Exact Mass: 336.0845136

Exact Mass Matches: 336.0845136

Found 500 metabolites which its exact mass value is equals to given mass value 336.0845136, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Berberine

16,17-dimethoxy-5,7-dioxa-13lambda5-azapentacyclo[11.8.0.0^{2,10}.0^{4,8}.0^{15,20}]henicosa-1(21),2,4(8),9,13,15,17,19-octaen-13-ylium

[C20H18NO4]+ (336.1235768)


Berberine is an organic heteropentacyclic compound, an alkaloid antibiotic, a botanical anti-fungal agent and a berberine alkaloid. It has a role as an antilipemic drug, a hypoglycemic agent, an antioxidant, a potassium channel blocker, an antineoplastic agent, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.1.1.141 [15-hydroxyprostaglandin dehydrogenase (NAD(+))] inhibitor, an EC 1.13.11.52 (indoleamine 2,3-dioxygenase) inhibitor, an EC 1.21.3.3 (reticuline oxidase) inhibitor, an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor, an EC 3.1.1.4 (phospholipase A2) inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an EC 3.4.14.5 (dipeptidyl-peptidase IV) inhibitor, an EC 3.1.3.48 (protein-tyrosine-phosphatase) inhibitor, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an EC 2.7.11.10 (IkappaB kinase) inhibitor, an EC 2.1.1.122 [(S)-tetrahydroprotoberberine N-methyltransferase] inhibitor, a geroprotector and a metabolite. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Berberine is a quaternary ammonia compound found in many botanical products, including goldenseal, barberry and Oregon grape, which is used for its purported antioxidant and antimicrobial properties for a host of conditions, including obesity, diabetes, hyperlipidemia, heart failure, H. pylori infection and colonic adenoma prevention. Berberine has not been linked to serum aminotransferase elevations during therapy nor to instances of clinically apparent liver injury. Berberine is a natural product found in Berberis poiretii, Thalictrum delavayi, and other organisms with data available. Berberine is a quaternary ammonium salt of an isoquinoline alkaloid and active component of various Chinese herbs, with potential antineoplastic, radiosensitizing, anti-inflammatory, anti-lipidemic and antidiabetic activities. Although the mechanisms of action through which berberine exerts its effects are not yet fully elucidated, upon administration this agent appears to suppress the activation of various proteins and/or modulate the expression of a variety of genes involved in tumorigenesis and inflammation, including, but not limited to transcription factor nuclear factor-kappa B (NF-kB), myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), cyclooxygenase (COX)-2, tumor necrosis factor (TNF), interleukin (IL)-6, IL-12, inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 2 (CXCL2), cyclin D1, activator protein (AP-1), hypoxia-inducible factor 1 (HIF-1), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor (PPAR), arylamine N-acetyltransferase (NAT), and DNA topoisomerase I and II. The modulation of gene expression may induce cell cycle arrest and apoptosis, and inhibit cancer cell proliferation. In addition, berberine modulates lipid and glucose metabolism. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. See also: Goldenseal (part of); Berberis aristata stem (part of). Berberine is a quaternary ammonium salt that belongs to the protoberberine group of benzylisoquinoline alkaloids. Chemically, berberine is classified as an isoquinoline alkaloid. More specifically, berberine is a plant alkaloid derived from tyrosine through a complex 8 step biosynthetic process. Berberine is found in plants such as Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Mahonia aquifolium (Oregon grape) and Hydrastis canadensis (goldenseal). Two other known berberine-containing plants are Phellodendron chinense and Phellodendron amurense. Berberine is usually found in the roots, rhizomes, stems, and bark of Berberis plants. Due to berberines intense yellow color, plants that contain berberine were traditionally used to dye wool, leather, and wood. Under ultraviolet light, berberine shows a strong yellow fluorescence, making it useful in histology for staining heparin in mast cells. Berberine is a bioactive plant compound that has been frequently used in traditional medicine. Among the known physiological effects or bioactivities are: 1) Antimicrobial action against bacteria, fungi, protozoa, viruses, helminthes, and Chlamydia; 2) Antagonism against the effects of cholera and E coli heat-stable enterotoxin; 3) Inhibition of intestinal ion secretion and of smooth muscle contraction; 4) Reduction of inflammation and 5) Stimulation of bile secretion and bilirubin discharge (PMID:32335802). Berberine can inhibit bacterial growth in the gut, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Currently, berberine is sold as an Over-the-Counter (OTC) drug for treating gastrointestinal infections in China (PMID:18442638). Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis (PMID:32335802). Recent evidence has also confirmed that berberine improves the efficacy and safety of both chemo and radiotherapies for cancer treatment (PMID:32335802). Berberine has also been shown to regulate glucose and lipid metabolism in vitro and in vivo (PMID:18442638). In fact, berberine is the main active component of an ancient Chinese herb Coptis chinensis French, which has been used to treat diabetes for thousands of years. As an anti-diabetic, berberine increases glucose uptake by muscle fibers independent of insulin levels. It triggers AMPK activation and increases glycolysis, leading to decreased insulin resistance and decreased oxygen respiration. The same mechanism leads to a reduction in gluconeogenesis in the liver. AMPK activation by berberine also leads to an antiatherosclerotic effect in mice. Berberines AMPK activation may also underlie berberines anti-obesity effects and favorable influence on weight loss (PMID:18442638). While its use as a medication is widely touted, it is important to remember that berberine inhibits CYP2D6 and CYP3A4 enzymes, both of which are involved in the metabolism of many endogenous substances and xenobiotics, including a number of prescription drugs. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials [Raw Data] CBA98_Berberine_pos_50eV.txt [Raw Data] CBA98_Berberine_pos_10eV.txt [Raw Data] CBA98_Berberine_pos_20eV.txt [Raw Data] CBA98_Berberine_pos_40eV.txt [Raw Data] CBA98_Berberine_pos_30eV.txt Berberine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2086-83-1 (retrieved 2024-09-04) (CAS RN: 2086-83-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Dicumarol

3,3 inverted exclamation mark -Methylenebis(4-hydroxy-2H-chromen-2-one)

C19H12O6 (336.06338519999997)


Dicoumarol is a hydroxycoumarin that is methane in which two hydrogens have each been substituted by a 4-hydroxycoumarin-3-yl group. Related to warfarin, it has been used as an anticoagulant. It has a role as a vitamin K antagonist, an anticoagulant, an EC 1.6.5.2 [NAD(P)H dehydrogenase (quinone)] inhibitor and a Hsp90 inhibitor. Dicoumarol is an oral anticoagulant agent that works by interfering with the metabolism of vitamin K. In addition to its clinical use, it is also used in biochemical experiments as an inhibitor of reductases. Dicumarol is a natural product found in Homo sapiens and Viola arvensis with data available. Dicumarol is a hydroxycoumarin originally isolated from molding sweet-clover hay, with anticoagulant and vitamin K depletion activities. Dicumarol is a competitive inhibitor of vitamin K epoxide reductase; thus, it inhibits vitamin K recycling and causes depletion of active vitamin K in blood. This prevents the formation of the active form of prothrombin and several other coagulant enzymes, and inhibits blood clotting. Dicumarol is only found in individuals that have used or taken this drug. It is an oral anticoagulant that interferes with the metabolism of vitamin K. It is also used in biochemical experiments as an inhibitor of reductases. [PubChem] Dicumarol inhibits vitamin K reductase, resulting in depletion of the reduced form of vitamin K (vitamin KH2). As vitamin K is a cofactor for the carboxylation of glutamate residues on the N-terminal regions of vitamin K-dependent proteins, this limits the gamma-carboxylation and subsequent activation of the vitamin K-dependent coagulant proteins. The synthesis of vitamin K-dependent coagulation factors II, VII, IX, and X and anticoagulant proteins C and S is inhibited. Depression of three of the four vitamin K-dependent coagulation factors (factors II, VII, and X) results in decresed prothrombin levels and a decrease in the amount of thrombin generated and bound to fibrin. This reduces the thrombogenicity of clots. An oral anticoagulant that interferes with the metabolism of vitamin K. It is also used in biochemical experiments as an inhibitor of reductases. Dicumarol is only found in individuals that have used or taken this drug. It is an oral anticoagulant that interferes with the metabolism of vitamin K. It is also used in biochemical experiments as an inhibitor of reductases. [PubChem]Dicumarol inhibits vitamin K reductase, resulting in depletion of the reduced form of vitamin K (vitamin KH2). As vitamin K is a cofactor for the carboxylation of glutamate residues on the N-terminal regions of vitamin K-dependent proteins, this limits the gamma-carboxylation and subsequent activation of the vitamin K-dependent coagulant proteins. The synthesis of vitamin K-dependent coagulation factors II, VII, IX, and X and anticoagulant proteins C and S is inhibited. Depression of three of the four vitamin K-dependent coagulation factors (factors II, VII, and X) results in decresed prothrombin levels and a decrease in the amount of thrombin generated and bound to fibrin. This reduces the thrombogenicity of clots. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AA - Vitamin k antagonists A hydroxycoumarin that is methane in which two hydrogens have each been substituted by a 4-hydroxycoumarin-3-yl group. D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents Isolated from Melilotus alba (white melilot)

   

peonidin

1-Benzopyrylium, 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-, chloride

C16H13ClO6 (336.0400628)


Peonidin chloride is an anthocyanidin chloride that has peonidin as the cationic component. It has a role as a metabolite, an antineoplastic agent, an apoptosis inducer and an antioxidant. It contains a peonidin. An anthocyanidin chloride that has peonidin as the cationic component.

   

Firocoxib

3-(cyclopropylmethoxy)-4-(4-methanesulfonylphenyl)-5,5-dimethyl-2,5-dihydrofuran-2-one

C17H20O5S (336.10313900000006)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor

   

Fenbuconazole

Pesticide6_Fenbuconazole_C19H17ClN4_4-(4-Chlorophenyl)-2-phenyl-2-(1H-1,2,4-triazol-1-ylmethyl)butanenitrile

C19H17ClN4 (336.1141672)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents CONFIDENCE standard compound; INTERNAL_ID 707; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9428; ORIGINAL_PRECURSOR_SCAN_NO 9423 CONFIDENCE standard compound; INTERNAL_ID 707; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9470; ORIGINAL_PRECURSOR_SCAN_NO 9465 CONFIDENCE standard compound; INTERNAL_ID 707; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9518; ORIGINAL_PRECURSOR_SCAN_NO 9516 CONFIDENCE standard compound; INTERNAL_ID 707; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9492; ORIGINAL_PRECURSOR_SCAN_NO 9491 CONFIDENCE standard compound; INTERNAL_ID 707; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9544; ORIGINAL_PRECURSOR_SCAN_NO 9543 CONFIDENCE standard compound; INTERNAL_ID 707; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9531; ORIGINAL_PRECURSOR_SCAN_NO 9529

   

Bisphenol AF

4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxyphenyl)propan-2-yl]phenol

C15H10F6O2 (336.0584952)


CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4798; ORIGINAL_PRECURSOR_SCAN_NO 4796 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4887; ORIGINAL_PRECURSOR_SCAN_NO 4885 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4799; ORIGINAL_PRECURSOR_SCAN_NO 4798 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4824; ORIGINAL_PRECURSOR_SCAN_NO 4819 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4817; ORIGINAL_PRECURSOR_SCAN_NO 4812 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4468; ORIGINAL_PRECURSOR_SCAN_NO 4466 D052244 - Endocrine Disruptors

   

Psoralidin

5,14-dihydroxy-4-(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0^{2,7}.0^{11,16}]heptadeca-1(10),2,4,6,11(16),12,14-heptaen-9-one

C20H16O5 (336.0997686)


Psoralidin is a member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 3 and 9 and a prenyl group at position 2 respectively. It has a role as a plant metabolite and an estrogen receptor agonist. It is a member of coumestans, a polyphenol and a delta-lactone. It is functionally related to a coumestan. Psoralidin is a natural product found in Dolichos trilobus, Phaseolus lunatus, and other organisms with data available. See also: Cullen corylifolium fruit (part of). A member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 3 and 9 and a prenyl group at position 2 respectively. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators Constituent of papadi (Dolichos biflorus) and the butter bean (Phaseolus lunatus). Psoralidin is found in pulses, lima bean, and fruits. Psoralidin is found in fruits. Psoralidin is a constituent of papadi (Dolichos biflorus) and the butter bean (Phaseolus lunatus). Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2]. Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2]. Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2].

   

Nicotinic acid mononucleotide

3-carboxy-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-1lambda5-pyridin-1-ylium

[C11H15NO9P]+ (336.048441)


