S-Nitrosoglutathione (BioDeep_00000026820)

   

human metabolite Endogenous


代谢物信息卡片


(2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl]-2-(nitrososulfanyl)ethyl]carbamoyl}butanoic acid

化学式: C10H16N4O7S (336.0739666)
中文名称: S-亚硝基谷胱甘肽
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(CC(=O)NC(CSN=O)C(=O)NCC(=O)O)C(C(=O)O)N
InChI: InChI=1S/C10H16N4O7S/c11-5(10(19)20)1-2-7(15)13-6(4-22-14-21)9(18)12-3-8(16)17/h5-6H,1-4,11H2,(H,12,18)(H,13,15)(H,16,17)(H,19,20)/t5-,6-/m0/s1

描述信息

S-Nitrosoglutathione is a S-nitrosothiol. S-nitrosothiols (RSNOs) are thought to represent a circulating endogenous reservoir of nitric oxide (NO), and may have potential as donors of nitric oxide, distinct from currently used agents. They have the general formula RSNO, and naturally occurring examples include S-nitrosocysteine, S-nitrosoglutathione and S-nitrosoalbumin, in which R is an amino acid, polypeptide and protein respectively. RSNOs have anti-platelet properties, a theoretical role in the treatment of asthma and the potential to be used as agents to treat infectious diseases ranging from the common cold to AIDS. RSNOs are relatively unstable, being degraded to release nitric oxide and the corresponding disulphide. Their stability is influenced by the properties of the R group, heat, light, the presence of transition metal ions (in particular copper) and the presence of other thiols. RSNOs participate in transnitrosation reactions in which the -nitric oxide group is transferred to another thiol to form a more stable RSNO. Potential interactions of RSNOs include that with ascorbic acid (vitamin C), which enhances the ability of copper to catalyse their degradation. Transnitrosation reactions with thiol-containing enzymes can influence protein function, and the intracellular thiol glutathione, levels of which are influenced by many disease states, can also influence stability. Genetic and biochemical data demonstrate a pivotal role for S-nitrosothiols in mediating the actions of nitric oxide synthases (NOSs). RSNOs serve to convey NO bioactivity and to regulate protein function. S-Nitrosoglutathione breakdown is subject to precise regulation. For example, S-Nitrosoglutathione reductase (GSNOR) breaks down cytosolic S-Nitrosoglutathione, ultimately to oxidized GSH and ammonia. GSNOR, in turn, modulates the levels of some S-nitrosylated proteins. S-nitrosoglutathione, formed as nitric oxide moves away from erythrocytes in response to hemoglobin desaturation, may signal hypoxia-inducible factor-1-mediated physiologic and gene regulatory events in pulmonary endothelial cells without profound hypoxia, through a thiol-based reaction. S-Nitrosoglutathione stabilizes the alpha-subunit of hypoxia inducible factor1 (HIF-1) in normoxic cells, but not in the presence of PI3K inhibitors. (PMID: 11749666, 17541013, 16528016).
S-Nitrosoglutathione is a S-nitrosothiol. S-nitrosothiols (RSNOs) are thought to represent a circulating endogenous reservoir of nitric oxide (NO), and may have potential as donors of nitric oxide, distinct from currently used agents. They have the general formula RSNO, and naturally occurring examples include S-nitrosocysteine, S-nitrosoglutathione and S-nitrosoalbumin, in which R is an amino acid, polypeptide and protein respectively. RSNOs have anti-platelet properties, a theoretical role in the treatment of asthma and the potential to be used as agents to treat infectious diseases ranging from the common cold to AIDS. RSNOs are relatively unstable, being degraded to release nitric oxide and the corresponding disulphide. Their stability is influenced by the properties of the R group, heat, light, the presence of transition metal ions (in particular copper) and the presence of other thiols. RSNOs participate in transnitrosation reactions in which the -nitric oxide group is transferred to another thiol to form a more stable RSNO. Potential interactions of RSNOs include that with ascorbic acid (vitamin C), which enhances the ability of copper to catalyse their degradation. Transnitrosation reactions with thiol-containing enzymes can influence protein function, and the intracellular thiol glutathione, levels of which are influenced by many disease states, can also influence stability.
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents
D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors > D026403 - S-Nitrosothiols
D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
D000890 - Anti-Infective Agents
D020011 - Protective Agents
Nitrosoglutathione (GSNO), a exogenous NO donor and a substrate for rat alcohol dehydrogenase class III isoenzyme, inhibits cerebrovascular angiotensin II-dependent and -independent AT1 receptor responses[1][2][3][4].

同义名列表

13 个代谢物同义名

(2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl]-2-(nitrososulfanyl)ethyl]carbamoyl}butanoic acid; N-(N-L-gamma-Glutamyl-S-nitroso-L-cysteinyl)glycine; N-(N-L-Γ-glutamyl-S-nitroso-L-cysteinyl)glycine; N-(N-L-g-Glutamyl-S-nitroso-L-cysteinyl)glycine; L-γ-Glutamyl-S-nitroso-L-cysteinylglycine; Glutathione thionitrite; S-nitrosoglutathione; Nitrosoglutathione; S-nitroso-GSH; GSNO; SNOG; RVC-588; S-Nitroso-L-glutathione



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(10)

BioCyc(0)

PlantCyc(0)

