroxyicosa-5,8,14-trienoic acid
(5Z,8R,9R,11Z,14Z)-8,9-dihydroxyicosa-5,11,14-trienoic acid
(5Z,8S,9S,11Z,14Z)-8,9-dihydroxyicosa-5,11,14-trienoic acid
(5Z,13E,9S,11R)-9,11-dihydroxy-5,13-prostadienoic acid
(5Z,8Z,11S,12S,14Z)-11,12-dihydroxyicosa-5,8,14-trienoic acid
(5Z,8Z,11Z,14S,15S)-14,15-dihydroxyicosa-5,8,11-trienoic acid
(10E,14Z,17Z)-12-hydroperoxyicosa-10,14,17-trienoic acid
(E)-12-hydroxy-13-[3-[(Z)-pent-2-enyl]oxiran-2-yl]tridec-10-enoic acid
9-[3-[(3Z,6Z)-1-hydroxynona-3,6-dienyl]oxiran-2-yl]nonanoic acid
(1R(*),2R(*),3R(*),6S(*),7R(*),9R(*),10S(*),11Z,14R(*))-Eunicella-11-ene-3,6,7-triol
Brassidic acid
13(E)-Docosenoic acid (Brassidic acid), a trans-acid, is a 22-carbon monounsaturated fatty acid. Brassidic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=506-33-2 (retrieved 2024-08-19) (CAS RN: 506-33-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
8alpha,19-dihydroxylabd-13E-ene-15-oic acid
A labdane diterpenoid that is labdane with a double bond at position 13 and is substituted by hydroxy groups at positions 8alpha and 19 and a carboxy group at position 15. Isolated from the aerial parts of Crassocephalum mannii, it exhibits inhibitory activity towards cyclooxygenases (COX-1 and COX-2).
10,11-dihydroleukotriene B4
A leukotriene obtained by formal dehydrogenation of the 10,11-double bond in leukotriene B4.
(5Z,8Z,11Z,14R,15R)-14,15-dihydroxyicosatrienoic acid
A (5Z,8Z,11Z)-14,15-dihydroxyicosatrienoic acid in which the two stereocentres at positions 14 and 15 both have R-configuration.
(5Z,8Z,11S,12S,14Z)-11,12-dihydroxyicosatrienoic acid
A (5Z,8Z,14Z)-11,12-dihydroxyicosatrienoic acid in which the two stereocentres at positions 11 and 12 both have S-configuration.
(5Z,8Z,11Z)-14,15-dihydroxyicosatrienoic acid
A DHET obtained by formal dihydroxylation across the 14,15-double bond of arachidonic acid.
(5Z,8Z,14Z)-11,12-dihydroxyicosatrienoic acid
A DHET obtained by formal dihydroxylation across the 11,12-double bond of arachidonic acid.
(5Z,11Z,14Z)-8,9-dihydroxyicosatrienoic acid
A DHET obtained by formal dihydroxylation across the 8,9-double bond of arachidonic acid.
n-Butyl Oleate
A fatty acid ester obtained by the formal condensation of the hydroxy group of butan-1-ol with the carboxy group of oleic acid.
(5Z,8S,9S,11Z,14Z)-8,9-dihydroxyicosatrienoic acid
A (5Z,11Z,14Z)-8,9-dihydroxyicosatrienoic acid in which the two stereocentres at positions 8 and 9 both have S-configuration.
(5Z,8R,9R,11Z,14Z)-8,9-dihydroxyicosatrienoic acid
A (5Z,11Z,14Z)-8,9-dihydroxyicosatrienoic acid in which the two stereocentres at positions 8 and 9 both have R-configuration.
(5Z,8Z,11Z,14S,15S)-14,15-dihydroxyicosatrienoic acid
A (5Z,8Z,11Z)-14,15-dihydroxyicosatrienoic acid in which the two stereocentres at positions 14 and 15 both have S-configuration.
(5Z,8Z,11R,12R,14Z)-11,12-dihydroxyicosatrienoic acid
A (5Z,8Z,14Z)-11,12-dihydroxyicosatrienoic acid in which the two stereocentres at positions 11 and 12 both have R-configuration.