Nicotinic acid mononucleotide, also known as nicotinate ribonucleotide, belongs to the class of organic compounds known as nicotinic acid nucleotides. These are pyridine nucleotides in which the pyridine base is nicotinic acid or a derivative thereof. Nicotinic acid mononucleotide is an extremely weak basic (essentially neutral) compound (based on its pKa). Nicotinic acid mononucleotide an intermediate in the cofactor biosynthesis and the nicotinate and nicotinamide metabolism pathways. It is a substrate for nicotinamide riboside kinase, ectonucleotide pyrophosphatase/phosphodiesterase, nicotinamide mononucleotide adenylyltransferase, 5-nucleotidase, nicotinate-nucleotide pyrophosphorylase, and 5(3)-deoxyribonucleotidase. Nicotinic acid mononucleotide is an intermediate in the metabolism of Nicotinate and nicotinamide. It is a substrate for Ectonucleotide pyrophosphatase/phosphodiesterase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 1, Nicotinamide mononucleotide adenylyltransferase 3, Cytosolic 5-nucleotidase IA, Cytosolic 5-nucleotidase IB, Nicotinate-nucleotide pyrophosphorylase, 5(3)-deoxyribonucleotidase (cytosolic type), Cytosolic purine 5-nucleotidase, Nicotinamide mononucleotide adenylyltransferase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 3, 5-nucleotidase, 5(3)-deoxyribonucleotidase (mitochondrial) and Nicotinamide mononucleotide adenylyltransferase 1. [HMDB] NaMN is the most common mononucleotide intermediate (a hub) in NAD biogenesis. For example, in E. coli all three pyridine precursors are converted into NaMN (Table 1 and Figure 3(a)). Qa produced by the de novo Asp–DHAP pathway (genes nadB and nadA) is converted into NaMN by QAPRT (gene nadC). Salvage of both forms of niacin proceeds via NAPRT (gene pncB) either directly upon or after deamidation by NMDSE (gene pncA). Overall, more than 90\% of approximately 680 analyzed bacterial genomes contain at least one of the pathways leading to the formation of NaMN. Most of them (∼480 genomes) have the entire set of nadBAC genes for NaMN de novo synthesis from Asp that are often clustered on the chromosome and/or are co-regulated by the same transcription factors (see Section 7.08.3.1.2). Among the examples provided in Table 1, F. tularensis (Figure 4(c)) has all three genes of this de novo pathway forming a single operon-like cluster and supporting the growth of this organism in the absence of any pyridine precursors in the medium. More than half the genomes with the Asp–DHAP pathway also contain a deamidating niacin salvage pathway (genes pncAB) as do many representatives of the α-, β-, and γ-Proteobacteria, Actinobacteria, and Bacillus/Clostridium group. As already emphasized, the genomic reconstruction approach provides an assessment of the metabolic potential of an organism, which may or may not be realized under given conditions. For example, E. coli and B. subtilis can utilize both de novo and PncAB Nm salvage pathways under the same growth conditions, whereas in M. tuberculosis (having the same gene pattern) the latter pathway was considered nonfunctional, so that the entire NAD pool is generated by the de novo NadABC route. However, a recent study demonstrated the functional activity of the Nm salvage pathway in vivo, under hypoxic conditions in infected macrophages.221 This study also implicated the two downstream enzymes of NAD synthesis (NAMNAT and NADSYN) as attractive chemotherapeutic targets to treat acute and latent forms of tuberculosis. In approximately 100 species, including many Cyanobacteria (e.g., Synechococcus spp.), Bacteroidetes (e.g., Chlorobium spp.) and Proteobacteria (e.g., Caulobacter crescentus, Zymomonas mobilis, Desulfovibrio spp., and Shewanella spp. representing α-, β-, δ-, and γ-groups, respectively) the Asp–DHAP pathway is the only route to NAD biogenesis. Among them, nearly all Helicobacter spp. (except H. hepaticus), contain only the two genes nadA and nadC but lack the first gene of the pathway (nadB), which is a likely subject of nonorthologous gene replacement. One case of NadB (ASPOX) replacement by the ASPDH enzyme in T. maritima (and methanogenic archaea) was discussed in Section 7.08.2.1. However, no orthologues of the established ASPDH could be identified in Helicobacter spp. as well as in approximately 15 other diverse bacterial species that have the nadAC but lack the nadB gene (e.g., all analyzed Corynebacterium spp. except for C. diphtheriae). Therefore, the identity of the ASPOX or ASPDH enzyme in these species is still unknown, representing one of the few remaining cases of ‘locally missing genes’220 in the NAD subsystem. All other bacterial species contain either both the nadA and nadB genes (plus nadC) or none. In a limited number of bacteria (∼20 species), mostly in the two distant groups of Xanthomonadales (within γ-Proteobacteria) and Flavobacteriales (within Bacteroidetes), the Asp–DHAP pathway of Qa synthesis is replaced by the Kyn pathway. As described in Section 7.08.2.1.2, four out of five enzymes (TRDOX, KYNOX, KYNSE, and HADOX) in the bacterial version of this pathway are close homologues of the respective eukaryotic enzymes, whereas the KYNFA gene is a subject of multiple nonorthologous replacements. Although the identity of one alternative form of KYNFA (gene kynB) was established in a group of bacteria that have a partial Kyn pathway for Trp degradation to anthranilate (e.g., in P. aeruginosa or B. cereus57), none of the known KYNFA homologues are present in Xanthomonadales or Flavobacteriales. In a few species (e.g., Salinispora spp.) a complete gene set of the Kyn pathway genes co-occurs with a complete Asp–DHAP pathway. Further experiments would be required to establish to what extent and under what conditions these two pathways contribute to Qa formation. As discussed, the QAPRT enzyme is shared by both de novo pathways, and a respective gene, nadC is always found in the genomes containing one or the other pathway. Similarly, gene nadC always co-occurs with Qa de novo biosynthetic genes with one notable exception of two groups of Streptococci, S. pneumonaie and S. pyogenes. Although all other members of the Lactobacillales group also lack the Qa de novo biosynthetic machinery and rely entirely on niacin salvage, only these two human pathogens contain a nadC gene. The functional significance of this ‘out of context’ gene is unknown, but it is tempting to speculate that it may be involved in a yet-unknown pathway of Qa salvage from the human host. Among approximately 150 bacterial species that lack de novo biosynthesis genes and rely on deamidating salvage of niacin (via NAPRT), the majority (∼100) are from the group of Firmicutes. Such a functional variant (illustrated for Staphylococcus aureus in Figure 4(b)) is characteristic of many bacterial pathogens, both Gram-positive and Gram-negative (e.g., Brucella, Bordetella, and Campylobacter spp. from α-, β-, and δ-Proteobacteria, Borrelia, and Treponema spp. from Spirochaetes). Most of the genomes in this group contain both pncA and pncB genes that are often clustered on the chromosome and/or are co-regulated (see Section 7.08.3.1.2). In some cases (e.g., within Mollicutes and Spirochaetales), only the pncB, but not the pncA gene, can be reliably identified, suggesting that either of these species can utilize only the deamidated form of niacin (Na) or that some of them contain an alternative (yet-unknown) NMASE. Although the nondeamidating conversion of Nm into NMN (via NMPRT) appears to be present in approximately 50 bacterial species (mostly in β- and γ-Proteobacteria), it is hardly ever the only route of NAD biogenesis in these organisms. The only possible exception is observed in Mycoplasma genitalium and M. pneumoniae that contain the nadV gene as the only component of pyridine mononucleotide biosynthetic machinery. In some species (e.g., in Synechocystes spp.), the NMPRT–NMNAT route is committed primarily to the recycling of endogenous Nm. On the other hand, in F. tularensis (Figure 4(c)), NMPRT (gene nadV) together with NMNAT (of the nadM family) constitute the functional nondeamidating Nm salvage pathway as it supports the growth of the nadE′-mutant on Nm but not on Na (L. Sorci et al., unpublished). A similar nondeamidating Nm salvage pathway implemented by NMPRT and NMNAT (of the nadR family) is present in some (but not all) species of Pasteurellaceae in addition to (but never instead of) the RNm salvage pathway (see below), as initially demonstrated for H. ducreyi.128 A two-step conversion of NaMN into NAD via a NaAD intermediate (Route I in Figure 2) is present in the overwhelming majority of bacteria. The signature enzyme of Route I, NAMNAT of the NadD family is present in nearly all approximately 650 bacterial species that are expected to generate NaMN via de novo or salvage pathways (as illustrated by Figures 3(a) and 3(b)). All these species, without a single exception, also contain NADSYN (encoded by either a short or a long form of the nadE gene), which is required for this route. The species that lack the NadD/NadE signature represent several relatively rare functional variants, including: 1. Route I of NAD synthesis (NaMN → NaAD → NAD) variant via a bifunctional NAMNAT/NMNAT enzyme of the NadM family is common for archaea (see Section 7.08.3.2), but it appears to be present in only a handful of bacteria, such as Acinetobacter, Deinococcus, and Thermus groups. Another unusual feature of the latter two groups is the absence of the classical NADKIN, a likely subject of a nonorthologous replacement that remains to be elucidated. 2. Route II of NAD synthesis (NaMN → NMN → NAD). This route is implemented by a combination of the NMNAT of either the NadM family (as in F. tularensis) or the NadR family (as in M. succinoproducens and A. succinogenes) with NMNSYN of the NadE′ family. The case of F. tularensis described in Section 7.08.2.4 is illustrated in Figure 3(b). The rest of the NAD biosynthetic machinery in both species from the Pasteurellaceae group, beyond the shared Route II, is remarkably different from that in F. tularensis. Instead of de novo biosynthesis, they harbor a Na salvage pathway via NAPRT encoded by a pncB gene that is present in a chromosomal cluster with nadE′. Neither of these two genes are present in other Pasteurellaceae that lack the pyridine carboxylate amidation machinery (see below). 3. Salvage of RNm (RNm → NMN → NAD). A genomic signature of this pathway, a combination of the PnuC-like transporter and a bifunctional NMNAT/RNMKIN of the NadR family, is present in many Enterobacteriaceae and in several other diverse species (e.g., in M. tuberculosis). However, in H. influenzae (Figure 3(d)) and related members of Pasteurellaceae, it is the only route of NAD biogenesis. As shown in Table 1, H. influenzae as well as many other members of this group have lost nearly all components of the rich NAD biosynthetic machinery that are present in their close phylogenetic neighbors (such as E. coli and many other Enterobacteriaceae). This pathway is an ultimate route for utilization of the so called V-factors (NADP, NAD, NMN, or RNm) that are required to support growth of H. influenzae. It was established that all other V-factors are degraded to RNm by a combination of periplasmic- and membrane-associated hydrolytic enzymes.222 Although PnuC was initially considered an NMN transporter,223 its recent detailed analysis in both H. influenzae and Salmonella confirmed that its actual physiological function is in the uptake of RNm coupled with the phosphorylation of RNM to NMN by RNMKIN.17,148,224 As already mentioned, H. ducreyi and several other V-factor-independent members of the Pasteurellaceae group (H. somnus, Actinobacillus pleuropneumoniae, and Actinomycetemcomitans) harbor the NMNAT enzyme (NadV) that allows them to grow in the presence of Nm (but not Na) in the medium (Section 7.08.2.2). 4. Uptake of the intact NAD. Several groups of phylogenetically distant intracellular endosymbionts with extremely truncated genomes contain only a single enzyme, NADKIN, from the entire subsystem. Among them are all analyzed species of the Wolbachia, Rickettsia, and Blochmannia groups. These species are expected to uptake and utilize the intact NAD from their host while retaining the ability to convert it into NADP. Among all analyzed bacteria, only the group of Chlamydia does not have NADKIN and depends on the salvage of both NAD and NADP via a unique uptake system.157 A comprehensive genomic reconstruction of the metabolic potential (gene annotations and asserted pathways) across approximately 680 diverse bacterial genomes sets the stage for the accurate cross-genome projection and prediction of regulatory mechanisms that control the realization of this potential in a variety of species and growth conditions. In the next section, we summarize the recent accomplishments in the genomic reconstruction of NAD-related regulons in bacteria. Nicotinic acid mononucleotide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=321-02-8 (retrieved 2024-06-29) (CAS RN: 321-02-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Altersolanol A

1,2,3,4,8-pentahydroxy-6-methoxy-3-methyl-2,4-dihydro-1H-anthracene-9,10-dione

C16H16O8 (336.0845136)


CONFIDENCE isolated standard

   

Dattelic acid

(3R,4R,5R)-5-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4-dihydroxycyclohex-1-ene-1-carboxylic acid

C16H16O8 (336.0845136)


Isolated from Pteridium aquilinum (bracken fern) and from unripe dates (tentative ident.). Dattelic acid is found in many foods, some of which are green vegetables, fruits, date, and blackcurrant. Dattelic acid is found in blackcurrant. Dattelic acid is isolated from Pteridium aquilinum (bracken fern) and from unripe dates (tentative ident.). 5-O-Caffeoylshikimic acid can be used in the study for NSCLC[1][2]. 5-O-Caffeoylshikimic acid can be used in the study for NSCLC[1][2].

   

Sojagol

7-hydroxy-17,17-dimethyl-4,12,18-trioxapentacyclo[11.8.0.0²,¹¹.0⁵,¹⁰.0¹⁴,¹⁹]henicosa-1(13),2(11),5(10),6,8,14(19),20-heptaen-3-one

C20H16O5 (336.0997686)


Sojagol is found in pulses. Sojagol is isolated from soya (leaves and hypocotyls) and from mung beans (Phaseolus aureus). Isol. from soya (leaves and hypocotyls) and from mung beans (Phaseolus aureus). Sojagol is found in soy bean and pulses.

   
   

3-Hydroxymugineic acid

1-{3-carboxy-3-[(3-carboxy-3-hydroxypropyl)amino]-2-hydroxypropyl}-3-hydroxyazetidine-2-carboxylic acid

C12H20N2O9 (336.11687500000005)


3-Hydroxymugineic acid is found in cereals and cereal products. 3-Hydroxymugineic acid is isolated from roots of barley (Hordeum vulgare). Isolated from roots of barley (Hordeum vulgare). 3-Hydroxymugineic acid is found in barley and cereals and cereal products.

   

Heterocladol

[1R-(1a,4alpha,4aalpha,7alpha,8beta,8abeta)]-4-Bromo-8-chlorodecahydro-1,4a-dimethyl-7-(1-methylethyl)-1-naphthalenol

C15H26BrClO (336.0855436)


   
   

SCHEMBL13090763

1-(5-O-phosphono-beta-D-ribofuranosyl)-1,4-dihydropyridine-3-carboxamide

C11H17N2O8P (336.07224920000004)


   

Dantrolene sodium

Dantrolene sodium anhydrous

C14H9N4NaO5 (336.0470624)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents

   

Glabrone

7-Hydroxy-3-(5-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-4H-1-benzopyran-4-one, 9CI

C20H16O5 (336.0997686)


Glabrone is an isoflavonoid. Glabrone is a natural product found in Euphorbia helioscopia, Glycyrrhiza glabra, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). Glabrone is found in herbs and spices. Glabrone is a constituent of root of Glycyrrhiza glabra (licorice)

   

Pachyrrhizin

6-(6-Methoxy-1,3-benzodioxol-5-yl)-7H-furo[3,2-g][1]benzopyran-7-one, 9ci

C19H12O6 (336.06338519999997)


Pachyrrhizin is found in jicama. Pachyrrhizin is a constituent of Pachyrrhizus erosus (yam bean). Constituent of Pachyrrhizus erosus (yam bean). Pachyrrhizin is found in jicama and pulses.

   

3-O-Caffeoylshikimic acid

5-{[(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4-dihydroxycyclohex-1-ene-1-carboxylic acid

C16H16O8 (336.0845136)


3-O-Caffeoylshikimic acid is found in date. 3-O-Caffeoylshikimic acid is a constituent of dates (Phoenix dactylifera) Constituent of dates (Phoenix dactylifera). 3-O-Caffeoylshikimic acid is found in date and fruits. 5-O-Caffeoylshikimic acid can be used in the study for NSCLC[1][2]. 5-O-Caffeoylshikimic acid can be used in the study for NSCLC[1][2].

   

4-O-Caffeoylshikimic acid

4-{[(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,5-dihydroxycyclohex-1-ene-1-carboxylic acid

C16H16O8 (336.0845136)


4-O-Caffeoylshikimic acid is found in fruits. 4-O-Caffeoylshikimic acid is isolated from unripe dates (Phoenix dactylifera). Isolated from unripe dates (Phoenix dactylifera). 4-O-Caffeoylshikimic acid is found in fruits.

   

3-Caffeoyl-1,5-quinolactone

(1R,3R,4R,5R)-1,4-Dihydroxy-7-oxo-6-oxabicyclo[3.2.1]octan-3-yl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C16H16O8 (336.0845136)


3-Caffeoyl-1,5-quinolactone is a polyphenol compound found in foods of plant origin (PMID: 20428313)

   

Dolineone

5,7,11,14,18-pentaoxahexacyclo[11.11.0.0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁷,²¹]tetracosa-2,4(8),9,15(23),16,19,21-heptaen-24-one

C19H12O6 (336.06338519999997)


Dolineone is found in jicama. Dolineone is isolated from roots of Pachyrrhizus erosus (yam bean). Isolated from roots of Pachyrrhizus erosus (yam bean). Dolineone is found in jicama and pulses.

   

Kanzonol W

3-(2,4-Dihydroxyphenyl)-8,8-dimethyl-2H,8H-benzo[1,2-b:3,4-b]dipyran-2-one, 9ci

C20H16O5 (336.0997686)


Kanzonol W is found in herbs and spices. Kanzonol W is a constituent of Glycyrrhiza glabra (licorice) roots

   

Isosojagol

5,14-dihydroxy-15-(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1(10),2(7),3,5,11(16),12,14-heptaen-9-one

C20H16O5 (336.0997686)


Constituent of Phaseolus coccineus (canary grass). Isosojagol is found in pulses and scarlet bean. Isosojagol is found in pulses. Isosojagol is a constituent of Phaseolus coccineus (canary grass)

   

Atalantoflavone

5-Hydroxy-2-(4-hydroxyphenyl)-8,8-dimethyl-4H,8H-benzo[1,2-b:3,4-b]dipyran-4-one, 9ci

C20H16O5 (336.0997686)


Atalantoflavone is found in citrus. Atalantoflavone is isolated from rootbark of lemon tree

   

Juglone glucoside

5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,4-dihydronaphthalene-1,4-dione

C16H16O8 (336.0845136)


Juglone glucoside is found in nuts. Juglone glucoside is isolated from pecan nuts. Isolated from pecan nuts. Juglone glucoside is found in nuts.

   

Semilepidinoside A

2-(hydroxymethyl)-6-[4-(1H-imidazol-2-ylmethyl)phenoxy]oxane-3,4,5-triol

C16H20N2O6 (336.13213)


Semilepidinoside A is found in brassicas. Semilepidinoside A is an alkaloid from the seeds of Lepidium sativum (garden cress). Alkaloid from the seeds of Lepidium sativum (garden cress). Semilepidinoside A is found in garden cress and brassicas.

   

Musanolone D

2,3-dihydroxy-9-(4-hydroxy-3-methoxyphenyl)-2,3-dihydro-1H-phenalen-1-one

C20H16O5 (336.0997686)


Musanolone D is found in fruits. Musanolone D is a constituent of Musa acuminata (dwarf banana) (Musaceae). Constituent of Musa acuminata (dwarf banana) (Musaceae). Musanolone D is found in fruits.

   

Dulciol D

7,10-dihydroxy-8-(2-methylbut-3-en-2-yl)-6H-furo[3,2-c]xanthen-6-one

C20H16O5 (336.0997686)


Dulciol D is found in fruits. Dulciol D is a constituent of Garcinia dulcis (mundu)

   

Phaseol

5,14-dihydroxy-6-(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1(10),2(7),3,5,11(16),12,14-heptaen-9-one

C20H16O5 (336.0997686)


Isolated from Phaseolus aureus (mung bean). Phaseol is found in soy bean and pulses. Phaseol is found in pulses. Phaseol is isolated from Phaseolus aureus (mung bean).

