Exact Mass: 271.1652
Exact Mass Matches: 271.1652
Found 470 metabolites which its exact mass value is equals to given mass value 271.1652
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
(R)-Higenamine
(RS)-norcoclaurine is a norcoclaurine. It is a conjugate base of a (RS)-norcoclaurinium. Higenamine is under investigation in clinical trial NCT01451229 (Pharmacokinetics and Pharmacodynamics of Higenamine in Chinese Healthy Subjects). Higenamine is a natural product found in Delphinium caeruleum, Aconitum triphyllum, and other organisms with data available. (R)-Higenamine is found in coffee and coffee products. (R)-Higenamine is an alkaloid from the seed embryo of Nelumbo nucifera (East India lotus). D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents
Napropamide
CONFIDENCE standard compound; INTERNAL_ID 66; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9402; ORIGINAL_PRECURSOR_SCAN_NO 9401 CONFIDENCE standard compound; INTERNAL_ID 66; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9441; ORIGINAL_PRECURSOR_SCAN_NO 9439 CONFIDENCE standard compound; INTERNAL_ID 66; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9439; ORIGINAL_PRECURSOR_SCAN_NO 9438 CONFIDENCE standard compound; INTERNAL_ID 66; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9388; ORIGINAL_PRECURSOR_SCAN_NO 9387 CONFIDENCE standard compound; INTERNAL_ID 66; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9460; ORIGINAL_PRECURSOR_SCAN_NO 9459 CONFIDENCE standard compound; INTERNAL_ID 66; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9346; ORIGINAL_PRECURSOR_SCAN_NO 9345 INTERNAL_ID 3573; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 3573
Dextromethorphan
Dextromethorphan is an antitussive drug that is found in many over-the-counter cold and cough preparations, usually in the form of dextromethorphan hydrobromide. Dextromethorphan is a salt of the methyl ether dextrorotatory isomer of levorphanol, a narcotic analgesic. Dextromethorphan occurs as white crystals, is sparingly soluble in water, and freely soluble in alcohol. The drug is dextrorotatory in water (at 20 degrees Celsius, Sodium D-line) with a specific rotation of +27.6 degrees. Following oral administration, dextromethorphan is rapidly absorbed from the gastrointestinal tract, where it enters the bloodstream and crosses the blood-brain barrier. Dextromethorphan shows high affinity binding to several regions of the brain, including the medullary cough center. The first-pass through the hepatic portal vein results in some of the drug being metabolized into an active metabolite of dextromethorphan, dextrorphan, the 3-hydroxy derivative of dextromethorphan. The therapeutic activity of dextromethorphan is believed to be caused by both the drug and this metabolite. Dextromethorphan is predominantly metabolized by the liver, by various hepatic enzymes. Through various pathways, the drug undergoes (O-demethylation (which produces dextrorphan), N-demethylation, and partial conjugation with glucuronic acid and sulfate ions. The inactive metabolite (+)-3-hydroxy-N-methylmorphinan is formed as a product of DXM metabolism by these pathways. One well known metabolic catalyst involved is a specific cytochrome P450 enzyme known as 2D6, or CYP2D6. A significant portion of the population has a functional deficiency in this enzyme (and are known as poor CYP2D6 metabolizers). As CYP2D6 is the primary metabolic pathway in the inactivation of dextromethorphan, the duration of action and effects of dextromethorphan are significantly increased in such poor metabolizers. Deaths and hospitalizations have been reported in recreational use by poor CYP2D6 metabolizers. -- Wikipedia. This compound is an NMDA receptor antagonist (receptors, N-methyl-D-aspartate) and acts as a non-competitive channel blocker. It is also used to study the involvement of glutamate receptors in neurotoxicity. [PubChem] Dextromethorphan is an antitussive drug that is found in many over-the-counter cold and cough preparations, usually in the form of dextromethorphan hydrobromide. Dextromethorphan is a salt of the methyl ether dextrorotatory isomer of levorphanol, a narcotic analgesic. Dextromethorphan occurs as white crystals, is sparingly soluble in water, and freely soluble in alcohol. The drug is dextrorotatory in water (at 20 degrees Celsius, Sodium D-line) with a specific rotation of +27.6 degrees. Following oral administration, dextromethorphan is rapidly absorbed from the gastrointestinal tract, where it enters the bloodstream and crosses the blood-brain barrier. The first-pass through the hepatic portal vein results in some of the drug being metabolized into