代谢反应

10 个相关的代谢反应过程信息。

Reactome(10)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Maria Meloni, Jacopo Rossi, Silvia Fanti, Giacomo Carloni, Daniele Tedesco, Patrick Treffon, Luca Piccinini, Giuseppe Falini, Paolo Trost, Elizabeth Vierling, Francesco Licausi, Beatrice Giuntoli, Francesco Musiani, Simona Fermani, Mirko Zaffagnini. Structural and biochemical characterization of Arabidopsis alcohol dehydrogenases reveals distinct functional properties but similar redox sensitivity. The Plant journal : for cell and molecular biology. 2024 Feb; ?(?):. doi: 10.1111/tpj.16651. [PMID: 38308388]
  • Deepak Saini, Ramesh B Bapatla, Chandra Kaladhar Vemula, Shashibhushan Gahir, Pulimamidi Bharath, Kapuganti Jagadis Gupta, Agepati S Raghavendra. Moderate modulation by S-nitrosoglutathione of photorespiratory enzymes in pea (Pisum sativum) leaves, compared to the strong effects of high light. Protoplasma. 2023 Jul; ?(?):. doi: 10.1007/s00709-023-01878-y. [PMID: 37421536]
  • Nusrat Jahan Methela, Mohammad Shafiqul Islam, Da-Sol Lee, Byung-Wook Yun, Bong-Gyu Mun. S-Nitrosoglutathione (GSNO)-Mediated Lead Detoxification in Soybean through the Regulation of ROS and Metal-Related Transcripts. International journal of molecular sciences. 2023 Jun; 24(12):. doi: 10.3390/ijms24129901. [PMID: 37373048]
  • Rafael Zuccarelli, Marta Rodríguez-Ruiz, Fernanda O Silva, Letícia D L Gomes, Patrícia J Lopes-Oliveira, Agustin Zsögön, Sónia C S Andrade, Diego Demarco, Francisco J Corpas, Lázaro E P Peres, Magdalena Rossi, Luciano Freschi. Loss of S-Nitrosoglutathione reductase disturbs phytohormone homeostasis and regulates shoot side branching and fruit growth in tomato. Journal of experimental botany. 2023 May; ?(?):. doi: 10.1093/jxb/erad166. [PMID: 37157899]
  • Xueqin Gao, Jizhong Ma, Jianzhong Tie, Yutong Li, Linli Hu, Jihua Yu. BR-Mediated Protein S-Nitrosylation Alleviated Low-Temperature Stress in Mini Chinese Cabbage (Brassica rapa ssp. pekinensis). International journal of molecular sciences. 2022 Sep; 23(18):. doi: 10.3390/ijms231810964. [PMID: 36142872]
  • Aanchal Aggarwal, Aarti Yadav, Neetu Saini, Rajat Sandhir. S-nitrosoglutathione alleviates hyperglycemia-induced neurobehavioral deficits involving nitro-oxidative stress and aberrant monaminergic system. Nitric oxide : biology and chemistry. 2022 05; 122-123(?):35-44. doi: 10.1016/j.niox.2022.03.001. [PMID: 35257853]
  • Syed Kashif Zaidi, Farid Ahmed, Heba Alkhatabi, Md Nasrul Hoda, Muhammad Al-Qahtani. Nebulization of Low-Dose S-Nitrosoglutathione in Diabetic Stroke Enhances Benefits of Reperfusion and Prevents Post-Thrombolysis Hemorrhage. Biomolecules. 2021 10; 11(11):. doi: 10.3390/biom11111587. [PMID: 34827584]
  • Anna Wądołek, Dominika Drwiła, Maria Oszajca, Grażyna Stochel, Ewa Konduracka, Małgorzata Brindell. Blood Plasma's Protective Ability against the Degradation of S-Nitrosoglutathione under the Influence of Air-Pollution-Derived Metal Ions in Patients with Exacerbation of Heart Failure and Coronary Artery Disease. International journal of molecular sciences. 2021 Sep; 22(19):. doi: 10.3390/ijms221910500. [PMID: 34638839]
  • Andrea Tagliani, Jacopo Rossi, Christophe H Marchand, Marcello De Mia, Daniele Tedesco, Libero Gurrieri, Maria Meloni, Giuseppe Falini, Paolo Trost, Stéphane D Lemaire, Simona Fermani, Mirko Zaffagnini. Structural and functional insights into nitrosoglutathione reductase from Chlamydomonas reinhardtii. Redox biology. 2021 01; 38(?):101806. doi: 10.1016/j.redox.2020.101806. [PMID: 33316743]
  • Heng Fan, Jian-Wei Le, Min Sun, Jian-Hua Zhu. Pretreatment with S-Nitrosoglutathione Attenuates Septic Acute Kidney Injury in Rats by Inhibiting Inflammation, Oxidation, and Apoptosis. BioMed research international. 2021; 2021(?):6678165. doi: 10.1155/2021/6678165. [PMID: 33604382]
  • Megan Douglass, Sean Hopkins, Rashmi Pandey, Priya Singha, Megan Norman, Hitesh Handa. S-Nitrosoglutathione-Based Nitric Oxide-Releasing Nanofibers Exhibit Dual Antimicrobial and Antithrombotic Activity for Biomedical Applications. Macromolecular bioscience. 2021 01; 21(1):e2000248. doi: 10.1002/mabi.202000248. [PMID: 33021079]
  • Yiqin Wang, Chengcai Chu. S-Nitrosylation Control of ROS and RNS Homeostasis in Plants: The Switching Function of Catalase. Molecular plant. 2020 07; 13(7):946-948. doi: 10.1016/j.molp.2020.05.013. [PMID: 32445887]