   

Dehydroneotenone

6-(6-methoxy-2H-1,3-benzodioxol-5-yl)-5H-furo[3,2-g]chromen-5-one

C19H12O6 (336.06338519999997)


Dehydroneotenone is found in jicama. Dehydroneotenone is isolated from Pachyrrhizus erosus (yam bean). Isolated from Pachyrrhizus erosus (yam bean). Dehydroneotenone is found in jicama and pulses.

   

S-Nitrosoglutathione

(2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl]-2-(nitrososulfanyl)ethyl]carbamoyl}butanoic acid

C10H16N4O7S (336.0739666)


S-Nitrosoglutathione is a S-nitrosothiol. S-nitrosothiols (RSNOs) are thought to represent a circulating endogenous reservoir of nitric oxide (NO), and may have potential as donors of nitric oxide, distinct from currently used agents. They have the general formula RSNO, and naturally occurring examples include S-nitrosocysteine, S-nitrosoglutathione and S-nitrosoalbumin, in which R is an amino acid, polypeptide and protein respectively. RSNOs have anti-platelet properties, a theoretical role in the treatment of asthma and the potential to be used as agents to treat infectious diseases ranging from the common cold to AIDS. RSNOs are relatively unstable, being degraded to release nitric oxide and the corresponding disulphide. Their stability is influenced by the properties of the R group, heat, light, the presence of transition metal ions (in particular copper) and the presence of other thiols. RSNOs participate in transnitrosation reactions in which the -nitric oxide group is transferred to another thiol to form a more stable RSNO. Potential interactions of RSNOs include that with ascorbic acid (vitamin C), which enhances the ability of copper to catalyse their degradation. Transnitrosation reactions with thiol-containing enzymes can influence protein function, and the intracellular thiol glutathione, levels of which are influenced by many disease states, can also influence stability. Genetic and biochemical data demonstrate a pivotal role for S-nitrosothiols in mediating the actions of nitric oxide synthases (NOSs). RSNOs serve to convey NO bioactivity and to regulate protein function. S-Nitrosoglutathione breakdown is subject to precise regulation. For example, S-Nitrosoglutathione reductase (GSNOR) breaks down cytosolic S-Nitrosoglutathione, ultimately to oxidized GSH and ammonia. GSNOR, in turn, modulates the levels of some S-nitrosylated proteins. S-nitrosoglutathione, formed as nitric oxide moves away from erythrocytes in response to hemoglobin desaturation, may signal hypoxia-inducible factor-1-mediated physiologic and gene regulatory events in pulmonary endothelial cells without profound hypoxia, through a thiol-based reaction. S-Nitrosoglutathione stabilizes the alpha-subunit of hypoxia inducible factor1 (HIF-1) in normoxic cells, but not in the presence of PI3K inhibitors. (PMID: 11749666, 17541013, 16528016). S-Nitrosoglutathione is a S-nitrosothiol. S-nitrosothiols (RSNOs) are thought to represent a circulating endogenous reservoir of nitric oxide (NO), and may have potential as donors of nitric oxide, distinct from currently used agents. They have the general formula RSNO, and naturally occurring examples include S-nitrosocysteine, S-nitrosoglutathione and S-nitrosoalbumin, in which R is an amino acid, polypeptide and protein respectively. RSNOs have anti-platelet properties, a theoretical role in the treatment of asthma and the potential to be used as agents to treat infectious diseases ranging from the common cold to AIDS. RSNOs are relatively unstable, being degraded to release nitric oxide and the corresponding disulphide. Their stability is influenced by the properties of the R group, heat, light, the presence of transition metal ions (in particular copper) and the presence of other thiols. RSNOs participate in transnitrosation reactions in which the -nitric oxide group is transferred to another thiol to form a more stable RSNO. Potential interactions of RSNOs include that with ascorbic acid (vitamin C), which enhances the ability of copper to catalyse their degradation. Transnitrosation reactions with thiol-containing enzymes can influence protein function, and the intracellular thiol glutathione, levels of which are influenced by many disease states, can also influence stability. D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors > D026403 - S-Nitrosothiols D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000890 - Anti-Infective Agents D020011 - Protective Agents Nitrosoglutathione (GSNO), a exogenous NO donor and a substrate for rat alcohol dehydrogenase class III isoenzyme, inhibits cerebrovascular angiotensin II-dependent and -independent AT1 receptor responses[1][2][3][4].

   

4-Caffeoyl-1,5-quinolactone

(1S,3R,4R,5R)-1,3-Dihydroxy-7-oxo-6-oxabicyclo[3.2.1]octan-4-yl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C16H16O8 (336.0845136)


4-Caffeoyl-1,5-quinolactone is a polyphenol compound found in foods of plant origin (PMID: 20428313)

   

4-Hydroxy-5-(dihydroxyphenyl)-valeric acid-O-methyl-O-sulphate

({[5-(3,4-dihydroxyphenyl)-4-hydroxypentanoyl]oxy}methoxy)sulphonic acid

C12H16O9S (336.05150060000005)


4-Hydroxy-5-(dihydroxyphenyl)-valeric acid-O-methyl-O-sulphate belongs to the family of Hydroxy Fatty Acids. These are fatty acids in which the chain bears an hydroxyl group.

   

Captopril-cysteine disulfide

(2S)-1-[(2S)-3-{[(2R)-2-amino-2-carboxyethyl]disulfanyl}-2-methylpropanoyl]pyrrolidine-2-carboxylic acid

C12H20N2O5S2 (336.081359)


Captopril-cysteine disulfide is a metabolite of captopril. Captopril is an angiotensin-converting enzyme inhibitor used for the treatment of hypertension and some types of congestive heart failure. Captopril was the first ACE inhibitor developed and was considered a breakthrough both because of its novel mechanism of action and also because of the revolutionary development process. Captopril is commonly marketed by Bristol-Myers Squibb under the trade name Capoten. (Wikipedia)

   

6-Methyl-griseofulvin

(2S,6R)-7-chloro-2,4-dimethoxy-6,6-dimethyl-3H-spiro[1-benzofuran-2,1-cyclohexan]-2-ene-3,4-dione

C17H17ClO5 (336.0764462)


6-Methyl-griseofulvin is a metabolite of griseofulvin. Griseofulvin (marketed under the proprietary name Grifulvin V by Orthoneutrogena Labs, according to FDA orange book) is an antifungal drug that is administered orally. It is used both in animals and in humans, to treat fungal infections of the skin (commonly known as ringworm) and nails. It is produced by culture of some strains of the mold Penicillium griseofulvum, from which it was isolated in 1939. (Wikipedia)

   

8-(p-Sulfophenyl)theophylline

4-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)benzene-1-sulfonic acid

C13H12N4O5S (336.0528382)


D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists

   

Amidoxime

N-hydroxy-4-{5-[4-(N-hydroxycarbamimidoyl)phenyl]furan-2-yl}benzene-1-carboximidamide

C18H16N4O3 (336.12223459999996)


   

2-Dichloromethylene-3a,7a-dichloro-3a,4,7,7a-tetrahydro-4,7-methanoindene-1,3-dione

2-Dichloromethylene-3a,7a-dichloro-3a,4,7,7a-tetrahydro-4,7-methanoindene-1,3-dione

C12H20N2O9 (336.11687500000005)


   

N-(N-L-gamma-Glutamyl-S-nitroso-L-cysteinyl)glycine

2-Amino-4-({1-[(carboxymethyl)-C-hydroxycarbonimidoyl]-2-(nitrososulphanyl)ethyl}-C-hydroxycarbonimidoyl)butanoic acid

C10H16N4O7S (336.0739666)


   

3-Benzyl-1-methyl-2,6-dioxo-7H-purine-8-sulfonic acid

3-Benzyl-1-methyl-2,6-dioxo-2,3,6,9-tetrahydro-1H-purine-8-sulphonic acid

C13H12N4O5S (336.0528382)


   

Thiamine hydrochloride

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium hydrochloride chloride

C12H18Cl2N4OS (336.05783180000003)


Nutrient supplement; flavouring ingredient with a bitter taste. Thiamine hydrochloride is found in many foods, some of which are sesame, cinnamon, garden rhubarb, and nougat. Thiamine hydrochloride (Thiamine chloride hydrochloride) is an essential micronutrient needed as a cofactor for many central metabolic enzymes. Thiamine hydrochloride (Thiamine chloride hydrochloride) is an essential micronutrient needed as a cofactor for many central metabolic enzymes.

   

Disodium ethylenediaminetetraacetate

disodium 2-({2-[(carboxylatomethyl)(carboxymethyl)amino]ethyl}(carboxymethyl)amino)acetate

C10H14N2Na2O8 (336.0545524)


Sequestrant, preservative and discolouration inhibitor for foods. Ethylenediaminetetraacetic acid, widely abbreviated as EDTA, is a polyamino carboxylic acid and a colourless, water-soluble solid. Its conjugate base is named ethylenediaminetetraacetate. It is widely used to dissolve limescale. Its usefulness arises because of its role as a hexadentate ("six-toothed") ligand and chelating agent Sequestrant, preservative and discolouration inhibitor for foods

   

Captopril-cysteine disulfide

Captopril-cysteine disulfide

C12H20N2O5S2 (336.081359)


   

Epiberberine

16,17-dimethoxy-5,7-dioxa-1-azoniapentacyclo[11.8.0.03,11.04,8.014,19]henicosa-1(13),2,4(8),9,11,14,16,18-octaene

C20H18NO4+ (336.1235768)


Epiberberine is a natural product found in Sinomenium acutum, Corydalis turtschaninovii, and other organisms with data available.

   

MM 47755

(-)-3,4-Dihydro-3-hydroxy-8-methoxy-3-methylbenz(a)anthracene-1,7,12(2H)-trione

C20H16O5 (336.0997686)


   
   
   

Cyclolaurenol acetate

[1S-(1alpha,2beta,5alpha)]-4-Bromo-5-(1,2-dimethylbicyclo[3.1.0]hex-2-yl)-2-methylphenol acetate

C17H21BrO2 (336.0724826)


   
   

3,4-Dihydro-3-methyl-8-methoxy-11-hydroxybenz[a]anthracene-1,7,12(2H)-trione

3,4-Dihydro-3-methyl-8-methoxy-11-hydroxybenz[a]anthracene-1,7,12(2H)-trione

C20H16O5 (336.0997686)


   

Cupalaurenol acetate

(R)-4-Bromo-2-methyl-5-(1,2,2-trimethyl-3-cyclopenten-1-yl)phenol acetate

C17H21BrO2 (336.0724826)


   

Daurioxoisoporphine B

Daurioxoisoporphine B

C19H16N2O4 (336.1110016)


   

(+)-Rubiginone A2

(+)-Rubiginone A2

C20H16O5 (336.0997686)


   
   

[1R-(1alpha,4alpha,4aalpha,7beta,8abeta)]-4-Bromo-7-chlorodecahydro-1,4a-dimethyl-7-(1-methylethyl)-1-naphthalenol

[1R-(1alpha,4alpha,4aalpha,7beta,8abeta)]-4-Bromo-7-chlorodecahydro-1,4a-dimethyl-7-(1-methylethyl)-1-naphthalenol

C15H26BrClO (336.0855436)


   
   
   
   
   
   

4,5-Dihydromelampodin B

4,5-Dihydromelampodin B

C17H20O7 (336.120897)


   
   

Apressin[sesquiterpene]

Apressin[sesquiterpene]

C17H20O7 (336.120897)


   
   
   
   

Crotafuran C

(6aS,11aS)-3,6a-Dihydroxy-5-(1-methylethenyl)furano[2,3:9,10]pterocarpan

C20H16O5 (336.0997686)


   
   
   

1alpha-Peroxy-4alpha-hydroxybishopsolicepolide

1alpha-Peroxy-4alpha-hydroxybishopsolicepolide

C17H20O7 (336.120897)


   
   

Isosalvixalapadiene

Isosalvixalapadiene

C20H16O5 (336.0997686)


   

5-Methoxy-3,4-methylenedioxyfurano[2,3:7,8]flavone

5-Methoxy-3,4-methylenedioxyfurano[2,3:7,8]flavone

C19H12O6 (336.06338519999997)


   

1alpha-Hydroxy-4alpha-peroxybishopsolicepolide

1alpha-Hydroxy-4alpha-peroxybishopsolicepolide

C17H20O7 (336.120897)


   

CHFAIFZIDCGGMS-UHFFFAOYSA-

CHFAIFZIDCGGMS-UHFFFAOYSA-

C16H21BrN2O (336.0837156)


   

Ciliatin A

(+) -2,3-dihydro-4-hydroxy-7- (4-hydroxyphenyl) -2- (1-methylethenyl) -5H-Furo [ 3,2-g ] [ 1 ] benzopyran-5-one

C20H16O5 (336.0997686)


   
   
   

YHL III

Dehydroapocavidine

C20H18NO4 (336.1235768)


   

Spiroleucantholide

(+)-Spiroleucantholide

C20H16O5 (336.0997686)


   

9alpha-Acetoxyartecanin

9alpha-Acetoxyartecanin

C17H20O7 (336.120897)


   
   
   

pongapin

3-Methoxy-2-[3,4-(methylenedioxy)phenyl]-4H-furo[2,3-h]-1-benzopyran-4-one

C19H12O6 (336.06338519999997)


   

Yinyanghuo C

2-(2,2-Dimethyl-2H-1-benzopyran-6-yl)-5,7-dihydroxy-4H-1-benzopyran-4-one

C20H16O5 (336.0997686)


   

Carpachromene

5-Hydroxy-8- (4-hydroxyphenyl) -2,2-dimethyl-2H,6H-benzo [ 1,2-b:5,4-b ] dipyran-6-one

C20H16O5 (336.0997686)


   

Puerarone

7,2-Dihydroxy-6",6"-dimethylpyrano [ 2",3":4,5 ] isoflavone

C20H16O5 (336.0997686)


   

isoderrone

5,7-Dihydroxy-6",6"-dimethylpyrano [ 2",3":4,3 ] isoflavone

C20H16O5 (336.0997686)


A hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5 and 7 and a 6,6-dimethyl-3,6-dihydro-2H-pyran across positions 3 and 4 respectively. It has been isolated from Ficus mucuso.

   

Licoagroisoflavone

InChI=1\C20H16O5\c1-10(2)15-7-13-16(25-15)8-17-18(19(13)22)20(23)14(9-24-17)11-3-5-12(21)6-4-11\h3-6,8-9,15,21-22H,1,7H2,2H3\t15-\m1\s

C20H16O5 (336.0997686)


A natural product found in Crotalaria lachnophora.

   

Methyl digallate ester

Methyl digallate ester

C15H12O9 (336.0481302)


   

Alpinumisoflavone

InChI=1/C20H16O5/c1-20(2)8-7-13-15(25-20)9-16-17(18(13)22)19(23)14(10-24-16)11-3-5-12(21)6-4-11/h3-10,21-22H,1-2H

C20H16O5 (336.0997686)


Alpinumisoflavone is a member of isoflavanones. It has a role as a metabolite. Alpinumisoflavone is a natural product found in Genista ephedroides, Erythrina suberosa, and other organisms with data available. A natural product found in Ficus mucuso. Alpinumisoflavone (compound 2) is a flavonoid derivative isolated from the stem bark of Erythrina lysistemon Hutch[1]. Alpinumisoflavone (compound 2) is a flavonoid derivative isolated from the stem bark of Erythrina lysistemon Hutch[1].

   

Isopsoralidin

10-Hydroxy-3,3-dimethyl-2,3-dihydro-1H,7H-benzofuro [ 3,2-c ] pyrano [ 3,2-g ] [ 1 ] benzopyran-7-one

C20H16O5 (336.0997686)


   

Derrone

3- (4-Hydroxyphenyl) -5-hydroxy-8,8-dimethyl-4H,8H-benzo [ 1,2-b:3,4-b ] dipyran-4-one

C20H16O5 (336.0997686)


Derrone is a natural product found in Erythrina senegalensis, Ficus nymphaeifolia, and other organisms with data available.