an active metabolite of dextromethorphan, dextrorphan, the 3-hydroxy derivative of dextromethorphan. The therapeutic activity of dextromethorphan is believed to be caused by both the drug and this metabolite. Dextromethorphan is predominantly metabolized by the liver, by various hepatic enzymes. Through various pathways, the drug undergoes (O-demethylation (which produces dextrorphan), N-demethylation, and partial conjugation with glucuronic acid and sulfate ions. The inactive metabolite (+)-3-hydroxy-N-methylmorphinan is formed as a product of DXM metabolism by these pathways. One well known metabolic catalyst involved is a specific cytochrome P450 enzyme known as 2D6, or CYP2D6. A significant portion of the population has a functional deficiency in this enzyme (and are known as poor CYP2D6 metabolizers). As CYP2D6 is the primary metabolic pathway in the inactivation of dextromethorphan, the duration of action and effects of dextromethorphan are significantly increased in such poor metabolizers. Deaths and hospitalizations have been reported in recreational use by poor CYP2D6 metabolizers. -- Wikipedia [HMDB] R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2199 - Adjuvant Analgesic C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents
Normorphine
Normorphine, also known as desmethylmorphine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. The compound has relatively little opioid activity in its own right, but is a useful intermediate which can be used to produce both opioid antagonists such as nalorphine, and also potent opioid agonists such as N-phenethylnormorphine. Normorphine is a very strong basic compound (based on its pKa). Its formation from morphine is catalyzed by the liver enzymes CYP3A4 and CYP2C8. Normorphine is a controlled substance listed under the Single Convention On Narcotic Drugs 1961 and the laws in various states implementing it; for example, in the United States, it is a Schedule I Narcotic controlled substance, with an ACSCN of 9313 and an annual aggregate manufacturing quota of 18 grams in 2014, unchanged from the prior year. Normorphine is an opiate analogue, the N-demethylated derivative of morphine, that was first described in the 1950s when a large group of N-substituted morphine analogues were characterized for activity. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist
(E,E)-Trichostachine
(E,E)-Trichostachine is found in herbs and spices. (E,E)-Trichostachine is an alkaloid from Piper nigrum (pepper Alkaloid from Piper nigrum (pepper). (E,E)-Trichostachine is found in herbs and spices and pepper (spice).
Apoatropine
(4aR,10bS)-Noroxomaritidine
An isoquinoline alkaloid that is 4,4a-dihydro-3H,6H-5,10b-ethanophenanthridin-3-one carrying additional hydroxy and methoxy substituents at positions 8 and 9 respectively (the 4aR,10bS-diastereomer).
(±)-Tembamide
(±)-Tembamide is found in fruits. (±)-Tembamide is an alkaloid from the root of Aegle marmelos (bael fruit
Prolyl-Arginine
Prolyl-Arginine is a dipeptide composed of proline and arginine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite.
Arginylproline
Arginylproline is a dipeptide composed of arginine and proline. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.
2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine
2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine is an unusual amino acid that results from the post-translational modification of histidine in certain proteins. In particular, it is a post-translational derivative of histidine that exists in protein synthesis elongation factor 2 (EF2) at the site of diphtheria toxin-catalyzed ADP-ribosylation of elongation factor 2. It is a precursor for diphthamide. This compound is a substrate for the enzyme diphthine synthase (EC 2.1.1.98). This enzyme catalyzes the chemical reaction: S-adenosyl-L-methionine + 2-(3-carboxy-3-aminopropyl)-L-histidine = S-adenosyl-L-homocysteine + 2-[3-carboxy-3-(methylammonio)propyl]-L-histidine [HMDB] 2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine is an unusual amino acid that results from the post-translational modification of histidine in certain proteins. In particular, it is a post-translational derivative of histidine that exists in protein synthesis elongation factor 2 (EF2) at the site of diphtheria toxin-catalyzed ADP-ribosylation of elongation factor 2. It is a precursor for diphthamide. This compound is a substrate for the enzyme diphthine synthase (EC 2.1.1.98). This enzyme catalyzes the chemical reaction: S-adenosyl-L-methionine + 2-(3-carboxy-3-aminopropyl)-L-histidine = S-adenosyl-L-homocysteine + 2-[3-carboxy-3-(methylammonio)propyl]-L-histidine.