  • Sonia Oliferuk, Marcela Simontacchi, Francisco Rubio, Guillermo E Santa-María. Exposure to a natural nitric oxide donor negatively affects the potential influx of rubidium in potassium-starved Arabidopsis plants. Plant physiology and biochemistry : PPB. 2020 May; 150(?):204-208. doi: 10.1016/j.plaphy.2020.02.043. [PMID: 32155448]
  • Naïm Stiti, Karolina Anna Podgórska, Dorothea Bartels. S-Nitrosation impairs activity of stress-inducible aldehyde dehydrogenases from Arabidopsis thaliana. Plant science : an international journal of experimental plant biology. 2020 Mar; 292(?):110389. doi: 10.1016/j.plantsci.2019.110389. [PMID: 32005394]
  • Andrea Berenyiova, Marian Grman, Anton Misak, Samuel Golas, Justina Cuchorova, Sona Cacanyiova. The Possible Role of the Nitroso-Sulfide Signaling Pathway in the Vasomotoric Effect of Garlic Juice. Molecules (Basel, Switzerland). 2020 Jan; 25(3):. doi: 10.3390/molecules25030590. [PMID: 32013200]
  • Martina Janků, Tereza Tichá, Lenka Luhová, Marek Petřivalský. Measurement of S-Nitrosoglutathione Reductase Activity in Plants. Methods in molecular biology (Clifton, N.J.). 2020; 2057(?):45-59. doi: 10.1007/978-1-4939-9790-9_5. [PMID: 31595469]
  • Paulo T Mioto, Alejandra Matiz, Luciano Freschi, Francisco J Corpas. Fluorimetric-Based Method to Detect and Quantify Total S-Nitrosothiols (SNOs) in Plant Samples. Methods in molecular biology (Clifton, N.J.). 2020; 2057(?):37-43. doi: 10.1007/978-1-4939-9790-9_4. [PMID: 31595468]
  • Manuel A Matamoros, Maria C Cutrona, Stefanie Wienkoop, Juan C Begara-Morales, Niels Sandal, Irene Orera, Juan B Barroso, Jens Stougaard, Manuel Becana. Altered Plant and Nodule Development and Protein S-Nitrosylation in Lotus japonicus Mutants Deficient in S-Nitrosoglutathione Reductases. Plant & cell physiology. 2020 Jan; 61(1):105-117. doi: 10.1093/pcp/pcz182. [PMID: 31529085]
  • Biao Gong, Yanyan Yan, Lili Zhang, Fei Cheng, Zhen Liu, Qinghua Shi. Unravelling GSNOR-Mediated S-Nitrosylation and Multiple Developmental Programs in Tomato Plants. Plant & cell physiology. 2019 Nov; 60(11):2523-2537. doi: 10.1093/pcp/pcz143. [PMID: 31350547]
  • Lijuan Niu, Jihua Yu, Weibiao Liao, Jianming Xie, Jian Yu, Jian Lv, Xuemei Xiao, Linli Hu, Yue Wu. Proteomic Investigation of S-Nitrosylated Proteins During NO-Induced Adventitious Rooting of Cucumber. International journal of molecular sciences. 2019 Oct; 20(21):. doi: 10.3390/ijms20215363. [PMID: 31661878]
  • Robert R Tuttle, Heather N Rubin, Christopher D Rithner, Richard G Finke, Melissa M Reynolds. Copper ion vs copper metal-organic framework catalyzed NO release from bioavailable S-Nitrosoglutathione en route to biomedical applications: Direct 1H NMR monitoring in water allowing identification of the distinct, true reaction stoichiometries and thiol dependencies. Journal of inorganic biochemistry. 2019 10; 199(?):110760. doi: 10.1016/j.jinorgbio.2019.110760. [PMID: 31349071]
  • Tereza Jedelská, Veronika Šmotková Kraiczová, Lucie Berčíková, Lucie Činčalová, Lenka Luhová, Marek Petřivalský. Tomato Root Growth Inhibition by Salinity and Cadmium Is Mediated By S-Nitrosative Modifications of ROS Metabolic Enzymes Controlled by S-Nitrosoglutathione Reductase. Biomolecules. 2019 08; 9(9):. doi: 10.3390/biom9090393. [PMID: 31438648]
  • Heng Fan, Yu Zhao, Jian-Hua Zhu. S-nitrosoglutathione protects lipopolysaccharide-induced acute kidney injury by inhibiting toll-like receptor 4-nuclear factor-κB signal pathway. The Journal of pharmacy and pharmacology. 2019 Aug; 71(8):1255-1261. doi: 10.1111/jphp.13103. [PMID: 31115903]
  • Katarzyna Ciacka, Urszula Krasuska, Katarzyna Otulak-Kozieł, Agnieszka Gniazdowska. Dormancy removal by cold stratification increases glutathione and S-nitrosoglutathione content in apple seeds. Plant physiology and biochemistry : PPB. 2019 May; 138(?):112-120. doi: 10.1016/j.plaphy.2019.02.026. [PMID: 30861401]
  • Neidiquele M Silveira, Amedea B Seabra, Fernanda C C Marcos, Milena T Pelegrino, Eduardo C Machado, Rafael V Ribeiro. Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants. Nitric oxide : biology and chemistry. 2019 03; 84(?):38-44. doi: 10.1016/j.niox.2019.01.004. [PMID: 30639449]
  • Teryn R Roberts, Megan J Neufeld, Michael A Meledeo, Andrew P Cap, Leopoldo C Cancio, Melissa M Reynolds, Andriy I Batchinsky. A metal organic framework reduces thrombus formation and platelet aggregation ex vivo. The journal of trauma and acute care surgery. 2018 09; 85(3):572-579. doi: 10.1097/ta.0000000000001982. [PMID: 29787534]