   

Limonianin

atalantoflavone

C20H16O5 (336.0997686)


   

Dehydroneotenone

6- (6-Methoxy-1,3-benzodioxol-5-yl) -5H-furo [ 3,2-g ] [ 1 ] benzopyran-5-one

C19H12O6 (336.06338519999997)


   

Phaseol

3,9-Dihydroxy-4-prenylcoumestan

C20H16O5 (336.0997686)


   

Sojagol

2,3-Dihydro-10-hydroxy-3,3-dimethyl-1H,7H-furo [ 3,2-c:5,4-f ] bis [ 1 ] benzopyran-7-one

C20H16O5 (336.0997686)


A member of the class of coumestans that is coumestan substituted by a hydroxy group at position 3 and a 2,2-dimethylpyran group across positions 9 and 10.

   

Dolichone

(6aS,13aS) -6a,13a-Dihydro-1,3-dioxolo [ 6,7 ] [ 1 ] benzopyrano [ 3,4-b ] furo [ 3,2-g ] [ 1 ] benzopyran-13 (6H) -one

C19H12O6 (336.06338519999997)


   

Glabrone

4H-1-Benzopyran-4-one, 7-hydroxy-3-(5-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-

C20H16O5 (336.0997686)


   

Isosojagol

3,9-Dihydroxy-10-(3-methyl-2-buten-1-yl)-6H-benzofuro[3,2-c][1]benzopyran-6-one

C20H16O5 (336.0997686)


A member of the class of coumestans that is coumestrol with a prenyl substituent at position 10.

   

Neorautone

6- (6-Methoxy-1,3-benzodioxol-5-yl) -7H-furo [ 3,2-g ] [ 1 ] benzopyran-7-one

C19H12O6 (336.06338519999997)


   

Psoralidin

3,9-Dihydroxy-2- (3-methylbut-2-enyl) - [1] benzofuro [3,2-c] chromen-6-one

C20H16O5 (336.0997686)


Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2]. Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2]. Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2].

   
   
   
   
   
   

Maybridge3_001194

Maybridge3_001194

C20H13FO4 (336.079783)


   

(E)-3-hydroxy-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1H-2-benzofuran-5-yl)-4-methylhex-4-enoic acid

(E)-3-hydroxy-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1H-2-benzofuran-5-yl)-4-methylhex-4-enoic acid

C17H20O7 (336.120897)


   
   
   

Bostrycin

Bostrycin

C16H16O8 (336.0845136)


CONFIDENCE isolated standard

   

Glutamyl-S-(C4H7O2)-Cysteine

Glutamyl-S-(C4H7O2)-Cysteine

C12H20N2O7S (336.09911700000004)


Annotation level-3

   

Caffeoyl shikimic acid

Caffeoyl shikimic acid

C16H16O8 (336.0845136)


   
   
   

2,5-Bis-benzoyloxymethyl-furan

2,5-Bis-benzoyloxymethyl-furan

C20H16O5 (336.0997686)


   

4-Me,6,8-DiAc- Sclerotinin B

4-Me,6,8-DiAc- Sclerotinin B

C17H20O7 (336.120897)


   

1-(4-Hydroxy-3-methoxyphenyl)-2-(4-hydroxy-3-methoxyphenoxy)-1,3-propanediol

1-(4-Hydroxy-3-methoxyphenyl)-2-(4-hydroxy-3-methoxyphenoxy)-1,3-propanediol

C17H20O7 (336.120897)


   

7-hydroxy-3-(7-methoxy-2-oxo-2H-1-benzopyran-8-yl)-2H-1-benzopyran-2-one|daphnogirin

7-hydroxy-3-(7-methoxy-2-oxo-2H-1-benzopyran-8-yl)-2H-1-benzopyran-2-one|daphnogirin

C19H12O6 (336.06338519999997)


   

isolaurinterol acetate|Isolaurinterolacetate

isolaurinterol acetate|Isolaurinterolacetate

C17H21BrO2 (336.0724826)


   
   
   

globosuxanthone B

globosuxanthone B

C16H16O8 (336.0845136)


A member of the class of xanthones that is methyl-9-oxo-2,3,4,9-tetrahydro-1H-xanthene-1-carboxylate substituted by hydroxy groups at positions 1, 2 and 8 and a methoxy group at position 3 (the 1R,2R,3S stereoisomer). It has been isolated from Chaetomium globosum.

   

bisanhydro-gamma-rhodomycinone

bisanhydro-gamma-rhodomycinone

C20H16O5 (336.0997686)


   

(-)-Tilifodiolide

(-)-Tilifodiolide

C20H16O5 (336.0997686)


   

Dihydroscandenolide

Dihydroscandenolide

C17H20O7 (336.120897)


   
   

isolaurenisol acetate

isolaurenisol acetate

C17H21BrO2 (336.0724826)


   
   
   
   
   
   

Erylatissin B

Erylatissin B

C20H16O5 (336.0997686)


A member of the class of 7-hydroxyisoflavones that is isoflavone with hydroxy groups at C-7 and C-3 positions and a 2,2-dimethylpyran ring fused to ring B across positions C-4 and C-5. Isolated from the stem wood of Erythrina latissima, it exhibits antimicrobial and radical scavenging activities.

   

N-{4-[(6-Methoxy-2-methyl-4-pyrimidinyl)sulfamoyl]phenyl}acetamide

N-{4-[(6-Methoxy-2-methyl-4-pyrimidinyl)sulfamoyl]phenyl}acetamide

C14H16N4O4S (336.08922160000003)


   
   
   

2,3-Dihydro-2-(1-methylethenyl)-4-hydroxy-6-(4-hydroxyphenyl)-5H-furo[3,2-g][1]benzopyran-5-one

2,3-Dihydro-2-(1-methylethenyl)-4-hydroxy-6-(4-hydroxyphenyl)-5H-furo[3,2-g][1]benzopyran-5-one

C20H16O5 (336.0997686)


   

3-O-Ethyldihydrofusarubin A

3-O-Ethyldihydrofusarubin A

C17H20O7 (336.120897)


   

Me ester,Me ether-Pulvinic acid

Me ester,Me ether-Pulvinic acid

C20H16O5 (336.0997686)


   
   
   

allolaurinterol acetate|Allolaurinterolacetat

allolaurinterol acetate|Allolaurinterolacetat

C17H21BrO2 (336.0724826)


   

8-methoxy-3-methyl-1naphthalenol-6-O-alpha-D-ribofuranoside

8-methoxy-3-methyl-1naphthalenol-6-O-alpha-D-ribofuranoside

C17H20O7 (336.120897)


   
   
   
   
   

Bostrycin|Brostycin|SZ-685C

Bostrycin|Brostycin|SZ-685C

C16H16O8 (336.0845136)


   
   
   

(-)-(1R,3R)-palmarumycin BG3

(-)-(1R,3R)-palmarumycin BG3

C20H16O5 (336.0997686)


   

1-O-(alpha-D-mannopyranosyl)chlorogentisyl alcohol

1-O-(alpha-D-mannopyranosyl)chlorogentisyl alcohol

C13H17ClO8 (336.0611912)


   
   

allantopyrone A

allantopyrone A

C17H20O7 (336.120897)


   

Daibucarboline C

Daibucarboline C

C19H16N2O4 (336.1110016)


A natural product found in Neolitsea daibuensis.

   

8alpha-acetoxy-2-oxo-5alpha,10alpha-dihydroxyguaia-3,11(13)-dien-1-alpha,6beta,7alphaH-12,6-olide|artemanomalide B

8alpha-acetoxy-2-oxo-5alpha,10alpha-dihydroxyguaia-3,11(13)-dien-1-alpha,6beta,7alphaH-12,6-olide|artemanomalide B

C17H20O7 (336.120897)


   

3-[2-(2-Hydroxypropane-2-yl)benzofuran-5-yl]-7-hydroxy-4H-1-benzopyran-4-one

3-[2-(2-Hydroxypropane-2-yl)benzofuran-5-yl]-7-hydroxy-4H-1-benzopyran-4-one

C20H16O5 (336.0997686)


   

8-methoxy-1-naphthyl beta-glucopyranoside

8-methoxy-1-naphthyl beta-glucopyranoside

C17H20O7 (336.120897)


   

5-O-caffeoyl-epi-delta-quinide

5-O-caffeoyl-epi-delta-quinide

C16H16O8 (336.0845136)


   

Derrisisoflavone G

Derrisisoflavone G

C20H16O5 (336.0997686)


   

8,8a-(Carbonyloxymethylene)-3-(3-furyl)-3,5,6,8a-tetrahydro-4-methyl-1H-benzo[4,5]cyclohepta[1,2-c]furan-1-one

8,8a-(Carbonyloxymethylene)-3-(3-furyl)-3,5,6,8a-tetrahydro-4-methyl-1H-benzo[4,5]cyclohepta[1,2-c]furan-1-one

C20H16O5 (336.0997686)


   
   

7-(2,4-Dihydroxyphenyl)-2,2-dimethyl-2H,6H-benzo[1,2-b:5,4-b]dipyran-6-one

7-(2,4-Dihydroxyphenyl)-2,2-dimethyl-2H,6H-benzo[1,2-b:5,4-b]dipyran-6-one

C20H16O5 (336.0997686)


   

4-O-caffeoylmuco-gamma-quinide

4-O-caffeoylmuco-gamma-quinide

C16H16O8 (336.0845136)


   

(6aS,11aS)-2-(prop-1-ene-2-yl)-6a,11a-dihydro-6H-benzofuro[3,2-c]furo[3,2-g]chromene-6a,9-diol

(6aS,11aS)-2-(prop-1-ene-2-yl)-6a,11a-dihydro-6H-benzofuro[3,2-c]furo[3,2-g]chromene-6a,9-diol

C20H16O5 (336.0997686)


   

1alpha-acetoxy-8alpha,9b-dihydroxy-2-oxo-eudesman-3,7(11)-dien-8,12-olide

1alpha-acetoxy-8alpha,9b-dihydroxy-2-oxo-eudesman-3,7(11)-dien-8,12-olide

C17H20O7 (336.120897)


   

3,13-Dimethyl-6,8-dihydroxy-1,2-(epoxypropano)anthracene-12-ene-9,10,11-trione

3,13-Dimethyl-6,8-dihydroxy-1,2-(epoxypropano)anthracene-12-ene-9,10,11-trione

C19H12O6 (336.06338519999997)


   

cordifoliketone C

cordifoliketone C

C20H16O5 (336.0997686)


   
   

(8Z,14Z)-8-bromoheptadeca-8,14-dien-4,16-diynoic acid

(8Z,14Z)-8-bromoheptadeca-8,14-dien-4,16-diynoic acid

C17H21BrO2 (336.0724826)


   
   
   
   
   

(2Z)-2-(4-hydroxybenzylidene)-7,7-dimethyl-7H-furo[2,3-f]chromene-3,9(2H,8H)-dione|damaurone C

(2Z)-2-(4-hydroxybenzylidene)-7,7-dimethyl-7H-furo[2,3-f]chromene-3,9(2H,8H)-dione|damaurone C

C20H16O5 (336.0997686)


   

Lecocarpinolide E

Lecocarpinolide E

C17H20O7 (336.120897)


   

(2aS,5R,5aR,6aS,9bR,9cS)-2a,3,4,5,5a,6,6a,8,9b,9c-decahydro-6a-hydroxy-9,9c-dimethyl-2,8-dioxo-2H-naphtho[2,3-b:4,5-b,c]difuran-5-yl acetate|1beta-acetoxy-8beta-hydroxyeremophil-7(11)-ene-6alpha,15beta;8alpha,12-diolide

(2aS,5R,5aR,6aS,9bR,9cS)-2a,3,4,5,5a,6,6a,8,9b,9c-decahydro-6a-hydroxy-9,9c-dimethyl-2,8-dioxo-2H-naphtho[2,3-b:4,5-b,c]difuran-5-yl acetate|1beta-acetoxy-8beta-hydroxyeremophil-7(11)-ene-6alpha,15beta;8alpha,12-diolide

C17H20O7 (336.120897)


   

4,5-dihydroxy-8-(8-hydroxynaphthalene-1-yloxy)-3,4-dihydro-2H-naphthalen-1-one

4,5-dihydroxy-8-(8-hydroxynaphthalene-1-yloxy)-3,4-dihydro-2H-naphthalen-1-one

C20H16O5 (336.0997686)


   
   

laurinterol acetate|Laurinterolacetat

laurinterol acetate|Laurinterolacetat

C17H21BrO2 (336.0724826)


   

5alpha,10alpha-dihydroxy-9-acetoxyarbiglovin|5alpha,10alpha-Dihydroxy-9alpha-acetoxyarbiglovin

5alpha,10alpha-dihydroxy-9-acetoxyarbiglovin|5alpha,10alpha-Dihydroxy-9alpha-acetoxyarbiglovin

C17H20O7 (336.120897)


   

3,4,5-Trimethoxy-4-(3,5-dimethoxy-4-hydroxyphenyl)-2,5-cyclohexadiene-1-one

3,4,5-Trimethoxy-4-(3,5-dimethoxy-4-hydroxyphenyl)-2,5-cyclohexadiene-1-one

C17H20O7 (336.120897)


   

Pancorinine|pancorynine

Pancorinine|pancorynine

C19H16N2O4 (336.1110016)


   
   

7-methoxy-2-(3,4,5-trihydroxy-phenyl)-chroman-3,4,5-triol

7-methoxy-2-(3,4,5-trihydroxy-phenyl)-chroman-3,4,5-triol

C16H16O8 (336.0845136)


   
   

4-hydroxy-2,6,3,4,5-pentamethoxydiphenyl ether

4-hydroxy-2,6,3,4,5-pentamethoxydiphenyl ether

C17H20O7 (336.120897)


   
   
   

4,5,7-Trihydroxy-3,6-dimethoxyflavon

4,5,7-Trihydroxy-3,6-dimethoxyflavon

C17H20O7 (336.120897)


   
   

7-Bromo, 10-acetoxy-C ycloaurenol

7-Bromo, 10-acetoxy-C ycloaurenol

C17H21BrO2 (336.0724826)


   

3-Chlor-2,4-dihydroxy-6,2-dimethoxy-4,6-dimethyl-benzophenon

3-Chlor-2,4-dihydroxy-6,2-dimethoxy-4,6-dimethyl-benzophenon

C17H17ClO5 (336.0764462)


   

5-Hydroxy-3,6-dimethoxy-7-phenyl-1H,3H-naphtho[1,8-cd]pyran-1-one

5-Hydroxy-3,6-dimethoxy-7-phenyl-1H,3H-naphtho[1,8-cd]pyran-1-one

C20H16O5 (336.0997686)


   
   
   
   
   

Defucogilvocarcin M

Defucogilvocarcin M

C20H16O5 (336.0997686)


   

3-(p-Cumaroyl)-chininsaeure

3-(p-Cumaroyl)-chininsaeure

C16H16O8 (336.0845136)


   

(-)-4-(1-p-Tolylmercapto-aethylsulfon)-benzoesaeure|(-)-4-(1-p-tolylsulfanyl-ethanesulfonyl)-benzoic acid

(-)-4-(1-p-Tolylmercapto-aethylsulfon)-benzoesaeure|(-)-4-(1-p-tolylsulfanyl-ethanesulfonyl)-benzoic acid

C16H16O4S2 (336.0489976)


   
   

4,7-Bis(4-hydroxyphenyl)-5,6-dihydro-1,3-benzodioxole-5,6-dione

4,7-Bis(4-hydroxyphenyl)-5,6-dihydro-1,3-benzodioxole-5,6-dione

C19H12O6 (336.06338519999997)


   

8-Chloro-2-(2-phenylethyl)-5,6,7-trihydroxy-5,6,7,8-tetrahydrochromone

(5S,6S,7S,8R)-8-chloro-5,6,7-trihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromen-4-one

C17H17O5Cl (336.0764462)


(5S,6S,7S,8R)-8-chloro-5,6,7-trihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromen-4-one is a natural product found in Aquilaria sinensis with data available.