Tridecanoylglycine
Tridecanoylglycine is an acylglycine with C-13 fatty acid group as the acyl moiety. Acylglycines 1 possess a common amidoacetic acid moiety and are normally minor metabolites of fatty acids. Elevated levels of certain acylglycines appear in the urine and blood of patients with various fatty acid oxidation disorders. They are normally produced through the action of glycine N-acyltransferase which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine ↔ CoA + N-acylglycine. Margaroylglycine is an acylglycine with C-13 fatty acid group as the acyl moiety.
Norhydromorphone
Norhydromorphone is only found in individuals that have used or taken Hydromorphone. Norhydromorphone is a metabolite of Hydromorphone. Norhydromorphone belongs to the family of Morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
Bupranolol
Bupranolol is only found in individuals that have used or taken this drug. It is a non-selective beta blocker without intrinsic sympathomimetic activity (ISA), but with strong membrane stabilizing activity. Its potency is similar to propranolol:http://www.drugbank.ca/drugs/DB00571. Bupranolol competes with sympathomimetic neurotransmitters such as catecholamines for binding at beta(1)-adrenergic receptors in the heart, inhibiting sympathetic stimulation. This results in a reduction in resting heart rate, cardiac output, systolic and diastolic blood pressure, and reflex orthostatic hypotension. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Bupranolol is an orally active, competitive and non-selective β-adrenoceptor antagonist without intrinsic sympathomimetic activity[1].
4-Hydroxyatomoxetine
4-Hydroxyatomoxetine is a metabolite of atomoxetine. Atomoxetine is a drug approved for the treatment of attention-deficit hyperactivity disorder (ADHD). It is a selective norepinephrine reuptake inhibitor or NRI, not to be confused with selective serotonin and norepinephrine reuptake inhibitors or selective serotonin reuptake inhibitors, both of which are currently the most prescribed form of antidepressants. (Wikipedia)
Hept-3-enoylcarnitine
Hept-3-enoylcarnitine is an acylcarnitine. More specifically, it is an hept-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hept-3-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Hept-3-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Hept-4-enoylcarnitine
Hept-4-enoylcarnitine is an acylcarnitine. More specifically, it is an hept-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hept-4-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Hept-4-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Hept-5-enoylcarnitine
Hept-5-enoylcarnitine is an acylcarnitine. More specifically, it is an hept-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hept-5-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Hept-5-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E)-Hept-2-enoylcarnitine
(2E)-hept-2-enoylcarnitine is an acylcarnitine. More specifically, it is an (2E)-hept-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-hept-2-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E)-hept-2-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Lauroyl Alanine
N-lauroyl alanine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Lauric acid amide of Alanine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Lauroyl Alanine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Lauroyl Alanine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
Racemethorphan
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents
3-(1-Adamantyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine
1-Tert-Butyl 4-ethyl 3-oxopiperidine-1,4-dicarboxylate
5,6-Dihydroxy-3-phenyl-1-aminomethylisochroman
Cyclazocine