  • Christian Lindermayr. Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase. Free radical biology & medicine. 2018 07; 122(?):110-115. doi: 10.1016/j.freeradbiomed.2017.11.027. [PMID: 29203326]
  • Jing Li, Yan Zhang, Yuying Zhang, Silin Lü, Yutong Miao, Juan Yang, Shenming Huang, Xiaolong Ma, Lulu Han, Jiacheng Deng, Fangfang Fan, Bo Liu, Yong Huo, Qingbo Xu, Chang Chen, Xian Wang, Juan Feng. GSNOR modulates hyperhomocysteinemia-induced T cell activation and atherosclerosis by switching Akt S-nitrosylation to phosphorylation. Redox biology. 2018 07; 17(?):386-399. doi: 10.1016/j.redox.2018.04.021. [PMID: 29860106]
  • Juan C Begara-Morales, Mounira Chaki, Raquel Valderrama, Beatriz Sánchez-Calvo, Capilla Mata-Pérez, María N Padilla, Francisco J Corpas, Juan B Barroso. Nitric oxide buffering and conditional nitric oxide release in stress response. Journal of experimental botany. 2018 06; 69(14):3425-3438. doi: 10.1093/jxb/ery072. [PMID: 29506191]
  • Inci Turan, Hale Sayan Ozacmak, V Haktan Ozacmak, Figen Barut, I Diler Ozacmak. The effects of S-nitrosoglutathione on intestinal ischemia reperfusion injury and acute lung injury in rats: Roles of oxidative stress and NF-κB. Tissue & cell. 2018 Jun; 52(?):35-41. doi: 10.1016/j.tice.2018.03.012. [PMID: 29857826]
  • Taiming Liu, Meijuan Zhang, Michael H Terry, Hobe Schroeder, Sean M Wilson, Gordon G Power, Qian Li, Trent E Tipple, Dan Borchardt, Arlin B Blood. Nitrite potentiates the vasodilatory signaling of S-nitrosothiols. Nitric oxide : biology and chemistry. 2018 05; 75(?):60-69. doi: 10.1016/j.niox.2018.01.011. [PMID: 29428841]
  • Sakthivel Kailasam, Ying Wang, Jing-Chi Lo, Hsin-Fang Chang, Kuo-Chen Yeh. S-Nitrosoglutathione works downstream of nitric oxide to mediate iron-deficiency signaling in Arabidopsis. The Plant journal : for cell and molecular biology. 2018 04; 94(1):157-168. doi: 10.1111/tpj.13850. [PMID: 29396986]
  • Evanthia Mergia, Manuel Thieme, Henning Hoch, Georgios Daniil, Lydia Hering, Mina Yakoub, Christina Rebecca Scherbaum, Lars Christian Rump, Doris Koesling, Johannes Stegbauer. Impact of the NO-Sensitive Guanylyl Cyclase 1 and 2 on Renal Blood Flow and Systemic Blood Pressure in Mice. International journal of molecular sciences. 2018 Mar; 19(4):. doi: 10.3390/ijms19040967. [PMID: 29570672]
  • Shiliang Liu, Rongjie Yang, Durgesh Kumar Tripathi, Xi Li, Wei He, Mengxi Wu, Shafaqat Ali, Mingdong Ma, Qingsu Cheng, Yuanzhi Pan. RETRACTED: The interplay between reactive oxygen and nitrogen species contributes in the regulatory mechanism of the nitro-oxidative stress induced by cadmium in Arabidopsis. Journal of hazardous materials. 2018 02; 344(?):1007-1024. doi: 10.1016/j.jhazmat.2017.12.004. [PMID: 30216961]
  • Amanda R Storm, Matthew R Kohler, Christopher E Berndsen, Jonathan D Monroe. Glutathionylation Inhibits the Catalytic Activity of Arabidopsis β-Amylase3 but Not That of Paralog β-Amylase1. Biochemistry. 2018 02; 57(5):711-721. doi: 10.1021/acs.biochem.7b01274. [PMID: 29309132]
  • Xin Wang, Carlos T Garcia, Guanyu Gong, John S Wishnok, Steven R Tannenbaum. Automated Online Solid-Phase Derivatization for Sensitive Quantification of Endogenous S-Nitrosoglutathione and Rapid Capture of Other Low-Molecular-Mass S-Nitrosothiols. Analytical chemistry. 2018 02; 90(3):1967-1975. doi: 10.1021/acs.analchem.7b04049. [PMID: 29271637]
  • Dimitrios Tsikas, Erik Hanff. Measurement of S -Nitrosoglutathione in Plasma by Liquid Chromatography-Tandem Mass Spectrometry. Methods in molecular biology (Clifton, N.J.). 2018; 1747(?):113-129. doi: 10.1007/978-1-4939-7695-9_10. [PMID: 29600455]
  • Tereza Tichá, Lenka Luhová, Marek Petřivalský. Immunodetection of S-Nitrosoglutathione Reductase Protein in Plant Samples. Methods in molecular biology (Clifton, N.J.). 2018; 1747(?):267-280. doi: 10.1007/978-1-4939-7695-9_21. [PMID: 29600466]
  • Tereza Tichá, Jan Lochman, Lucie Činčalová, Lenka Luhová, Marek Petřivalský. Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues. Biochemical and biophysical research communications. 2017 12; 494(1-2):27-33. doi: 10.1016/j.bbrc.2017.10.090. [PMID: 29061305]
  • Jian-Zhong Liu, Jicheng Duan, Min Ni, Zhen Liu, Wen-Li Qiu, Steven A Whitham, Wei-Jun Qian. S-Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1). The Journal of biological chemistry. 2017 12; 292(48):19743-19751. doi: 10.1074/jbc.m117.803882. [PMID: 28972151]