   

Dattelic acid

1-Cyclohexene-1-carboxylic acid, 5-((3-(3,4-dihydroxyphenyl)-1-oxo-2-p ropenyl)oxy)-3,4-dihydroxy-, (3R-(3alpha,4alpha,5beta))-

C16H16O8 (336.0845136)


5-[(E)-caffeoyl]shikimic acid is a carboxylic ester obtained by formal condensation of the carboxy group of (E)-caffeic acid with the 5-hydroxy group of shikimic acid. It has a role as a plant metabolite. It is an alpha,beta-unsaturated monocarboxylic acid, a cyclohexenecarboxylic acid, a member of catechols and a carboxylic ester. It is functionally related to a shikimic acid and a trans-caffeic acid. It is a conjugate acid of a 5-[(E)-caffeoyl]shikimate. 5-O-Caffeoylshikimic acid is a natural product found in Smilax bracteata, Smilax corbularia, and other organisms with data available. See also: Stevia rebaudiuna Leaf (part of). Isolated from Pteridium aquilinum (bracken fern) and from unripe dates (tentative ident.). Dattelic acid is found in many foods, some of which are green vegetables, fruits, date, and blackcurrant. Dattelic acid is found in blackcurrant. Dattelic acid is isolated from Pteridium aquilinum (bracken fern) and from unripe dates (tentative ident.). 5-O-Caffeoylshikimic acid can be used in the study for NSCLC[1][2]. 5-O-Caffeoylshikimic acid can be used in the study for NSCLC[1][2].

   

Berberine

Berberine

[C20H18NO4]+ (336.1235768)


Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2521; CONFIDENCE confident structure IPB_RECORD: 821; CONFIDENCE confident structure

   

Nicotinic acid mono nucleotide

Nicotinic acid mono nucleotide

[C11H15NO9P]+ (336.048441)


   

2-(4a,9,10a-trihydroxy-1-methyl-5,10-dioxo-3,4-dihydro-1H-benzo[g]isochromen-3-yl)acetic acid

NCGC00380391-01!2-(4a,9,10a-trihydroxy-1-methyl-5,10-dioxo-3,4-dihydro-1H-benzo[g]isochromen-3-yl)acetic acid

C16H16O8 (336.0845136)


   

3-hydroxy-8-methoxy-3-methyl-2,4-dihydrobenzo[a]anthracene-1,7,12-trione

NCGC00169698-03!3-hydroxy-8-methoxy-3-methyl-2,4-dihydrobenzo[a]anthracene-1,7,12-trione

C20H16O5 (336.0997686)


   

5-hydroxy-8-(4-hydroxyphenyl)-2,2-dimethylpyrano[3,2-g]chromen-6-one

NCGC00347781-02!5-hydroxy-8-(4-hydroxyphenyl)-2,2-dimethylpyrano[3,2-g]chromen-6-one

C20H16O5 (336.0997686)


   

(3R,4R,5R)-5-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-3,4-dihydroxycyclohexene-1-carboxylic acid

NCGC00180823-02!(3R,4R,5R)-5-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-3,4-dihydroxycyclohexene-1-carboxylic acid

C16H16O8 (336.0845136)


   

3-hydroxy-8-methoxy-3-methyl-2,4-dihydrobenzo[a]anthracene-1,7,12-trione

3-hydroxy-8-methoxy-3-methyl-2,4-dihydrobenzo[a]anthracene-1,7,12-trione

C20H16O5 (336.0997686)


   

2-(4a,9,10a-trihydroxy-1-methyl-5,10-dioxo-3,4-dihydro-1H-benzo[g]isochromen-3-yl)acetic acid

2-(4a,9,10a-trihydroxy-1-methyl-5,10-dioxo-3,4-dihydro-1H-benzo[g]isochromen-3-yl)acetic acid

C16H16O8 (336.0845136)


   
   
   

3-hydroxy-8-methoxy-3-methyl-2,4-dihydrobenzo[a]anthracene-1,7,12-trione [IIN-based: Match]

NCGC00169698-03!3-hydroxy-8-methoxy-3-methyl-2,4-dihydrobenzo[a]anthracene-1,7,12-trione [IIN-based: Match]

C20H16O5 (336.0997686)


   

3-hydroxy-8-methoxy-3-methyl-2,4-dihydrobenzo[a]anthracene-1,7,12-trione [IIN-based on: CCMSLIB00000846183]

NCGC00169698-03!3-hydroxy-8-methoxy-3-methyl-2,4-dihydrobenzo[a]anthracene-1,7,12-trione [IIN-based on: CCMSLIB00000846183]

C20H16O5 (336.0997686)


   

2-(4a,9,10a-trihydroxy-1-methyl-5,10-dioxo-3,4-dihydro-1H-benzo[g]isochromen-3-yl)acetic acid_major

2-(4a,9,10a-trihydroxy-1-methyl-5,10-dioxo-3,4-dihydro-1H-benzo[g]isochromen-3-yl)acetic acid_major

C16H16O8 (336.0845136)


   

(E)-3-hydroxy-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1H-2-benzofuran-5-yl)-4-methylhex-4-enoic acid_major

(E)-3-hydroxy-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1H-2-benzofuran-5-yl)-4-methylhex-4-enoic acid_major

C17H20O7 (336.120897)


   

3-hydroxy-8-methoxy-3-methyl-2,4-dihydrobenzo[a]anthracene-1,7,12-trione_major

3-hydroxy-8-methoxy-3-methyl-2,4-dihydrobenzo[a]anthracene-1,7,12-trione_major

C20H16O5 (336.0997686)


   
   

Ala Cys Gly Ser

(2S)-2-{2-[(2R)-2-[(2S)-2-aminopropanamido]-3-sulfanylpropanamido]acetamido}-3-hydroxypropanoic acid

C11H20N4O6S (336.11035000000004)


   

Ala Cys Ser Gly

2-[(2S)-2-[(2R)-2-[(2S)-2-aminopropanamido]-3-sulfanylpropanamido]-3-hydroxypropanamido]acetic acid

C11H20N4O6S (336.11035000000004)


   

Ala Gly Cys Ser

(2S)-2-[(2R)-2-{2-[(2S)-2-aminopropanamido]acetamido}-3-sulfanylpropanamido]-3-hydroxypropanoic acid

C11H20N4O6S (336.11035000000004)


   

Ala Gly Ser Cys

(2R)-2-[(2S)-2-{2-[(2S)-2-aminopropanamido]acetamido}-3-hydroxypropanamido]-3-sulfanylpropanoic acid

C11H20N4O6S (336.11035000000004)


   

Ala Ser Cys Gly

2-[(2R)-2-[(2S)-2-[(2S)-2-aminopropanamido]-3-hydroxypropanamido]-3-sulfanylpropanamido]acetic acid

C11H20N4O6S (336.11035000000004)


   

Ala Ser Gly Cys

(2R)-2-{2-[(2S)-2-[(2S)-2-aminopropanamido]-3-hydroxypropanamido]acetamido}-3-sulfanylpropanoic acid

C11H20N4O6S (336.11035000000004)


   

Cys Ala Gly Ser

(2S)-2-{2-[(2S)-2-[(2R)-2-amino-3-sulfanylpropanamido]propanamido]acetamido}-3-hydroxypropanoic acid

C11H20N4O6S (336.11035000000004)


   

Cys Ala Ser Gly

2-[(2S)-2-[(2S)-2-[(2R)-2-amino-3-sulfanylpropanamido]propanamido]-3-hydroxypropanamido]acetic acid

C11H20N4O6S (336.11035000000004)


   

Cys Gly Ala Ser

(2S)-2-[(2S)-2-{2-[(2R)-2-amino-3-sulfanylpropanamido]acetamido}propanamido]-3-hydroxypropanoic acid

C11H20N4O6S (336.11035000000004)


   

Cys Gly Gly Thr

(2S,3R)-2-(2-{2-[(2R)-2-amino-3-sulfanylpropanamido]acetamido}acetamido)-3-hydroxybutanoic acid

C11H20N4O6S (336.11035000000004)


   

Cys Gly Ser Ala

(2S)-2-[(2S)-2-{2-[(2R)-2-amino-3-sulfanylpropanamido]acetamido}-3-hydroxypropanamido]propanoic acid

C11H20N4O6S (336.11035000000004)


   

Cys Gly Thr Gly

2-[(2S,3R)-2-{2-[(2R)-2-amino-3-sulfanylpropanamido]acetamido}-3-hydroxybutanamido]acetic acid

C11H20N4O6S (336.11035000000004)


   

Cys Ser Ala Gly

2-[(2S)-2-[(2S)-2-[(2R)-2-amino-3-sulfanylpropanamido]-3-hydroxypropanamido]propanamido]acetic acid

C11H20N4O6S (336.11035000000004)


   

Cys Ser Gly Ala

(2S)-2-{2-[(2S)-2-[(2R)-2-amino-3-sulfanylpropanamido]-3-hydroxypropanamido]acetamido}propanoic acid

C11H20N4O6S (336.11035000000004)


   

Cys Thr Gly Gly

2-{2-[(2S,3R)-2-[(2R)-2-amino-3-sulfanylpropanamido]-3-hydroxybutanamido]acetamido}acetic acid

C11H20N4O6S (336.11035000000004)


   

Gly Ala Cys Ser

(2S)-2-[(2R)-2-[(2S)-2-(2-aminoacetamido)propanamido]-3-sulfanylpropanamido]-3-hydroxypropanoic acid

C11H20N4O6S (336.11035000000004)


   

Gly Ala Ser Cys

(2R)-2-[(2S)-2-[(2S)-2-(2-aminoacetamido)propanamido]-3-hydroxypropanamido]-3-sulfanylpropanoic acid

C11H20N4O6S (336.11035000000004)


   

Gly Cys Ala Ser

(2S)-2-[(2S)-2-[(2R)-2-(2-aminoacetamido)-3-sulfanylpropanamido]propanamido]-3-hydroxypropanoic acid

C11H20N4O6S (336.11035000000004)


   

Gly Cys Gly Thr

(2S,3R)-2-{2-[(2R)-2-(2-aminoacetamido)-3-sulfanylpropanamido]acetamido}-3-hydroxybutanoic acid

C11H20N4O6S (336.11035000000004)


   

Gly Cys Ser Ala

(2S)-2-[(2S)-2-[(2R)-2-(2-aminoacetamido)-3-sulfanylpropanamido]-3-hydroxypropanamido]propanoic acid

C11H20N4O6S (336.11035000000004)


   

Gly Cys Thr Gly

2-[(2S,3R)-2-[(2R)-2-(2-aminoacetamido)-3-sulfanylpropanamido]-3-hydroxybutanamido]acetic acid

C11H20N4O6S (336.11035000000004)


   

Gly Gly Cys Thr

(2S,3R)-2-[(2R)-2-[2-(2-aminoacetamido)acetamido]-3-sulfanylpropanamido]-3-hydroxybutanoic acid

C11H20N4O6S (336.11035000000004)


   

Gly Gly Thr Cys

(2R)-2-[(2S,3R)-2-[2-(2-aminoacetamido)acetamido]-3-hydroxybutanamido]-3-sulfanylpropanoic acid

C11H20N4O6S (336.11035000000004)


   

Gly Ser Ala Cys

(2R)-2-[(2S)-2-[(2S)-2-(2-aminoacetamido)-3-hydroxypropanamido]propanamido]-3-sulfanylpropanoic acid

C11H20N4O6S (336.11035000000004)


   

Gly Ser Cys Ala

(2S)-2-[(2R)-2-[(2S)-2-(2-aminoacetamido)-3-hydroxypropanamido]-3-sulfanylpropanamido]propanoic acid

C11H20N4O6S (336.11035000000004)


   

Gly Ser Ser Ser

(2S)-2-[(2S)-2-[(2S)-2-(2-aminoacetamido)-3-hydroxypropanamido]-3-hydroxypropanamido]-3-hydroxypropanoic acid

C11H20N4O8 (336.128108)


   

Gly Thr Cys Gly

2-[(2R)-2-[(2S,3R)-2-(2-aminoacetamido)-3-hydroxybutanamido]-3-sulfanylpropanamido]acetic acid

C11H20N4O6S (336.11035000000004)


   

Gly Thr Gly Cys

(2R)-2-{2-[(2S,3R)-2-(2-aminoacetamido)-3-hydroxybutanamido]acetamido}-3-sulfanylpropanoic acid

C11H20N4O6S (336.11035000000004)


   

Ser Ala Cys Gly

2-[(2R)-2-[(2S)-2-[(2S)-2-amino-3-hydroxypropanamido]propanamido]-3-sulfanylpropanamido]acetic acid

C11H20N4O6S (336.11035000000004)


   

Ser Ala Gly Cys

(2R)-2-{2-[(2S)-2-[(2S)-2-amino-3-hydroxypropanamido]propanamido]acetamido}-3-sulfanylpropanoic acid

C11H20N4O6S (336.11035000000004)


   

Ser Cys Ala Gly

2-[(2S)-2-[(2R)-2-[(2S)-2-amino-3-hydroxypropanamido]-3-sulfanylpropanamido]propanamido]acetic acid

C11H20N4O6S (336.11035000000004)


   

Ser Cys Gly Ala

(2S)-2-{2-[(2R)-2-[(2S)-2-amino-3-hydroxypropanamido]-3-sulfanylpropanamido]acetamido}propanoic acid

C11H20N4O6S (336.11035000000004)


   

Ser Gly Ala Cys

(2R)-2-[(2S)-2-{2-[(2S)-2-amino-3-hydroxypropanamido]acetamido}propanamido]-3-sulfanylpropanoic acid

C11H20N4O6S (336.11035000000004)


   

Ser Gly Cys Ala

(2S)-2-[(2R)-2-{2-[(2S)-2-amino-3-hydroxypropanamido]acetamido}-3-sulfanylpropanamido]propanoic acid

C11H20N4O6S (336.11035000000004)


   

Ser Gly Ser Ser

(2S)-2-[(2S)-2-{2-[(2S)-2-amino-3-hydroxypropanamido]acetamido}-3-hydroxypropanamido]-3-hydroxypropanoic acid

C11H20N4O8 (336.128108)


   

Ser Ser Gly Ser

(2S)-2-{2-[(2S)-2-[(2S)-2-amino-3-hydroxypropanamido]-3-hydroxypropanamido]acetamido}-3-hydroxypropanoic acid

C11H20N4O8 (336.128108)


   

Ser Ser Ser Gly

2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-hydroxypropanamido]-3-hydroxypropanamido]-3-hydroxypropanamido]acetic acid

C11H20N4O8 (336.128108)


   

Thr Cys Gly Gly

2-{2-[(2R)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-sulfanylpropanamido]acetamido}acetic acid

C11H20N4O6S (336.11035000000004)


   

Thr Gly Cys Gly

2-[(2R)-2-{2-[(2S,3R)-2-amino-3-hydroxybutanamido]acetamido}-3-sulfanylpropanamido]acetic acid

C11H20N4O6S (336.11035000000004)


   

Thr Gly Gly Cys

(2R)-2-(2-{2-[(2S,3R)-2-amino-3-hydroxybutanamido]acetamido}acetamido)-3-sulfanylpropanoic acid

C11H20N4O6S (336.11035000000004)


   

Pterostilbene Phosphate

Pterostilbene Phosphate

C16H17O6P (336.0762712)


   
   

Nitrosoglutathione

N-(N-L-γ-glutamyl-S-nitroso-L-cysteinyl)-glycine

C10H16N4O7S (336.0739666)


Nitrosoglutathione (GSNO), a exogenous NO donor and a substrate for rat alcohol dehydrogenase class III isoenzyme, inhibits cerebrovascular angiotensin II-dependent and -independent AT1 receptor responses[1][2][3][4].