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Desomorphine
N-LAUROYLSARCOSINE
D013501 - Surface-Active Agents > D003902 - Detergents
Nisoxetine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C185721 - Norepinephrine Reuptake Inhibitor C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent
(R)-N-(Quinuclidin-3-yl)furo(2,3-C)pyridine-5-carboxamide
Pyrido[2,3-d]pyrimidin-2(1H)-one, 4-cyclohexyl-1-ethyl-7-methyl-
Quinocitrinine A
Quinocitrinine B
1-(Cyclohexylmethyl)-1H-indole-3-carboxylic Acid Methyl Ester
2-(tert-Butylsulfonyl)-3-(piperidinoamino)acrylonitrile
2-((2-Methylaminoethyl)(p-methoxybenzyl)amino)pyridine
N-LAUROYLSARCOSINE
D013501 - Surface-Active Agents > D003902 - Detergents CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5609; ORIGINAL_PRECURSOR_SCAN_NO 5607 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5625; ORIGINAL_PRECURSOR_SCAN_NO 5623 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5581; ORIGINAL_PRECURSOR_SCAN_NO 5579 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5616; ORIGINAL_PRECURSOR_SCAN_NO 5612 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5614; ORIGINAL_PRECURSOR_SCAN_NO 5611 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10228; ORIGINAL_PRECURSOR_SCAN_NO 10227 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10277; ORIGINAL_PRECURSOR_SCAN_NO 10275 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10291; ORIGINAL_PRECURSOR_SCAN_NO 10289 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10331; ORIGINAL_PRECURSOR_SCAN_NO 10326 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10341; ORIGINAL_PRECURSOR_SCAN_NO 10339 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10348; ORIGINAL_PRECURSOR_SCAN_NO 10347 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1012
7-methoxy-N-methyl flindersine|8-methoxy-N-methylflindersine|N-Methylhaplamine
rac-3-Methoxy-16-methyl-16-aza-17-carba-morphinan|rac-3-methoxy-16-methyl-16-aza-17-carba-morphinane
(+/-)-3-oxoisoelaeocarpine|rac-(6aS,12aR,12bR)-1,2,6,6a,12a,12b-hexahydro-11-methyl-5H-chromeno[2,3-g]indolizine-3,12-dione
(2R,4S,6R,2S)-N-methyl-2-(2-oxo-butyl)-6-(2-hydroxyamyl)-piperidin-4-ol|lobechidine B
3-indol-3-ylmethyl-1,6-dimethyl-piperazine-2,5-dione|cyclo(L-Trp-N-methyl-L-Ala-)
5,9-dimethoxy-2,2-dimethyl-[2H]-pyrano[2,3-b]quinoline
N-[3-(2,3,4,9-Tetrahydro-1H-b-carbolin-1-yl)-propyl]-guanidine
1,4-Lactone,tri-N-Ac-(2S,3S,4R)-2,3,5-Triamino-4-hydroxypentanoic acid
(7S)-(7at)-8,9-Dihydro-6H,7aH-7r,11ac-aethano-[1,3]dioxolo[4,5-k]phenanthridin-9t-ol|(7S)-(7at)-8,9-dihydro-6H,7aH-7r,11ac-ethano-[1,3]dioxolo[4,5-k]phenanthridin-9t-ol
2-Methylbutylamide-(2E,7Z)-2,7-Tricecadiene-10,12-diynoic acid|trideca-2t,7c-dien-10,12-diynoic acid (2-methylbutyl)amide
2-Methylpropylamide-10,12-Tetradecadiene-4,6-diynoic acid,
1-[(3-hydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol
tetradeca-2E,4E,10Z-trien-8-ynoic acid pyrrolidide
N-isobutyl-2E,4E,10E,12Z-tetradecatetraen-8-ynamide
2-((S)-3-Methyl-2-((S)-pyrrolidine-2-carboxamido)butanamido)acetic acid
Ocusert
A slowly hydrolyzed muscarinic agonist with no nicotinic effects. Pilocarpine is used as a miotic and in the treatment of glaucoma.
Dextromethorphan
A 6-methoxy-11-methyl-1,3,4,9,10,10a-hexahydro-2H-10,4a-(epiminoethano)phenanthrene in which the sterocenters at positions 4a, 10 and 10a have S-configuration. It is a prodrug of dextrorphan and used as an antitussive drug for suppressing cough. R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2199 - Adjuvant Analgesic D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2824
Piperyline
A N-acylpyrrolidine that is pyrollidine substituted by a (1E,3E)-1-(1,3-benzodioxol-5-yl)-5-oxopenta-1,3-dien-5-yl group at the nitrogen atom. It is an alkaloid isolated from the plant Piper nigrum.