  • E Belcastro, W Wu, I Fries-Raeth, A Corti, A Pompella, P Leroy, I Lartaud, C Gaucher. Oxidative stress enhances and modulates protein S-nitrosation in smooth muscle cells exposed to S-nitrosoglutathione. Nitric oxide : biology and chemistry. 2017 Sep; 69(?):10-21. doi: 10.1016/j.niox.2017.07.004. [PMID: 28743484]
  • Neidiquele M Silveira, Fernanda C C Marcos, Lucas Frungillo, Bárbara B Moura, Amedea B Seabra, Ione Salgado, Eduardo C Machado, John T Hancock, Rafael V Ribeiro. S-nitrosoglutathione spraying improves stomatal conductance, Rubisco activity and antioxidant defense in both leaves and roots of sugarcane plants under water deficit. Physiologia plantarum. 2017 Aug; 160(4):383-395. doi: 10.1111/ppl.12575. [PMID: 28417466]
  • Neidiquele M Silveira, John T Hancock, Lucas Frungillo, Eleni Siasou, Fernanda C C Marcos, Ione Salgado, Eduardo C Machado, Rafael V Ribeiro. Evidence towards the involvement of nitric oxide in drought tolerance of sugarcane. Plant physiology and biochemistry : PPB. 2017 Jun; 115(?):354-359. doi: 10.1016/j.plaphy.2017.04.011. [PMID: 28419961]
  • Camila Fernandes Moro, Marilia Gaspar, Felipe Rodrigues da Silva, Sivakumar Pattathil, Michael G Hahn, Ione Salgado, Marcia Regina Braga. S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana. The New phytologist. 2017 Mar; 213(4):1771-1786. doi: 10.1111/nph.14309. [PMID: 27880005]
  • Chuanmin Liu, Libin Wen, Qi Xiao, Kongwang He. Nitric oxide-generating compound GSNO suppresses porcine circovirus type 2 infection in vitro and in vivo. BMC veterinary research. 2017 Feb; 13(1):59. doi: 10.1186/s12917-017-0976-9. [PMID: 28222773]
  • Alexander Mengel, Alexandra Ageeva, Elisabeth Georgii, Jörg Bernhardt, Keqiang Wu, Jörg Durner, Christian Lindermayr. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases. Plant physiology. 2017 02; 173(2):1434-1452. doi: 10.1104/pp.16.01734. [PMID: 27980017]
  • Devadoss J Samuvel, Anandakumar Shunmugavel, Avtar K Singh, Inderjit Singh, Mushfiquddin Khan. S-Nitrosoglutathione ameliorates acute renal dysfunction in a rat model of lipopolysaccharide-induced sepsis. The Journal of pharmacy and pharmacology. 2016 Oct; 68(10):1310-9. doi: 10.1111/jphp.12608. [PMID: 27484743]
  • Lamia Heikal, Anna Starr, Gary P Martin, Manasi Nandi, Lea Ann Dailey. In vivo pharmacological activity and biodistribution of S-nitrosophytochelatins after intravenous and intranasal administration in mice. Nitric oxide : biology and chemistry. 2016 09; 59(?):1-9. doi: 10.1016/j.niox.2016.06.006. [PMID: 27350118]
  • Byung-Wook Yun, Michael J Skelly, Minghui Yin, Manda Yu, Bong-Gyu Mun, Sang-Uk Lee, Adil Hussain, Steven H Spoel, Gary J Loake. Nitric oxide and S-nitrosoglutathione function additively during plant immunity. The New phytologist. 2016 07; 211(2):516-26. doi: 10.1111/nph.13903. [PMID: 26916092]
  • S A Potthoff, S Stamer, K Grave, E Königshausen, S H Sivritas, M Thieme, Y Mori, M Woznowski, L C Rump, J Stegbauer. Chronic p38 mitogen-activated protein kinase inhibition improves vascular function and remodeling in angiotensin II-dependent hypertension. Journal of the renin-angiotensin-aldosterone system : JRAAS. 2016 Jul; 17(3):. doi: 10.1177/1470320316653284. [PMID: 27407119]
  • Neidiquele M Silveira, Lucas Frungillo, Fernanda C C Marcos, Milena T Pelegrino, Marcela T Miranda, Amedea B Seabra, Ione Salgado, Eduardo C Machado, Rafael V Ribeiro. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit. Planta. 2016 Jul; 244(1):181-90. doi: 10.1007/s00425-016-2501-y. [PMID: 27002974]
  • Naim Stiti, Balakumaran Chandrasekar, Laura Strubl, Shabaz Mohammed, Dorothea Bartels, Renier A L van der Hoorn. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases. ACS chemical biology. 2016 06; 11(6):1578-86. doi: 10.1021/acschembio.5b00784. [PMID: 26990764]
  • Zhifeng Li, Xueyan Zhang, Hui Zhou, Wei Liu, Jianguo Li. Exogenous S-nitrosoglutathione attenuates inflammatory response and intestinal epithelial barrier injury in endotoxemic rats. The journal of trauma and acute care surgery. 2016 06; 80(6):977-84. doi: 10.1097/ta.0000000000001008. [PMID: 26891162]
  • Yao Zhou, Shengmin Zhou, Haijun Yu, Jingyi Li, Yang Xia, Baoyi Li, Xiaoli Wang, Ping Wang. Cloning and Characterization of Filamentous Fungal S-Nitrosoglutathione Reductase from Aspergillus nidulans. Journal of microbiology and biotechnology. 2016 May; 26(5):928-37. doi: 10.4014/jmb.1512.12009. [PMID: 26869606]