   

3-Caffeoylquinic acid lactone

(1R,3R,4R,5R)-1,4-dihydroxy-7-oxo-6-oxabicyclo[3.2.1]octan-3-yl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C16H16O8 (336.0845136)


   

4-Caffeoylquinic acid lactone

(1S,3R,4R,5R)-1,3-dihydroxy-7-oxo-6-oxabicyclo[3.2.1]octan-4-yl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C16H16O8 (336.0845136)


   

Kanzonol W

3-(2,4-Dihydroxyphenyl)-8,8-dimethyl-2H,8H-benzo[1,2-b:3,4-b']dipyran-2-one, 9CI

C20H16O5 (336.0997686)


   

Dulciol D

7,10-dihydroxy-8-(2-methylbut-3-en-2-yl)-6H-furo[3,2-c]xanthen-6-one

C20H16O5 (336.0997686)


   

Neodattelic acid

5-{[(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4-dihydroxycyclohex-1-ene-1-carboxylic acid

C16H16O8 (336.0845136)


   

Juglone glucoside

5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,4-dihydronaphthalene-1,4-dione

C16H16O8 (336.0845136)


   

3-HMA

1-{3-carboxy-3-[(3-carboxy-3-hydroxypropyl)amino]-2-hydroxypropyl}-3-hydroxyazetidine-2-carboxylic acid

C12H20N2O9 (336.11687500000005)


   

Isodattelic acid

4-{[(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,5-dihydroxycyclohex-1-ene-1-carboxylic acid

C16H16O8 (336.0845136)


   

Musanolone D

2,3-dihydroxy-9-(4-hydroxy-3-methoxyphenyl)-2,3-dihydro-1H-phenalen-1-one

C20H16O5 (336.0997686)


   

nicotinate beta-D-ribonucleotide

3-carboxy-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-1$l^{5}-pyridin-1-ylium

C11H15NO9P (336.048441)


   

6-Deoxy-8-O-methylrabelomycin

3-Hydroxy-8-methoxy-3-methyl-3,4-dihydro-1,7,12(2H)-tetraphenetrione

C20H16O5 (336.0997686)


   
   

(5-amino-1-benzothiophen-2-yl)-(4-phenylpiperidin-1-yl)methanone

(5-amino-1-benzothiophen-2-yl)-(4-phenylpiperidin-1-yl)methanone

C20H20N2OS (336.129627)


   

1,1,1-Trifluoro-N-[1,2,3,4-tetrahydro-1-(2-methylpropyl)-7-quinolinyl]-methanesulfonamide

1,1,1-Trifluoro-N-[1,2,3,4-tetrahydro-1-(2-methylpropyl)-7-quinolinyl]-methanesulfonamide

C14H19F3N2O2S (336.111927)


   

TERT-BUTYL 5-CHLORO-2-OXOSPIRO[INDOLINE-3,4-PIPERIDINE]-1-CARBOXYLATE

TERT-BUTYL 5-CHLORO-2-OXOSPIRO[INDOLINE-3,4-PIPERIDINE]-1-CARBOXYLATE

C17H21ClN2O3 (336.1240626)


   
   

3H-Xanthen-3-one,2,6,7-trihydroxy-9-(2-hydroxyphenyl)-

3H-Xanthen-3-one,2,6,7-trihydroxy-9-(2-hydroxyphenyl)-

C19H12O6 (336.06338519999997)


   

3,5-diphenyl-2-sulfanylidene-1H-thieno[2,3-d]pyrimidin-4-one

3,5-diphenyl-2-sulfanylidene-1H-thieno[2,3-d]pyrimidin-4-one

C18H12N2OS2 (336.0391022)


   

(4-methylsulfinylphenoxy)-di(propan-2-yloxy)-sulfanylidene-λ5-phosphane

(4-methylsulfinylphenoxy)-di(propan-2-yloxy)-sulfanylidene-λ5-phosphane

C13H21O4PS2 (336.0618836)


   

Methyl 4-acetoxy-8-phenoxy-2-naphthoate

Methyl 4-acetoxy-8-phenoxy-2-naphthoate

C20H16O5 (336.0997686)


   

Methyl 4,6,7-trimethoxy-5-(methoxymethoxy)-2-naphthoate

Methyl 4,6,7-trimethoxy-5-(methoxymethoxy)-2-naphthoate

C17H20O7 (336.120897)


   

CHLORCYCLIZINE HYDROCHLORIDE

CHLORCYCLIZINE HYDROCHLORIDE

C18H22Cl2N2 (336.1159952)


   

Clonixeril

3-Pyridinecarboxylicacid, 2-[(3-chloro-2-methylphenyl)amino]-, 2,3-dihydroxypropyl ester

C16H17ClN2O4 (336.0876792)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic

   

2-Bromo-6-octyl-3,4-dihydro-1(2H)-naphthalenone

2-Bromo-6-octyl-3,4-dihydro-1(2H)-naphthalenone

C18H25BrO (336.108866)


   

2-O-Acetyltutin

2-O-Acetyltutin

C17H20O7 (336.120897)


   

[4-(4-chloro-phenyl)-piperazin-1-yl]-thiophen-3-yl-acetic acid

[4-(4-chloro-phenyl)-piperazin-1-yl]-thiophen-3-yl-acetic acid

C16H17ClN2O2S (336.0699212)


   

Benzene,1,1,1-[(chlorosilylidyne)tris(methylene)]tris-

Benzene,1,1,1-[(chlorosilylidyne)tris(methylene)]tris-

C21H21ClSi (336.1100976)


   

2-(t-Butyldimethylsilyloxy)-6-bromonaphthalene

2-(t-Butyldimethylsilyloxy)-6-bromonaphthalene

C16H21BrOSi (336.0544956)


   
   

(S)-2-BENZYLOXY-1 3-PROPANEDIOL 1-(TO-

(S)-2-BENZYLOXY-1 3-PROPANEDIOL 1-(TO-

C17H20O5S (336.10313900000006)


   

1,2-DIMETHYL-3-SULFOPROPYL-5-TRIFLUOROMETHYLBENZIMIDAZOLIUM, INNER SALT

1,2-DIMETHYL-3-SULFOPROPYL-5-TRIFLUOROMETHYLBENZIMIDAZOLIUM, INNER SALT

C13H15F3N2O3S (336.07554360000006)


   

2-[(4-sulfamoylphenyl)carbamoyl]bicyclo[2.2.1]hept-5-ene-3-carboxylic acid

2-[(4-sulfamoylphenyl)carbamoyl]bicyclo[2.2.1]hept-5-ene-3-carboxylic acid

C15H16N2O5S (336.0779886)


   

4-Butyl-4-iodobiphenyl

4-Butyl-4-iodobiphenyl

C16H17I (336.0374952)


   

2-Bromo-7-(2-methyl-2-propanyl)pyrene

2-Bromo-7-(2-methyl-2-propanyl)pyrene

C20H17Br (336.0513542)


   

7-BENZYLOXY-4-CHLORO-6-METHOXY-QUINAZOLINE HYDROCHLORIDE

7-BENZYLOXY-4-CHLORO-6-METHOXY-QUINAZOLINE HYDROCHLORIDE

C16H14Cl2N2O2 (336.0432284)


   

3,5-bis-(4-Aminophenoxy)benzoic acid

3,5-bis-(4-Aminophenoxy)benzoic acid

C19H16N2O4 (336.1110016)


   

4-Chloro-2-hydroxycarbazole-1-carboxanilide

4-Chloro-2-hydroxycarbazole-1-carboxanilide

C19H13ClN2O2 (336.0665508)


   

4-Nitrophenyl 4-Guanidinobenzoate Hydrochloride

4-Nitrophenyl 4-Guanidinobenzoate Hydrochloride

C14H13ClN4O4 (336.06252880000005)


   

(3S,4R)-3-benzyloxycarbonylamino-4-methyl-2-oxoazetidine-1-sulphonic acid sodium salt

(3S,4R)-3-benzyloxycarbonylamino-4-methyl-2-oxoazetidine-1-sulphonic acid sodium salt

C12H13N2NaO6S (336.0391998)


   

Calcium benzoate

Calcium benzoate

C14H16CaO7 (336.0521896)


Preservative, used in margarine.

   

1,5-dibenzoylnaphthalene

1,5-dibenzoylnaphthalene

C24H16O2 (336.1150236)


   

1-BENZYL-3-((DIMETHYLCARBAMOYL)OXY)PYRIDIN-1-IUM BROMIDE

1-BENZYL-3-((DIMETHYLCARBAMOYL)OXY)PYRIDIN-1-IUM BROMIDE

C15H17BrN2O2 (336.04733219999997)


   

[4-(4-chloro-phenyl)-piperazin-1-yl]-thiophen-2-yl-acetic acid

[4-(4-chloro-phenyl)-piperazin-1-yl]-thiophen-2-yl-acetic acid

C16H17ClN2O2S (336.0699212)


   

Etifoxine hydrochloride

Etifoxine hydrochloride

C17H18Cl2N2O (336.0796118)


Etifoxine hydrochloride, a non-benzodiazepine GABAergic compound, is a positive allosteric modulator of α1β2γ2 and α1β3γ2 subunit-containing GABAA receptors. Etifoxine hydrochloride reveals anxiolytic and anticonvulsant properties in rodents[1][2][3].

   

4,4-Oxybis[3-(trifluoromethyl)aniline]

4,4-Oxybis[3-(trifluoromethyl)aniline]

C14H10F6N2O (336.0697282)


   

3-(3-CYANO-BENZENESULFONYL)-PYRROLIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

3-(3-CYANO-BENZENESULFONYL)-PYRROLIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

C16H20N2O4S (336.11437200000006)


   

3-(4-CYANO-BENZENESULFONYL)-PYRROLIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

3-(4-CYANO-BENZENESULFONYL)-PYRROLIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

C16H20N2O4S (336.11437200000006)


   

Pyridinium, 3-[(methoxycarbonyl)amino]-4-methyl-1-(phenylmethyl)-, bromide

Pyridinium, 3-[(methoxycarbonyl)amino]-4-methyl-1-(phenylmethyl)-, bromide

C15H17BrN2O2 (336.04733219999997)


   

3-(4-Chlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione

3-(4-Chlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione

C19H13ClN2O2 (336.0665508)


   

[2,4-Bis(benzyloxy)-5-pyrimidinyl]boronic acid

[2,4-Bis(benzyloxy)-5-pyrimidinyl]boronic acid

C18H17BN2O4 (336.12813120000004)


   

14H-Anthra[2,1,9-mna]thioxanthen-14-one

14H-Anthra[2,1,9-mna]thioxanthen-14-one

C23H12OS (336.06088220000004)


   
   

(E)-ETHYL 2-(4-BROMOPHENYL)-3-CYCLOHEXYLACRYLATE

(E)-ETHYL 2-(4-BROMOPHENYL)-3-CYCLOHEXYLACRYLATE

C17H21BrO2 (336.0724826)


   

3-(4-CHLORO-PHENYL)-7H-[1,2,4]TRIAZOLO[3,4-B][1,3,4]THIADIAZIN-6-YL]-ACETIC ACID ETHYL ESTER

3-(4-CHLORO-PHENYL)-7H-[1,2,4]TRIAZOLO[3,4-B][1,3,4]THIADIAZIN-6-YL]-ACETIC ACID ETHYL ESTER

C14H13ClN4O2S (336.04477080000004)


   

5-Amino-4-cyano-3-[[(4-fluorophenyl)thio]methyl]-2-thiophenecarboxylic acid ethyl ester

5-Amino-4-cyano-3-[[(4-fluorophenyl)thio]methyl]-2-thiophenecarboxylic acid ethyl ester

C15H13FN2O2S2 (336.04024499999997)


   

4-[4-(3-chlorophenoxy)-3-oxobut-1-enyl]-5-hydroxy-3,3a,4,5,6,6a-hexahydrocyclopenta[b]furan-2-one

4-[4-(3-chlorophenoxy)-3-oxobut-1-enyl]-5-hydroxy-3,3a,4,5,6,6a-hexahydrocyclopenta[b]furan-2-one

C17H17ClO5 (336.0764462)


   
   

3,3-oxybis[5-(trifluoromethyl)benzenamine]

3,3-oxybis[5-(trifluoromethyl)benzenamine]

C14H10F6N2O (336.0697282)


   
   

2-HYDROXYPROPYL 2-(METHACRYLOYLOXY)ETHYL PHTHALATE

2-HYDROXYPROPYL 2-(METHACRYLOYLOXY)ETHYL PHTHALATE

C17H20O7 (336.120897)


   

4,4-cyclohexylidenedianilinium dichloride

4,4-cyclohexylidenedianilinium dichloride

C18H22Cl2N2 (336.1159952)


   
   

2-BROMO-1-(3-ETHYL-5,5,8,8-TETRAMETHYL-5,6,7,8-TETRAHYDRONAPHTHALEN-2-YL)ETHAN-1-ONE

2-BROMO-1-(3-ETHYL-5,5,8,8-TETRAMETHYL-5,6,7,8-TETRAHYDRONAPHTHALEN-2-YL)ETHAN-1-ONE

C18H25BrO (336.108866)


   

(R)-(-)-1-Benzyloxy-3-(p-tosyloxy)-2-propanol

(R)-(-)-1-Benzyloxy-3-(p-tosyloxy)-2-propanol

C17H20O5S (336.10313900000006)


   

6-METHYL-2,4,6-TRIS(TRIFLUOROMETHYL)TETRAHYDROPYRAN-2,4-DIOL

6-METHYL-2,4,6-TRIS(TRIFLUOROMETHYL)TETRAHYDROPYRAN-2,4-DIOL

C9H9F9O3 (336.04079519999993)


   

N-CARBOBENZOXY-2-NITROBENZENESULFONAMIDE

N-CARBOBENZOXY-2-NITROBENZENESULFONAMIDE

C14H12N2O6S (336.04160520000005)


   
   

N-[(2-HYDROXY-NAPHTHALEN-1-YL)-(3-NITRO-PHENYL)-METHYL]-ACETAMIDE

N-[(2-HYDROXY-NAPHTHALEN-1-YL)-(3-NITRO-PHENYL)-METHYL]-ACETAMIDE

C19H16N2O4 (336.1110016)


   

tantalum(v) methoxide

tantalum(v) methoxide

C5H15O5Ta (336.039958)


   
   

[3aa,4a(E),5b,6aa]-4-[4-(3-Chlorophenoxy)-3-oxo-1-butenyl]hexahydro-5-hydroxy-2H-cyclopenta[b]furan-2-one

[3aa,4a(E),5b,6aa]-4-[4-(3-Chlorophenoxy)-3-oxo-1-butenyl]hexahydro-5-hydroxy-2H-cyclopenta[b]furan-2-one

C17H17ClO5 (336.0764462)


   
   

(4-Phenoxyphenyl) Phenyl Dimethoxysilane

(4-Phenoxyphenyl) Phenyl Dimethoxysilane

C20H20O3Si (336.11816500000003)


   

Ethanol, 2-(2-phenoxyethoxy)-, 4-methylbenzenesulfonate

Ethanol, 2-(2-phenoxyethoxy)-, 4-methylbenzenesulfonate

C17H20O5S (336.10313900000006)


   

4-(3-fluoro-2-methylphenyl)butyl 4-methylbenzenesulfonate

4-(3-fluoro-2-methylphenyl)butyl 4-methylbenzenesulfonate

C18H21FO3S (336.1195368)


   

9-(β-D-ribofuranosyl)-6-(furan-2-yl)purine

9-(β-D-ribofuranosyl)-6-(furan-2-yl)purine

C14H16N4O6 (336.1069796)


   

Gallocyanine

Gallocyanine

C15H13ClN2O5 (336.05129580000005)


D004396 - Coloring Agents

   

1-Methoxy-5-methylphenazinium methyl sulfate

1-Methoxy-5-methylphenazinium methyl sulfate

C15H16N2O5S (336.0779886)


   

TERT-BUTYL 7-CHLORO-2-OXOSPIRO[INDOLINE-3,4-PIPERIDINE]-1-CARBOXYLATE

TERT-BUTYL 7-CHLORO-2-OXOSPIRO[INDOLINE-3,4-PIPERIDINE]-1-CARBOXYLATE

C17H21ClN2O3 (336.1240626)


   

Nonanoic acid, sulfophenyl ester, sodium salt

Nonanoic acid, sulfophenyl ester, sodium salt

C15H21NaO5S (336.1007336)


   

Bis(2-isopropoxyphenyl)chlorophosphine

Bis(2-isopropoxyphenyl)chlorophosphine

C18H22ClO2P (336.1045872)


   

(E)-2-(4-(CYCLOPROPYLSULFONYL)PHENYL)-3-(TETRAHYDRO-2H-PYRAN-4-YL)ACRYLIC ACID

(E)-2-(4-(CYCLOPROPYLSULFONYL)PHENYL)-3-(TETRAHYDRO-2H-PYRAN-4-YL)ACRYLIC ACID

C17H20O5S (336.10313900000006)