4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid
PYR_272.1759_11.0
CONFIDENCE Probable structure via diagnostic evidence, tentative identification (Level 2b); INTERNAL_ID 1702
PYR_272.1759_8.8
CONFIDENCE Probable structure via diagnostic evidence, tentative identification (Level 2b); INTERNAL_ID 1703
Pilocarpine Nitrate
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist
3-hydroxy-C10-homoserine lactone
CONFIDENCE standard compound; INTERNAL_ID 216
4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid [IIN-based on: CCMSLIB00000847798]
4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid [IIN-based: Match]
Desomorphine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Norhydromorphone
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
Bupranolol
C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Bupranolol is an orally active, competitive and non-selective β-adrenoceptor antagonist without intrinsic sympathomimetic activity[1].
Pro-arg
A dipeptide formed from L-proline and L-arginine residues.
Higenamine
D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents
BIS(2-CYANOETHYL) DIISOPROPYLPHOSPHORAMIDITE
Bis(2-cyanoethyl) diisopropylphosphoramidite is a phosphorite monomer that can be used in the synthesis of oligonucleotides.
4-Cyanophenyl trans-4-propylcyclohexanecarboxylate
ProcainaMide hydrochloride
D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
N-[(3,4-dimethoxyphenyl)methyl]cyclopentanamine,hydrochloride
2-Methyl-2-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-propionitrile
4-(4-Fluorophenyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridin-2(1H)-one
5-[cyclopentyl(prop-2-enyl)amino]-2-nitrobenzonitrile
1-isopropyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride
6,7-DIETHOXY-1-METHYL-1,2,3,4-TETRAHYDROISOQUINOLINE HYDROCHLORIDE
(3R,4R)-3-ethyl-4-[(3-methylimidazol-4-yl)methyl]oxolan-2-one
(2R,3R)-3-(3-Methoxyphenyl)-N,N,2-trimethylpentan-1-amine hydrochloride
methyl 2-[[(E)-(2,4-dimethylcyclohex-3-en-1-ylidene)methyl]amino]benzoate
(R)-1-TERT-BUTYL 2-ETHYL 5-OXOPIPERIDINE-1,2-DICARBOXYLATE
5-(1H-imidazol-1-yl)pyridine-3-boronic acid pinacol ester
(S)-1-TERT-BUTYL 2-ETHYL 5-OXOPIPERIDINE-1,2-DICARBOXYLATE
2-(1H-PYRAZOL-1-YL)-6-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDINE
Nepinalone
R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants C78273 - Agent Affecting Respiratory System > C66917 - Antitussive Agent
tert-butyl 3-(3-ethoxy-3-oxopropanoyl)azetidine-1-carboxylate
(2-[1,4]Diazepan-1-yl-1-methyl-2-oxo-ethyl)-carbamic acid tert-butyl ester
(R)-3-AMINO-4-(4-(TERT-BUTYL)PHENYL)BUTANOIC ACID HYDROCHLORIDE
L-PROLINE, 4-(2-NAPHTHALENYLOXY)-, METHYL ESTER, (4S)-
2-(2-METHOXYCARBONYL-ETHYL)-PIPERIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER
N-[2-(2,5-dimethoxy-4-propylsulfanylphenyl)ethyl]hydroxylamine
5,6-Dihydroxy-N-methyl-N-propyl-aminotetraline hydrochloride
3-(furan-2-ylmethyl)-7,7-dimethyl-6,8-dihydro-1H-quinoline-2,5-dione