  • Damian Guerra, Keith Ballard, Ian Truebridge, Elizabeth Vierling. S-Nitrosation of Conserved Cysteines Modulates Activity and Stability of S-Nitrosoglutathione Reductase (GSNOR). Biochemistry. 2016 05; 55(17):2452-64. doi: 10.1021/acs.biochem.5b01373. [PMID: 27064847]
  • Victor Baldim, Abdulghani Ismail, Patricia Taladriz-Blanco, Sophie Griveau, Marcelo Ganzarolli de Oliveira, Fethi Bedioui. Amperometric Quantification of S-Nitrosoglutathione Using Gold Nanoparticles: A Step toward Determination of S-Nitrosothiols in Plasma. Analytical chemistry. 2016 Mar; 88(6):3115-20. doi: 10.1021/acs.analchem.5b04035. [PMID: 26892256]
  • Juan Pablo Nicola, Victoria Peyret, Magalí Nazar, Jorge Miguel Romero, Ariel Maximiliano Lucero, María del Mar Montesinos, José Luis Bocco, Claudia Gabriela Pellizas, Ana María Masini-Repiso. S-Nitrosylation of NF-κB p65 Inhibits TSH-Induced Na(+)/I(-) Symporter Expression. Endocrinology. 2015 Dec; 156(12):4741-54. doi: 10.1210/en.2015-1192. [PMID: 26587909]
  • Izabella Kovacs, Jörg Durner, Christian Lindermayr. Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. The New phytologist. 2015 Nov; 208(3):860-72. doi: 10.1111/nph.13502. [PMID: 26096525]
  • Varanavasiappan Shanmugam, Yi-Wen Wang, Munkhtsetseg Tsednee, Krithika Karunakaran, Kuo-Chen Yeh. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis. The Plant journal : for cell and molecular biology. 2015 Nov; 84(3):464-77. doi: 10.1111/tpj.13011. [PMID: 26333047]
  • Pablo Albertos, María C Romero-Puertas, Kiyoshi Tatematsu, Isabel Mateos, Inmaculada Sánchez-Vicente, Eiji Nambara, Oscar Lorenzo. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nature communications. 2015 Oct; 6(?):8669. doi: 10.1038/ncomms9669. [PMID: 26493030]
  • Ya-Fei Shi, Da-Li Wang, Chao Wang, Angela Hendrickson Culler, Molly A Kreiser, Jayanti Suresh, Jerry D Cohen, Jianwei Pan, Barbara Baker, Jian-Zhong Liu. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport. Molecular plant. 2015 Sep; 8(9):1350-65. doi: 10.1016/j.molp.2015.04.008. [PMID: 25917173]
  • Anandakumar Shunmugavel, Mushfiquddin Khan, Francis M Hughes, J Todd Purves, Avtar Singh, Inderjit Singh. S-Nitrosoglutathione protects the spinal bladder: novel therapeutic approach to post-spinal cord injury bladder remodeling. Neurourology and urodynamics. 2015 Aug; 34(6):519-26. doi: 10.1002/nau.22619. [PMID: 24853799]
  • Xian-Liang Yan, Dong-Hai Liu, Gong-Liang Zhang, Shu-Qun Hu, Yu-Guo Chen, Tie Xu. S-Nitrosylation of proline-rich tyrosine kinase 2 involves its activation induced by oxygen-glucose deprivation. Neuroscience letters. 2015 Jun; 597(?):90-6. doi: 10.1016/j.neulet.2015.04.043. [PMID: 25929187]
  • Yi Quan Ye, Chong Wei Jin, Shi Kai Fan, Qian Qian Mao, Cheng Liang Sun, Yan Yu, Xian Yong Lin. Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall. Scientific reports. 2015 Jun; 5(?):10746. doi: 10.1038/srep10746. [PMID: 26073914]
  • Manuel A Matamoros, Ana Saiz, Maria Peñuelas, Pilar Bustos-Sanmamed, Jose M Mulet, Maria V Barja, Nicolas Rouhier, Marten Moore, Euan K James, Karl-Josef Dietz, Manuel Becana. Function of glutathione peroxidases in legume root nodules. Journal of experimental botany. 2015 May; 66(10):2979-90. doi: 10.1093/jxb/erv066. [PMID: 25740929]
  • Jiliang Hu, Xiahe Huang, Lichao Chen, Xuwu Sun, Congming Lu, Lixin Zhang, Yingchun Wang, Jianru Zuo. Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant physiology. 2015 Apr; 167(4):1731-46. doi: 10.1104/pp.15.00026. [PMID: 25699590]
  • Jiale Li, Dan Zhu, Ren Wang, Wenbiao Shen, Yingying Guo, Yong Ren, Wei Shen, Liqin Huang. β-Cyclodextrin-hemin complex-induced lateral root formation in tomato: involvement of nitric oxide and heme oxygenase 1. Plant cell reports. 2015 Mar; 34(3):381-93. doi: 10.1007/s00299-014-1716-2. [PMID: 25433859]
  • Pengcheng Wang, Yanyan Du, Yueh-Ju Hou, Yang Zhao, Chuan-Chih Hsu, Feijuan Yuan, Xiaohong Zhu, W Andy Tao, Chun-Peng Song, Jian-Kang Zhu. Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proceedings of the National Academy of Sciences of the United States of America. 2015 Jan; 112(2):613-8. doi: 10.1073/pnas.1423481112. [PMID: 25550508]
  • Pengcheng Wang, Jian-Kang Zhu, Zhaobo Lang. Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins. Plant signaling & behavior. 2015; 10(6):e1031939. doi: 10.1080/15592324.2015.1031939. [PMID: 26024299]
  • Mohammad Golam Mostofa, Zeba Islam Seraj, Masayuki Fujita. Interactive effects of nitric oxide and glutathione in mitigating copper toxicity of rice (Oryza sativa L.) seedlings. Plant signaling & behavior. 2015; 10(3):e991570. doi: 10.4161/15592324.2014.991570. [PMID: 25897471]