   

4,6-DIAMINOPYRIMIDINE HEMISULFATE MONOHY DRATE

4,6-DIAMINOPYRIMIDINE HEMISULFATE MONOHY DRATE

C8H16N8O5S (336.0964326)


   

Bis(3,5-dimethyl-4-methoxyphenyl)chlorophosphine

Bis(3,5-dimethyl-4-methoxyphenyl)chlorophosphine

C18H22ClO2P (336.1045872)


   

2-FLUORO-4-(2-PHENOXYETHOXY)BENZOPHENONE

2-FLUORO-4-(2-PHENOXYETHOXY)BENZOPHENONE

C21H17FO3 (336.1161664)


   

calcium,dibenzoate,trihydrate

calcium,dibenzoate,trihydrate

C14H16CaO7 (336.0521896)


   

Cysteine, S-[4-[bis(2-chloroethyl)amino]phenyl]-

Cysteine, S-[4-[bis(2-chloroethyl)amino]phenyl]-

C13H18Cl2N2O2S (336.0465988)


   

(S)-(+)-1-Benzyloxy-3-(p-tosyloxy)-2-propanol

(S)-(+)-1-Benzyloxy-3-(p-tosyloxy)-2-propanol

C17H20O5S (336.10313900000006)


   

N-(3-cyano-4-methyl-1H-indol-7-yl)-3-cyanobenzene-sulfonamide

N-(3-cyano-4-methyl-1H-indol-7-yl)-3-cyanobenzene-sulfonamide

C17H12N4O2S (336.0680932)


C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C2144 - Endothelial-Specific Integrin/Survival Signaling Inhibitor

   

Naproxen etemesil

Naproxen etemesil

C17H20O5S (336.10313900000006)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor

   

Molidustat sodium

Molidustat sodium

C13H13N8NaO2 (336.1059118)


C471 - Enzyme Inhibitor

   

6-(3,5-Difluoroanilino)-9-(2,2-difluoroethyl)purine-2-carbonitrile

6-(3,5-Difluoroanilino)-9-(2,2-difluoroethyl)purine-2-carbonitrile

C14H8F4N6 (336.0746536)


   

Stilbamidine dihydrochloride

Stilbamidine dihydrochloride

C16H18Cl2N4 (336.0908448)


   

1-Benzo[1,3]dioxol-5-yl-2,3,4,9-tetrahydro-1H-beta-carboline-3-carboxylic acid

1-Benzo[1,3]dioxol-5-yl-2,3,4,9-tetrahydro-1H-beta-carboline-3-carboxylic acid

C19H16N2O4 (336.1110016)


   

Aspergillusone B

Aspergillusone B

C16H16O8 (336.0845136)


A member of the class of xanthones that is methyl (1R)-2,3,4,9-tetrahydro-1H-xanthene-1-carboxylate substituted by hydroxy groups at positions 1, 2 and 8, a hydroxymethyl group at position 6 and an oxo group at position 9. It has been isolated from the sea fan derived fungus Aspergillus sydowii.

   

5-Amino-4-(1,3-benzothiazol-6-ylhydrazinylidene)-2-phenyl-3-pyrazolone

5-Amino-4-(1,3-benzothiazol-6-ylhydrazinylidene)-2-phenyl-3-pyrazolone

C16H12N6OS (336.0793262)


   

N-[(E)-[5-(4-nitrophenyl)furan-2-yl]methylideneamino]pyridine-3-carboxamide

N-[(E)-[5-(4-nitrophenyl)furan-2-yl]methylideneamino]pyridine-3-carboxamide

C17H12N4O4 (336.08585120000004)


   

N-[2-[(4-methyl-1,2,4-triazol-3-yl)sulfanyl]acetyl]-4-nitrobenzohydrazide

N-[2-[(4-methyl-1,2,4-triazol-3-yl)sulfanyl]acetyl]-4-nitrobenzohydrazide

C12H12N6O4S (336.06407120000006)


   

4-O-Caffeoylshikimic acid

4-O-Caffeoylshikimic acid

C16H16O8 (336.0845136)


   

3-O-Caffeoylshikimic acid

3-O-Caffeoylshikimic acid

C16H16O8 (336.0845136)


   

3-Amino-2-(4-methoxyphenyl)-7-nitro-1-oxo-4-isoquinolinecarbonitrile

3-Amino-2-(4-methoxyphenyl)-7-nitro-1-oxo-4-isoquinolinecarbonitrile

C17H12N4O4 (336.08585120000004)


   

6-(2-Chlorophenyl)-3,4-dimethyl-2-oxo-1,6-dihydropyrimidine-5-carboxylic acid 2-methylpropyl ester

6-(2-Chlorophenyl)-3,4-dimethyl-2-oxo-1,6-dihydropyrimidine-5-carboxylic acid 2-methylpropyl ester

C17H21ClN2O3 (336.1240626)


   

4,4,6-trimethyl-5,6-dihydro-3H,4H-spiro[1,3-benzothiazole-2,1-pyrrolo[3,2,1-ij]quinolin]-2-one

4,4,6-trimethyl-5,6-dihydro-3H,4H-spiro[1,3-benzothiazole-2,1-pyrrolo[3,2,1-ij]quinolin]-2-one

C20H20N2OS (336.129627)


   

Dimesityldichlorosilane

Dimesityldichlorosilane

C18H22Cl2Si (336.0867752)


   

EDTA disodium salt

Ethylenediaminetetraacetic acid disodium salt

C10H14N2Na2O8 (336.0545524)


D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D000074385 - Food Ingredients > D005503 - Food Additives D006401 - Hematologic Agents > D000925 - Anticoagulants

   

2-{5-[Amino(iminio)methyl]-1H-benzimidazol-2-YL}-4-(trifluoromethoxy)benzenolate

2-{5-[Amino(iminio)methyl]-1H-benzimidazol-2-YL}-4-(trifluoromethoxy)benzenolate

C15H11F3N4O2 (336.08340619999996)


   

6-chloro-3-(3-methylisoxazol-5-yl)-4-phenylquinolin-2(1H)-one

6-chloro-3-(3-methylisoxazol-5-yl)-4-phenylquinolin-2(1H)-one

C19H13ClN2O2 (336.0665508)


   

(E)-3,4-Dihydroxy-N-[(2-Methoxynaphthalen-1-Yl)methylene]benzohydrazide

(E)-3,4-Dihydroxy-N-[(2-Methoxynaphthalen-1-Yl)methylene]benzohydrazide

C19H16N2O4 (336.1110016)


   

Bishydroxy[2H-1-benzopyran-2-one,1,2-benzopyrone]

Bishydroxy[2H-1-benzopyran-2-one,1,2-benzopyrone]

C19H12O6 (336.06338519999997)


   

Thiamine hydrochloride

Thiamine hydrochloride

C12H18Cl2N4OS (336.05783180000003)


Thiamine hydrochloride (Thiamine chloride hydrochloride) is an essential micronutrient needed as a cofactor for many central metabolic enzymes. Thiamine hydrochloride (Thiamine chloride hydrochloride) is an essential micronutrient needed as a cofactor for many central metabolic enzymes.

   

Peonidin chloride

Peonidin 3-[4-hydroxycinnamoyl-b-D-glucopyranoside]

C16H13ClO6 (336.0400628)


Isolated from grapes. Peonidin 3-[4-hydroxycinnamoyl-b-D-glucopyranoside] is found in many foods, some of which are fruits, olive, common grape, and rose hip.

   

3-Hydroxy-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1H-2-benzofuran-5-yl)-4-methylhex-4-enoic acid

3-Hydroxy-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1H-2-benzofuran-5-yl)-4-methylhex-4-enoic acid

C17H20O7 (336.120897)


   

4-[[1-(4-Chlorophenyl)triazol-4-yl]methoxy]quinoline

4-[[1-(4-Chlorophenyl)triazol-4-yl]methoxy]quinoline

C18H13ClN4O (336.0777838)


   

[5-(3-carbamoyl-4H-pyridin-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate

[5-(3-carbamoyl-4H-pyridin-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate

C11H17N2O8P (336.07224920000004)


   

g-glutamyl-S-nitrosocysteinylglycine

g-glutamyl-S-nitrosocysteinylglycine

C10H16N4O7S (336.0739666)


   

S-(hydroxymethyl)glutathione(1-)

S-(hydroxymethyl)glutathione(1-)

C11H18N3O7S- (336.0865418)


Conjugate base of S-(hydroxymethyl)glutathione.

   

5-amino-1-(5-phospho-D-Ribosyl)imidazole-4-carboxamide

5-amino-1-(5-phospho-D-Ribosyl)imidazole-4-carboxamide

C9H13N4O8P-2 (336.0470988)


COVID info from COVID-19 Disease Map D007004 - Hypoglycemic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

6-(2-Azaniumyl-2-carboxylatoethyl)-7,8-dioxo-1,2,3,4,7,8-hexahydroquinoline-2,4-dicarboxylate

6-(2-Azaniumyl-2-carboxylatoethyl)-7,8-dioxo-1,2,3,4,7,8-hexahydroquinoline-2,4-dicarboxylate

C14H12N2O8-2 (336.0593632)


   
   

N-beta-D-glucopyranosol IAA

N-beta-D-glucopyranosol IAA

C16H18NO7- (336.1083218)


   

Desmethyl-dehydrogriseofulvin

Desmethyl-dehydrogriseofulvin

C16H13ClO6 (336.0400628)


   

2-O-acetyl-3-O-trans-coutarate

2-O-acetyl-3-O-trans-coutarate

C15H12O9-2 (336.0481302)


   
   

2-Oxo-3-(phosphooxy)propyl 8-methyl-3-oxononanoate

2-Oxo-3-(phosphooxy)propyl 8-methyl-3-oxononanoate

C13H21O8P-2 (336.0973996)


   

2-Oxo-3-(phosphooxy)propyl 3-oxodecanoate

2-Oxo-3-(phosphooxy)propyl 3-oxodecanoate

C13H21O8P-2 (336.0973996)


   

(2S)-2-amino-5-[[(1R)-1-carboxy-2-(2-carboxypropylsulfanyl)ethyl]amino]-5-oxopentanoic acid

(2S)-2-amino-5-[[(1R)-1-carboxy-2-(2-carboxypropylsulfanyl)ethyl]amino]-5-oxopentanoic acid

C12H20N2O7S (336.09911700000004)


   
   

1-[3,4-Dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]pyridin-1-ium-3-carboxylic acid

1-[3,4-Dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]pyridin-1-ium-3-carboxylic acid

C11H15NO9P+ (336.048441)


   

EDTA disodium

Ethylenediaminetetraacetic acid disodium salt

C10H14N2Na2O8 (336.0545524)


D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D000074385 - Food Ingredients > D005503 - Food Additives D006401 - Hematologic Agents > D000925 - Anticoagulants

   

Brasiliquinone B

Brasiliquinone B

C20H16O5 (336.0997686)


A carbopolycyclic compound that is 3,4-dihydrotetraphene-1,7,12(2H)-trione substituted by hydroxy groups at positions 6 and 8 and an ethyl group at position 3 (the S stereoisomer). It is isolated from the culture broth of Nocardia brasiliensis and exhibits antibacterial activity against Gram-positive bacteria. It is also active against the multiple drug-resistant P388/ADR tumour cells.

   

2-[(2-Phenyl-4-benzofuro[3,2-d]pyrimidinyl)thio]acetic acid

2-[(2-Phenyl-4-benzofuro[3,2-d]pyrimidinyl)thio]acetic acid

C18H12N2O3S (336.0568602000001)


   

5-(3,5-Dimethylpiperidin-1-yl)sulfonyl-1-methylindole-2,3-dione

5-(3,5-Dimethylpiperidin-1-yl)sulfonyl-1-methylindole-2,3-dione

C16H20N2O4S (336.11437200000006)


   

N-(3-fluoro-4-methylphenyl)-3-methyl-2-oxo-1,3-benzoxazole-6-sulfonamide

N-(3-fluoro-4-methylphenyl)-3-methyl-2-oxo-1,3-benzoxazole-6-sulfonamide

C15H13FN2O4S (336.05800300000004)


   

1-[2-[(4-Chlorophenyl)thio]ethyl]-3-(4-methylphenyl)thiourea

1-[2-[(4-Chlorophenyl)thio]ethyl]-3-(4-methylphenyl)thiourea

C16H17ClN2S2 (336.0521632)


   

2-Amino-4-(3-nitrophenyl)-3-cyano-7-(dimethylamino)-4h-chromene

2-Amino-4-(3-nitrophenyl)-3-cyano-7-(dimethylamino)-4h-chromene

C18H16N4O3 (336.12223459999996)


   

3-[(5-chloro-2-pyridinyl)amino]-2-(2-pyridinyl)-3H-isoindol-1-one

3-[(5-chloro-2-pyridinyl)amino]-2-(2-pyridinyl)-3H-isoindol-1-one

C18H13ClN4O (336.0777838)


   

2-(4-fluoro-N-methylsulfonylanilino)-N-(3-methylphenyl)acetamide

2-(4-fluoro-N-methylsulfonylanilino)-N-(3-methylphenyl)acetamide

C16H17FN2O3S (336.0943864000001)


   
   
   

4-(6-Fluoro-3-methyl-4-oxo-1-benzopyran-2-yl)-2-methyl-1-phthalazinone

4-(6-Fluoro-3-methyl-4-oxo-1-benzopyran-2-yl)-2-methyl-1-phthalazinone

C19H13FN2O3 (336.09101599999997)


   

2-ethoxy-N-[4-(2-pyrimidinylsulfamoyl)phenyl]acetamide

2-ethoxy-N-[4-(2-pyrimidinylsulfamoyl)phenyl]acetamide

C14H16N4O4S (336.08922160000003)


   

1-phenyl-6-[(2-pyrimidinylthio)methyl]-2H-pyrazolo[3,4-d]pyrimidin-4-one

1-phenyl-6-[(2-pyrimidinylthio)methyl]-2H-pyrazolo[3,4-d]pyrimidin-4-one

C16H12N6OS (336.0793262)


   

3-(2,3-dihydro-1,4-benzodioxin-6-ylamino)-6-(phenylmethyl)-2H-1,2,4-triazin-5-one

3-(2,3-dihydro-1,4-benzodioxin-6-ylamino)-6-(phenylmethyl)-2H-1,2,4-triazin-5-one

C18H16N4O3 (336.12223459999996)


   

1-(5-Chloro-2,4-dimethoxyphenyl)-3-(phenylmethyl)thiourea

1-(5-Chloro-2,4-dimethoxyphenyl)-3-(phenylmethyl)thiourea

C16H17ClN2O2S (336.0699212)


   

4-[(4-Carboxy-2,6-dimethoxyphenoxy)methyl]-5-methyl-2-furancarboxylic acid

4-[(4-Carboxy-2,6-dimethoxyphenoxy)methyl]-5-methyl-2-furancarboxylic acid

C16H16O8 (336.0845136)


   

2-[4-(Pyridin-4-ylmethylsulfamoyl)phenoxy]acetic acid methyl ester

2-[4-(Pyridin-4-ylmethylsulfamoyl)phenoxy]acetic acid methyl ester

C15H16N2O5S (336.0779886)


   

4-[2-[(4-Chlorophenyl)thio]ethoxy]-3-ethoxybenzaldehyde

4-[2-[(4-Chlorophenyl)thio]ethoxy]-3-ethoxybenzaldehyde

C17H17ClO3S (336.0586882)


   

3-[(2-chlorophenyl)methyl]-N-phenyl-7-triazolo[4,5-d]pyrimidinamine

3-[(2-chlorophenyl)methyl]-N-phenyl-7-triazolo[4,5-d]pyrimidinamine

C17H13ClN6 (336.0890168)


   

N-[[4-(4-nitrophenyl)-1-piperazinyl]-sulfanylidenemethyl]butanamide

N-[[4-(4-nitrophenyl)-1-piperazinyl]-sulfanylidenemethyl]butanamide

C15H20N4O3S (336.12560500000006)


   

4-[5-[Oxo-(3-pyridinylamino)methyl]-2-furanyl]benzoic acid ethyl ester

4-[5-[Oxo-(3-pyridinylamino)methyl]-2-furanyl]benzoic acid ethyl ester

C19H16N2O4 (336.1110016)