1-[3-(4,4,5,5-TETRAMETHYL-[1,3,2]DIOXABOROLAN-2-YL)-PHENYL]-2,5-DIHYDRO-1H-PYRROLE
benzo[1,3]dioxol-5-ylmethyl-(4-methoxy-benzyl)-amine
N-(2-(DIMETHYLAMINO)ETHYL)-4-PIPERIDINECARBOXAMIDE DIHYDROCHLORIDE
3-Methyl 1-(2-methyl-2-propanyl) 3-ethyl-1,3-piperidinedicarboxyl ate
2-Methyl-2-[3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-propionitrile
ethyl5-((tert-butoxycarbonylamino)methyl)-1,2,4-oxadiazole-3-carboxylate
2,4-ivy carbaldehyde / methyl anthranilate schiffs base
methyl 1-methyl-5-(4-methylbenzoyl)-1H-pyrrole-2-acetate
1-TERT-BUTYL 2-ETHYL 3-OXOPIPERIDINE-1,2-DICARBOXYLATE
1-(1-Benzylpiperidin-3-yl)-2,2,2-trifluoroethanone
(2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethyl-pentanamine hydrochloride
(S)-(2-[1,4]DIAZEPAN-1-YL-1-METHYL-2-OXO-ETHYL)-CARBAMIC ACID TERT-BUTYL ESTER
2-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-oxazole
2-Methyl-2-propanyl 3-hydroxy-1-oxo-2-oxa-6-azaspiro[4.5]decane-6 -carboxylate
Methyl 3-(methoxycarbonyl)-7-oxo-9-azabicyclo[3.3.1]nonane-9-acetate
4-(3-FORMYL-2,5-DIMETHYL-PYRROL-1-YL)-BENZOIC ACID ETHYL ESTER
Furan-2-ylmethyl-[1-(4-methoxy-phenyl)-3-methyl-but-3-enyl]-amine
(R)-2-tert-Butoxycarbonylamino-3-cyclohexylpropionic acid
(2,3-DICHLOROPHENYL)METHYLCYANOCARBONIMIDODITHIOATE
1-(4-methoxy-benzyl)-2-methyl-1,2,3,4,5,6,7,8-octahydro-isoquinoline
TERT-BUTYL 3-(2-ETHOXY-2-OXOETHYL)PIPERIDINE-1-CARBOXYLATE
2-Heptyl-1,4-dihydro-4-oxo-3-quinolinecarboxaldehyde
Tert-Butyl 3-(Hydroxymethyl)-2-Oxa-8-Azaspiro[4.5]Decane-8-Carboxylate
1-CYCLOHEXYL-4-OXO-1,4-DIHYDROQUINOLINE-3-CARBOXYLIC ACID
3-amino-1-(4-propan-2-ylpiperazin-1-yl)propan-1-one,dihydrochloride
(2S,4S)-N-BOC-4-HYDROXY-3,3-DIMETHYLPYRROLIDINE-2-CARBOXYLICACID
ETHYL 5-BENZYL-1,4,5,6-TETRAHYDROPYRROLO[3,4-C]PYRAZOLE-3-CARBOXYLATE
ethyl 3-[2-(2-ethoxy-2-oxoethyl)piperidin-1-yl]propanoate
3-AMINO-1,4-DIMETHYL-5H-PYRIDO[4,3-B]INDOLE, ACETATE
1-TERT-BUTYL 4-METHYL 4-ETHYLPIPERIDINE-1,4-DICARBOXYLATE
L-Homophenylalanine tert-Butyl Ester Hydrochloride
N-cyclopentyl-5-(4-fluorophenyl)-2-methylpyrimidin-4-amine
N-Methyl-N-(3-chloropropyl)-3,4-dimethoxyphenethylamine
(R)-tert-Butyl 3-amino-4-phenylbutanoate hydrochloride
(3S)-3-ethyl-4-[(3-methylimidazol-4-yl)methyl]oxolan-2-one,nitric acid
(2S,4S)-6-FLUORO-2,5-DIOXO-2,3-DIHYDROSPIRO[CHROMENE-4,4-IMIDAZOLIDINE]-2-CARBOXAMIDE
[(1S)-3-Methyl-1-[[(2R)-2-methyloxiranyl]carbonyl]butyl]carbamic acid 1,1-dimethylethyl ester
tert-butyl 2-(2-ethoxy-2-oxoethyl)piperidine-1-carboxylate
tert-Butyl 4-[(Trimethylsilanyl)oxy]-3,6-dihydro-2H-pyridine-1-carboxylate
2-(1H-PYRAZOL-1-YL)-5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDINE
(S)-3-AMINO-4-(4-(TERT-BUTYL)PHENYL)BUTANOIC ACID HYDROCHLORIDE
4-(1-cyclopropyl-1,3-dioxobutan-2-yl)oxy-2,6-dimethylbenzonitrile
2-[(4-Amino-3-methylphenyl)ethylamino]ethyl sulfate
N-ethyl-N-(2-naphthalen-1-yloxyethyl)butan-1-amine
N-Methyl-N-(3-chloropropyl)-3,4-dimethoxy benzenethylamine
ethyl 4-formyl-2,5-dimethyl-1-phenylpyrrole-3-carboxylate
Methyl 1-Boc-3-methyl-4-oxo-piperidine-3-carboxylate