  • Erik Hanff, Anke Böhmer, Jens Jordan, Dimitrios Tsikas. Stable-isotope dilution LC-MS/MS measurement of nitrite in human plasma after its conversion to S-nitrosoglutathione. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2014 Nov; 970(?):44-52. doi: 10.1016/j.jchromb.2014.08.041. [PMID: 25237784]
  • Chuian-Fu Ken, Chih-Yu Huang, Lisa Wen, Jenq-Kuen Huang, Chi-Tsai Lin. Modulation of nitrosative stress via glutathione-dependent formaldehyde dehydrogenase and S-nitrosoglutathione reductase. International journal of molecular sciences. 2014 Aug; 15(8):14166-79. doi: 10.3390/ijms150814166. [PMID: 25196517]
  • Juan C Begara-Morales, Beatriz Sánchez-Calvo, Francisco Luque, María O Leyva-Pérez, Marina Leterrier, Francisco J Corpas, Juan B Barroso. Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves. Plant & cell physiology. 2014 Jun; 55(6):1080-95. doi: 10.1093/pcp/pcu044. [PMID: 24599390]
  • Ankita Sehrawat, Renu Deswal. S-nitrosylation analysis in Brassica juncea apoplast highlights the importance of nitric oxide in cold-stress signaling. Journal of proteome research. 2014 May; 13(5):2599-619. doi: 10.1021/pr500082u. [PMID: 24684139]
  • Lucia Marri, Gabriel Thieulin-Pardo, Régine Lebrun, Rémy Puppo, Mirko Zaffagnini, Paolo Trost, Brigitte Gontero, Francesca Sparla. CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress. Biochimie. 2014 Feb; 97(?):228-37. doi: 10.1016/j.biochi.2013.10.018. [PMID: 24211189]
  • Juan C Begara-Morales, Beatriz Sánchez-Calvo, Mounira Chaki, Raquel Valderrama, Capilla Mata-Pérez, Javier López-Jaramillo, María N Padilla, Alfonso Carreras, Francisco J Corpas, Juan B Barroso. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. Journal of experimental botany. 2014 Feb; 65(2):527-38. doi: 10.1093/jxb/ert396. [PMID: 24288182]
  • Jozef Kováčik, Petr Babula, Bořivoj Klejdus, Josef Hedbavny, Markéta Jarošová. Unexpected behavior of some nitric oxide modulators under cadmium excess in plant tissue. PloS one. 2014; 9(3):e91685. doi: 10.1371/journal.pone.0091685. [PMID: 24626462]
  • Maria Concetta de Pinto, Vittoria Locato, Alessandra Sgobba, Maria Del Carmen Romero-Puertas, Cosimo Gadaleta, Massimo Delledonne, Laura De Gara. S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco Bright Yellow-2 cells. Plant physiology. 2013 Dec; 163(4):1766-75. doi: 10.1104/pp.113.222703. [PMID: 24158396]
  • Wangang Zhang, Al-Hijazeen Marwan, Himali Samaraweera, Eun Joo Lee, Dong U Ahn. Breast meat quality of broiler chickens can be affected by managing the level of nitric oxide. Poultry science. 2013 Nov; 92(11):3044-9. doi: 10.3382/ps.2013-03313. [PMID: 24135610]
  • Jeonghan Lee, Michael T Nelson, Kirstin E Rose, Slobodan M Todorovic. Redox mechanism of S-nitrosothiol modulation of neuronal CaV3.2 T-type calcium channels. Molecular neurobiology. 2013 Oct; 48(2):274-80. doi: 10.1007/s12035-013-8493-8. [PMID: 23813099]
  • X-H Yin, J-Z Yan, X-Y Hou, S-L Wu, G-Y Zhang. Neuroprotection of S-nitrosoglutathione against ischemic injury by down-regulating Fas S-nitrosylation and downstream signaling. Neuroscience. 2013 Sep; 248(?):290-8. doi: 10.1016/j.neuroscience.2013.06.012. [PMID: 23792322]
  • Hiroaki Kato, Daigo Takemoto, Kazuhito Kawakita. Proteomic analysis of S-nitrosylated proteins in potato plant. Physiologia plantarum. 2013 Jul; 148(3):371-86. doi: 10.1111/j.1399-3054.2012.01684.x. [PMID: 22924747]
  • Dimitrios Tsikas, Mario Schmidt, Anke Böhmer, Alexander A Zoerner, Frank-Mathias Gutzki, Jens Jordan. UPLC-MS/MS measurement of S-nitrosoglutathione (GSNO) in human plasma solves the S-nitrosothiol concentration enigma. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2013 May; 927(?):147-57. doi: 10.1016/j.jchromb.2013.01.023. [PMID: 23453822]
  • Juan C Begara-Morales, F Javier López-Jaramillo, Beatriz Sánchez-Calvo, Alfonso Carreras, Mariano Ortega-Muñoz, Francisco Santoyo-González, Francisco J Corpas, Juan B Barroso. Vinyl sulfone silica: application of an open preactivated support to the study of transnitrosylation of plant proteins by S-nitrosoglutathione. BMC plant biology. 2013 Apr; 13(?):61. doi: 10.1186/1471-2229-13-61. [PMID: 23586608]
  • Naeem K Patil, Hamida Saba, Lee Ann MacMillan-Crow. Effect of S-nitrosoglutathione on renal mitochondrial function: a new mechanism for reversible regulation of manganese superoxide dismutase activity?. Free radical biology & medicine. 2013 Mar; 56(?):54-63. doi: 10.1016/j.freeradbiomed.2012.12.001. [PMID: 23246566]