   

4-[[5-(Difluoromethylthio)-4-methyl-1,2,4-triazol-3-yl]methoxy]-5-methylisoquinoline

4-[[5-(Difluoromethylthio)-4-methyl-1,2,4-triazol-3-yl]methoxy]-5-methylisoquinoline

C15H14F2N4OS (336.08563380000004)


   

1-Phenyl-5-(N-p-tolyl-hydrazinomethylene)-pyrimidine-2,4,6-trione

1-Phenyl-5-(N-p-tolyl-hydrazinomethylene)-pyrimidine-2,4,6-trione

C18H16N4O3 (336.12223459999996)


   

2-[(2-Benzylsulfanyl-pyrimidin-4-yl)-hydrazonomethyl]-phenol

2-[(2-Benzylsulfanyl-pyrimidin-4-yl)-hydrazonomethyl]-phenol

C18H16N4OS (336.1044766)


   

5-[[2-Fluoro-4-(trifluoromethyl)anilino]methyl]-8-quinolinol

5-[[2-Fluoro-4-(trifluoromethyl)anilino]methyl]-8-quinolinol

C17H12F4N2O (336.08857099999994)


   

7-Amino-2-(ethylsulfanyl)-5-oxo-1-phenyl-1,5-dihydro[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbonitrile

7-Amino-2-(ethylsulfanyl)-5-oxo-1-phenyl-1,5-dihydro[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbonitrile

C16H12N6OS (336.0793262)


   
   

2-{[2-(2-chlorophenyl)-2-hydroxyethyl]amino}-N-(2-fluorobenzyl)acetamide

2-{[2-(2-chlorophenyl)-2-hydroxyethyl]amino}-N-(2-fluorobenzyl)acetamide

C17H18ClFN2O2 (336.10407699999996)


   

(2S,3S,4S)-1-[1,3-benzodioxol-5-yl(oxo)methyl]-4-(hydroxymethyl)-3-phenyl-2-azetidinecarbonitrile

(2S,3S,4S)-1-[1,3-benzodioxol-5-yl(oxo)methyl]-4-(hydroxymethyl)-3-phenyl-2-azetidinecarbonitrile

C19H16N2O4 (336.1110016)


   

(2R,3R,4S)-1-[1,3-benzodioxol-5-yl(oxo)methyl]-4-(hydroxymethyl)-3-phenyl-2-azetidinecarbonitrile

(2R,3R,4S)-1-[1,3-benzodioxol-5-yl(oxo)methyl]-4-(hydroxymethyl)-3-phenyl-2-azetidinecarbonitrile

C19H16N2O4 (336.1110016)


   

(2S,3R,4S)-1-(1,3-benzodioxole-5-carbonyl)-4-(hydroxymethyl)-3-phenylazetidine-2-carbonitrile

(2S,3R,4S)-1-(1,3-benzodioxole-5-carbonyl)-4-(hydroxymethyl)-3-phenylazetidine-2-carbonitrile

C19H16N2O4 (336.1110016)


   

(2R,3S,4R)-1-[1,3-benzodioxol-5-yl(oxo)methyl]-4-(hydroxymethyl)-3-phenyl-2-azetidinecarbonitrile

(2R,3S,4R)-1-[1,3-benzodioxol-5-yl(oxo)methyl]-4-(hydroxymethyl)-3-phenyl-2-azetidinecarbonitrile

C19H16N2O4 (336.1110016)


   

(2S,3R,4R)-1-(1,3-benzodioxole-5-carbonyl)-4-(hydroxymethyl)-3-phenylazetidine-2-carbonitrile

(2S,3R,4R)-1-(1,3-benzodioxole-5-carbonyl)-4-(hydroxymethyl)-3-phenylazetidine-2-carbonitrile

C19H16N2O4 (336.1110016)


   

(2R,3R,4R)-1-[1,3-benzodioxol-5-yl(oxo)methyl]-4-(hydroxymethyl)-3-phenyl-2-azetidinecarbonitrile

(2R,3R,4R)-1-[1,3-benzodioxol-5-yl(oxo)methyl]-4-(hydroxymethyl)-3-phenyl-2-azetidinecarbonitrile

C19H16N2O4 (336.1110016)


   

(2R,3S,4S)-1-[1,3-benzodioxol-5-yl(oxo)methyl]-4-(hydroxymethyl)-3-phenyl-2-azetidinecarbonitrile

(2R,3S,4S)-1-[1,3-benzodioxol-5-yl(oxo)methyl]-4-(hydroxymethyl)-3-phenyl-2-azetidinecarbonitrile

C19H16N2O4 (336.1110016)


   

(2S,3S,4R)-1-[1,3-benzodioxol-5-yl(oxo)methyl]-4-(hydroxymethyl)-3-phenyl-2-azetidinecarbonitrile

(2S,3S,4R)-1-[1,3-benzodioxol-5-yl(oxo)methyl]-4-(hydroxymethyl)-3-phenyl-2-azetidinecarbonitrile

C19H16N2O4 (336.1110016)


   
   

1-[3-[(2-Amino-2-carboxyethyl)disulfanyl]-2-methylpropanoyl]pyrrolidine-2-carboxylic acid

1-[3-[(2-Amino-2-carboxyethyl)disulfanyl]-2-methylpropanoyl]pyrrolidine-2-carboxylic acid

C12H20N2O5S2 (336.081359)


   

N-[3-(2-methoxyphenyl)imino-1,4-dioxo-2-naphthalenyl]acetamide

N-[3-(2-methoxyphenyl)imino-1,4-dioxo-2-naphthalenyl]acetamide

C19H16N2O4 (336.1110016)


   

[6-hydroxy-2-methoxy-3-[(E)-3-phenylprop-2-enyl]phenyl] hydrogen sulate

[6-hydroxy-2-methoxy-3-[(E)-3-phenylprop-2-enyl]phenyl] hydrogen sulate

C16H16O6S (336.0667556)


   

[4-[(E)-3-(4-hydroxy-2-methoxyphenyl)prop-1-enyl]phenyl] hydrogen sulate

[4-[(E)-3-(4-hydroxy-2-methoxyphenyl)prop-1-enyl]phenyl] hydrogen sulate

C16H16O6S (336.0667556)


   

[3-[(E)-3-(4-hydroxy-2-methoxyphenyl)prop-1-enyl]phenyl] hydrogen sulate

[3-[(E)-3-(4-hydroxy-2-methoxyphenyl)prop-1-enyl]phenyl] hydrogen sulate

C16H16O6S (336.0667556)


   

2-[(2S)-4-[(3-acetyl-2,6-dihydroxy-5-methylphenyl)methyl]-3-hydroxy-5-oxo-2H-furan-2-yl]acetic acid

2-[(2S)-4-[(3-acetyl-2,6-dihydroxy-5-methylphenyl)methyl]-3-hydroxy-5-oxo-2H-furan-2-yl]acetic acid

C16H16O8 (336.0845136)


   

3-cyano-N-(3-methanimidoyl-4-methylindol-7-ylidene)benzenesulfonamide

3-cyano-N-(3-methanimidoyl-4-methylindol-7-ylidene)benzenesulfonamide

C17H12N4O2S (336.0680932)


   

Berberine

16,17-dimethoxy-5,7-dioxa-13lambda5-azapentacyclo[11.8.0.0^{2,10}.0^{4,8}.0^{15,20}]henicosa-1(21),2,4(8),9,13,15,17,19-octaen-13-ylium

C20H18NO4+ (336.1235768)


Berberine is an organic heteropentacyclic compound, an alkaloid antibiotic, a botanical anti-fungal agent and a berberine alkaloid. It has a role as an antilipemic drug, a hypoglycemic agent, an antioxidant, a potassium channel blocker, an antineoplastic agent, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.1.1.141 [15-hydroxyprostaglandin dehydrogenase (NAD(+))] inhibitor, an EC 1.13.11.52 (indoleamine 2,3-dioxygenase) inhibitor, an EC 1.21.3.3 (reticuline oxidase) inhibitor, an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor, an EC 3.1.1.4 (phospholipase A2) inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an EC 3.4.14.5 (dipeptidyl-peptidase IV) inhibitor, an EC 3.1.3.48 (protein-tyrosine-phosphatase) inhibitor, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an EC 2.7.11.10 (IkappaB kinase) inhibitor, an EC 2.1.1.122 [(S)-tetrahydroprotoberberine N-methyltransferase] inhibitor, a geroprotector and a metabolite. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Berberine is a quaternary ammonia compound found in many botanical products, including goldenseal, barberry and Oregon grape, which is used for its purported antioxidant and antimicrobial properties for a host of conditions, including obesity, diabetes, hyperlipidemia, heart failure, H. pylori infection and colonic adenoma prevention. Berberine has not been linked to serum aminotransferase elevations during therapy nor to instances of clinically apparent liver injury. Berberine is a natural product found in Berberis poiretii, Thalictrum delavayi, and other organisms with data available. Berberine is a quaternary ammonium salt of an isoquinoline alkaloid and active component of various Chinese herbs, with potential antineoplastic, radiosensitizing, anti-inflammatory, anti-lipidemic and antidiabetic activities. Although the mechanisms of action through which berberine exerts its effects are not yet fully elucidated, upon administration this agent appears to suppress the activation of various proteins and/or modulate the expression of a variety of genes involved in tumorigenesis and inflammation, including, but not limited to transcription factor nuclear factor-kappa B (NF-kB), myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), cyclooxygenase (COX)-2, tumor necrosis factor (TNF), interleukin (IL)-6, IL-12, inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 2 (CXCL2), cyclin D1, activator protein (AP-1), hypoxia-inducible factor 1 (HIF-1), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor (PPAR), arylamine N-acetyltransferase (NAT), and DNA topoisomerase I and II. The modulation of gene expression may induce cell cycle arrest and apoptosis, and inhibit cancer cell proliferation. In addition, berberine modulates lipid and glucose metabolism. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. See also: Goldenseal (part of); Berberis aristata stem (part of). Berberine is a quaternary ammonium salt that belongs to the protoberberine group of benzylisoquinoline alkaloids. Chemically, berberine is classified as an isoquinoline alkaloid. More specifically, berberine is a plant alkaloid derived from tyrosine through a complex 8 step biosynthetic process. Berberine is found in plants such as Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Mahonia aquifolium (Oregon grape) and Hydrastis canadensis (goldenseal). Two other known berberine-containing plants are Phellodendron chinense and Phellodendron amurense. Berberine is usually found in the roots, rhizomes, stems, and bark of Berberis plants. Due to berberines intense yellow color, plants that contain berberine were traditionally used to dye wool, leather, and wood. Under ultraviolet light, berberine shows a strong yellow fluorescence, making it useful in histology for staining heparin in mast cells. Berberine is a bioactive plant compound that has been frequently used in traditional medicine. Among the known physiological effects or bioactivities are: 1) Antimicrobial action against bacteria, fungi, protozoa, viruses, helminthes, and Chlamydia; 2) Antagonism against the effects of cholera and E coli heat-stable enterotoxin; 3) Inhibition of intestinal ion secretion and of smooth muscle contraction; 4) Reduction of inflammation and 5) Stimulation of bile secretion and bilirubin discharge (PMID:32335802). Berberine can inhibit bacterial growth in the gut, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Currently, berberine is sold as an Over-the-Counter (OTC) drug for treating gastrointestinal infections in China (PMID:18442638). Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis (PMID:32335802). Recent evidence has also confirmed that berberine improves the efficacy and safety of both chemo and radiotherapies for cancer treatment (PMID:32335802). Berberine has also been shown to regulate glucose and lipid metabolism in vitro and in vivo (PMID:18442638). In fact, berberine is the main active component of an ancient Chinese herb Coptis chinensis French, which has been used to treat diabetes for thousands of years. As an anti-diabetic, berberine increases glucose uptake by muscle fibers independent of insulin levels. It triggers AMPK activation and increases glycolysis, leading to decreased insulin resistance and decreased oxygen respiration. The same mechanism leads to a reduction in gluconeogenesis in the liver. AMPK activation by berberine also leads to an antiatherosclerotic effect in mice. Berberines AMPK activation may also underlie berberines anti-obesity effects and favorable influence on weight loss (PMID:18442638). While its use as a medication is widely touted, it is important to remember that berberine inhibits CYP2D6 and CYP3A4 enzymes, both of which are involved in the metabolism of many endogenous substances and xenobiotics, including a number of prescription drugs. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Firocoxib

Firocoxib

C17H20O5S (336.10313900000006)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor

   

Nicotinate mononucleotide

Nicotinate mononucleotide

C11H15NO9P+ (336.048441)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

1-(5-O-phosphono-beta-D-ribofuranosyl)-1,4-dihydropyridine-3-carboxamide

1-(5-O-phosphono-beta-D-ribofuranosyl)-1,4-dihydropyridine-3-carboxamide

C11H17N2O8P (336.07224920000004)


   

Bisphenol AF

Hexafluorobisphenol A

C15H10F6O2 (336.0584952)


An organofluorine compound that is bisphenol A with its methyl hydrogens replaced by fluorines. D052244 - Endocrine Disruptors

   

S-nitrosoglutathione

L-γ-Glutamyl-S-nitroso-L-cysteinylglycine

C10H16N4O7S (336.0739666)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors > D026403 - S-Nitrosothiols D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000890 - Anti-Infective Agents D020011 - Protective Agents Nitrosoglutathione (GSNO), a exogenous NO donor and a substrate for rat alcohol dehydrogenase class III isoenzyme, inhibits cerebrovascular angiotensin II-dependent and -independent AT1 receptor responses[1][2][3][4].

   
   

3-Caffeoyl-1,5-quinolactone

3-Caffeoyl-1,5-quinolactone

C16H16O8 (336.0845136)


   

4-Caffeoyl-1,5-quinolactone

4-Caffeoyl-1,5-quinolactone

C16H16O8 (336.0845136)


   

4-Hydroxy-5-(dihydroxyphenyl)-valeric acid-O-methyl-O-sulphate

4-Hydroxy-5-(dihydroxyphenyl)-valeric acid-O-methyl-O-sulphate

C12H16O9S (336.05150060000005)


   

5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide(2-)

5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide(2-)

C9H13N4O8P (336.0470988)


An organophosphate oxoanion resulting from the removal of both protons from the phosphate group of 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide. It is the major species at pH 7.3.

   

1-(1,3-benzodioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid

1-(1,3-benzodioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid

C19H16N2O4 (336.1110016)


   

Nicotinic acid D-ribonucleotide

Nicotinic acid D-ribonucleotide

C11H15NO9P (336.048441)


A D-ribonucleotide having nicotinic acid as the nucleobase.

   

5-[(E)-caffeoyl]shikimic acid

5-[(E)-caffeoyl]shikimic acid

C16H16O8 (336.0845136)


A carboxylic ester obtained by formal condensation of the carboxy group of (E)-caffeic acid with the 5-hydroxy group of shikimic acid.

   

garciniaxanthone G

garciniaxanthone G

C20H16O5 (336.0997686)


An organic heteropentacyclic compound that is 6H-furo[3,2-c]xanthen-6-one substituted by hydroxy groups at positions 7 and 10 and a 2-methylbut-3-en-2-yl group at position 8. Isolated from the woods of Garcinia subelliptica, it exhibits antioxidant activity.

   

NMNH

NMNH

C11H17N2O8P (336.07224920000004)


A nicotinamide mononucleotide that is obtained by addition of hydride to position 4 on the pyridine ring of NMN(+).

   

4,4'-Stilbenedicarboxamidine dihydrochloride

4,4'-Stilbenedicarboxamidine dihydrochloride

C16H16N4. 2HCl (336.0908448)


   

ADRA1D receptor antagonist 1

ADRA1D receptor antagonist 1

C15H14Cl2N4O (336.0544614)


ADRA1D receptor antagonist 1 is a potent, selective and orally active α1D adrenoceptor antagonist, with a Ki of 1.6 nM[1].

   

MSNBA

MSNBA

C14H12N2O6S (336.04160520000005)


MSNBA is a specific inhibitor of GLUT5 fructose transport in proteoliposomes. MSNBA competitively inhibits GLUT5 fructose uptake with a KI of 3.2±0.4?μM in MCF7 cells[1].