Ethyl 3-((tert-butoxycarbonylamino)methyl)-1,2,4-oxadiazole-5-carboxylate
1-Oxa-9-azaspiro[5.5]undecane-9-carboxylic acid, 3-hydroxy-, 1,1-dimethylethyl ester
3-Isopropyl-1-{[(2-methyl-2-propanyl)oxy]carbonyl}-3-piperidineca rboxylic acid
(2-Methyl-1-oxo-1-phenyl-2-propanyl)phenylazinic acid
(S)-4,4-DIMETHYL-PYRROLIDINE-1,2-DICARBOXYLIC ACID 1-TERT-BUTYL ESTER 2-ETHYL ESTER
Amylocaine hydrochloride
C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
N-1-azabicyclo[2.2.2]oct-3-ylfuro[2,3-c]pyridine-5-carboxamide
Pyrido[2,3-d]pyrimidin-2(1H)-one, 4-cyclohexyl-1-ethyl-7-methyl-
Meprylcaine hydrochloride
C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide
PHA-543613 is a potent, orally active, brain-penetrant and selective α7 nAChR agonist with a Ki of 8.8 nM. PHA-543613 displays selectivity for α7-nAChR over α3β4, α1β1γδ, α4β2 and 5-HT3 receptors[1]. PHA-543613 can be used for the cognitive deficits of Alzheimer's disease and schizophrenia research[2].
5,6-Dihydroxy-3-phenyl-1-aminomethylisochroman
D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists
5-Amino-6-cyclohexyl-4-hydroxy-2-isopropyl-hexanoic acid
[2-(1-Amino-2-hydroxypropyl)-2-hydroxy-4-isobutyl-5-oxo-2,5-dihydro-1H-imidazol-1-YL]acetaldehyde
Nisoxetine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C185721 - Norepinephrine Reuptake Inhibitor C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent
Cyclazocine
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist D002491 - Central Nervous System Agents > D000700 - Analgesics
2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine
2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine is an unusual amino acid that results from the post-translational modification of histidine in certain proteins. In particular, it is a post-translational derivative of histidine that exists in protein synthesis elongation factor 2 (EF2) at the site of diphtheria toxin-catalyzed ADP-ribosylation of elongation factor 2. It is a precursor for diphthamide. This compound is a substrate for the enzyme diphthine synthase (EC 2.1.1.98). This enzyme catalyzes the chemical reaction: S-adenosyl-L-methionine + 2-(3-carboxy-3-aminopropyl)-L-histidine = S-adenosyl-L-homocysteine + 2-[3-carboxy-3-(methylammonio)propyl]-L-histidine [HMDB] 2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine is an unusual amino acid that results from the post-translational modification of histidine in certain proteins. In particular, it is a post-translational derivative of histidine that exists in protein synthesis elongation factor 2 (EF2) at the site of diphtheria toxin-catalyzed ADP-ribosylation of elongation factor 2. It is a precursor for diphthamide. This compound is a substrate for the enzyme diphthine synthase (EC 2.1.1.98). This enzyme catalyzes the chemical reaction: S-adenosyl-L-methionine + 2-(3-carboxy-3-aminopropyl)-L-histidine = S-adenosyl-L-homocysteine + 2-[3-carboxy-3-(methylammonio)propyl]-L-histidine.