  • Attila Ördög, Barnabás Wodala, Tamás Rózsavölgyi, Irma Tari, Ferenc Horváth. Regulation of guard cell photosynthetic electron transport by nitric oxide. Journal of experimental botany. 2013 Mar; 64(5):1357-66. doi: 10.1093/jxb/ers397. [PMID: 23364939]
  • Yong-Yi Chen, Ying Wang, Lung-Jiun Shin, Jing-Fen Wu, Varanavasiappan Shanmugam, Munkhtsetseg Tsednee, Jing-Chi Lo, Chyi-Chuann Chen, Shu-Hsing Wu, Kuo-Chen Yeh. Iron is involved in the maintenance of circadian period length in Arabidopsis. Plant physiology. 2013 Mar; 161(3):1409-20. doi: 10.1104/pp.112.212068. [PMID: 23307650]
  • Wagner L Batista, Fernando T Ogata, Marli F Curcio, Rodrigo B Miguel, Roberto J Arai, Alisson L Matsuo, Miriam S Moraes, Arnold Stern, Hugo P Monteiro. S-nitrosoglutathione and endothelial nitric oxide synthase-derived nitric oxide regulate compartmentalized ras S-nitrosylation and stimulate cell proliferation. Antioxidants & redox signaling. 2013 Jan; 18(3):221-38. doi: 10.1089/ars.2011.4455. [PMID: 22894707]
  • María J García, Francisco J Romera, Minviluz G Stacey, Gary Stacey, Eduardo Villar, Esteban Alcántara, Rafael Pérez-Vicente. Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants. Planta. 2013 Jan; 237(1):65-75. doi: 10.1007/s00425-012-1757-0. [PMID: 22983673]
  • Jian Feng, Chun Wang, Qingguo Chen, Hui Chen, Bo Ren, Xiaoming Li, Jianru Zuo. S-nitrosylation of phosphotransfer proteins represses cytokinin signaling. Nature communications. 2013; 4(?):1529. doi: 10.1038/ncomms2541. [PMID: 23443557]
  • Magdalena Arasimowicz-Jelonek, Arkadiusz Kosmala, Łukasz Janus, Dariusz Abramowski, Jolanta Floryszak-Wieczorek. The proteome response of potato leaves to priming agents and S-nitrosoglutathione. Plant science : an international journal of experimental plant biology. 2013 Jan; 198(?):83-90. doi: 10.1016/j.plantsci.2012.10.004. [PMID: 23199689]
  • Emmanuel Koen, Katarzyna Szymańska, Agnès Klinguer, Grażyna Dobrowolska, Angélique Besson-Bard, David Wendehenne. Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana plants grown under iron deficiency. Plant signaling & behavior. 2012 Oct; 7(10):1246-50. doi: 10.4161/psb.21548. [PMID: 22902693]
  • Qin Yu, Lian Sun, Haihong Jin, Qian Chen, Zunwei Chen, Maojun Xu. Lead-induced nitric oxide generation plays a critical role in lead uptake by Pogonatherum crinitum root cells. Plant & cell physiology. 2012 Oct; 53(10):1728-36. doi: 10.1093/pcp/pcs116. [PMID: 22904111]
  • Jana Piterková, Lenka Luhová, Jakub Hofman, Veronika Turecková, Ondrej Novák, Marek Petrivalsky, Martin Fellner. Nitric oxide is involved in light-specific responses of tomato during germination under normal and osmotic stress conditions. Annals of botany. 2012 Sep; 110(4):767-76. doi: 10.1093/aob/mcs141. [PMID: 22782244]
  • Marina Leterrier, Morad Airaki, José M Palma, Mounira Chaki, Juan B Barroso, Francisco J Corpas. Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environmental pollution (Barking, Essex : 1987). 2012 Jul; 166(?):136-43. doi: 10.1016/j.envpol.2012.03.012. [PMID: 22504427]
  • M Carme Espunya, Roberto De Michele, Aurelio Gómez-Cadenas, M Carmen Martínez. S-Nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana. Journal of experimental botany. 2012 May; 63(8):3219-27. doi: 10.1093/jxb/ers043. [PMID: 22371078]
  • Adriana Magalhães Andrade de Menezes, Gabriela Freitas Pereira de Souza, Antoniella Souza Gomes, Renata Ferreira de Carvalho Leitão, Ronaldo de Albuquerque Ribeiro, Marcelo Ganzarolli de Oliveira, Gerly Anne de Castro Brito. S-nitrosoglutathione decreases inflammation and bone resorption in experimental periodontitis in rats. Journal of periodontology. 2012 Apr; 83(4):514-21. doi: 10.1902/jop.2011.110332. [PMID: 21910597]
  • Ana P Ortega-Galisteo, María Rodríguez-Serrano, Diana M Pazmiño, Dharmendra K Gupta, Luisa M Sandalio, María C Romero-Puertas. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. Journal of experimental botany. 2012 Mar; 63(5):2089-103. doi: 10.1093/jxb/err414. [PMID: 22213812]
  • Marcela Simontacchi, Agustina Buet, Lorenzo Lamattina, Susana Puntarulo. Exposure to nitric oxide increases the nitrosyl-iron complexes content in sorghum embryonic axes. Plant science : an international journal of experimental plant biology. 2012 Feb; 183(?):159-66. doi: 10.1016/j.plantsci.2011.08.006. [PMID: 22195589]