Pronestyl
D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators
(4Z)-N-(4-methoxyphenyl)bicyclo[6.1.0]non-4-ene-9-carboxamide
3-(3-Formyl-2,5-dimethyl-1-pyrrolyl)-4-methylbenzoic acid methyl ester
5-(4-Propylcyclohexyl)-3-(3-pyridinyl)-1,2,4-oxadiazole
(1S)-4-Methoxy-17-methyl-17-azatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,5-triene
5-(3,5-Dimethyl-1-piperidinyl)-2-(2-furanyl)-4-oxazolecarbonitrile
5-nitro-N-[(4-propan-2-ylphenyl)methyl]-2-pyridinamine
2-fluoro-N-(1-hydroxy-2-methylpropan-2-yl)-4,5-dimethoxybenzamide
3-[2-Hydroxy-3-(4-morpholinyl)propyl]-5,5-dimethylimidazolidine-2,4-dione
N-[(2,4-dimethoxyphenyl)methyl]-2,5-dimethylaniline
2-[[Methyl(2,3,4,5,6-pentahydroxyhexyl)amino]methylidene]propanedinitrile
2-Benzyl-5-[(3S)-1-isopropyl-3-pyrrolidinyl]-1,3,4-oxadiazole
4,6-Dimethyl-N-phenyl-N-trimethylsilyl-2-pyrimidinamine
2-Aminoethyl (3-butoxy-2-hydroxypropyl) hydrogen phosphate
3,4,4a,5-Tetrahydrobenzo[g]isoquinolin-10(2H)-one, TMS derivative
(3S,4R)-3-ethyl-4-[(3-methyl-1H-imidazol-3-ium-4-yl)methyl]oxolan-2-one;nitrate
(4aS,10bR)-Noroxomaritidine
An isoquinoline alkaloid that is 4,4a-dihydro-3H,6H-5,10b-ethanophenanthridin-3-one carrying additional hydroxy and methoxy substituents at positions 8 and 9 respectively (the 4aS,10bR-diastereomer).
Levomethorphan
A 6-methoxy-11-methyl-1,3,4,9,10,10a-hexahydro-2H-10,4a-(epiminoethano)phenanthrene in which the stereocenters at positions 4a, 10 and 10a have R-configuration. It is a prodrug of levorphanol and a strong narcotic analgesic, and listed as a schedule II controlled substance. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents
Normorphine
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist
6-methoxy-11-methyl-1,3,4,9,10,10a-hexahydro-2H-10,4a-(epiminoethano)phenanthrene
An organic heterotetracyclic compound that is 1,3,4,9,10,10a-hexahydro-2H-10,4a-(epiminoethano)phenanthrene which is substituted by a methoxy group at position 6 and a methyl group at position 11.
2-[3-Carboxy-3-(methylammonio)propyl]-L-histidine
An ammonium ion that is a derivative of L-histidine having a 3-carboxy-3-(methylammonio)propyl group at the 2-position on the imidazole ring.
N-isobutyltetradeca-2E,4E,10E,12Z-tetraen-8-ynamide
mGluR3 modulator-1
mGluR3 modulator-1 (compound 3) is a mGluR3 modulator, with an EC50 of 1-10 μM in HEK293T-mGluR-Gqi5 Calcium Mobilization Assay[1].
(2e,9z)-n-ethylhexadeca-2,9-dien-12,14-diynimidic acid
hexahydro-1h-pyrrolizin-1-ylmethyl 2,3-dihydroxy-3-methylpentanoate
8-methoxy-2,2,6-trimethylpyrano[3,2-c]quinolin-5-one
1-(4-hydroxyphenyl)-7-methoxy-1,2,3,4-tetrahydroisoquinolin-8-ol
(1s,9s,10r)-9-[(2z)-hex-2-en-1-yl]-10-methyl-5,7-diazatricyclo[6.3.1.0⁴,¹²]dodeca-4(12),7-dien-6-imine
2,4,8,10,12-tetradecapentaenoic acid; (2e,4e,8z,10e,12e)-form,2-methylenepropylamide
{"Ingredient_id": "HBIN004270","Ingredient_name": "2,4,8,10,12-tetradecapentaenoic acid; (2e,4e,8z,10e,12e)-form,2-methylenepropylamide","Alias": "NA","Ingredient_formula": "C18H25NO","Ingredient_Smile": "NA","Ingredient_weight": "0","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "8901","PubChem_id": "NA","DrugBank_id": "NA"}