Chemical Formula: C14H25NO4

Chemical Formula C14H25NO4

Found 50 metabolite its formula value is C14H25NO4

Hept-3-enoylcarnitine

3-(Hept-3-enoyloxy)-4-(trimethylazaniumyl)butanoic acid

C14H25NO4 (271.178349)


Hept-3-enoylcarnitine is an acylcarnitine. More specifically, it is an hept-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hept-3-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Hept-3-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Hept-4-enoylcarnitine

3-(hept-4-enoyloxy)-4-(trimethylazaniumyl)butanoate

C14H25NO4 (271.178349)


Hept-4-enoylcarnitine is an acylcarnitine. More specifically, it is an hept-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hept-4-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Hept-4-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Hept-5-enoylcarnitine

3-(hept-5-enoyloxy)-4-(trimethylazaniumyl)butanoate

C14H25NO4 (271.178349)


Hept-5-enoylcarnitine is an acylcarnitine. More specifically, it is an hept-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hept-5-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Hept-5-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2E)-Hept-2-enoylcarnitine

3-(hept-2-enoyloxy)-4-(trimethylazaniumyl)butanoate

C14H25NO4 (271.178349)


(2E)-hept-2-enoylcarnitine is an acylcarnitine. More specifically, it is an (2E)-hept-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-hept-2-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E)-hept-2-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   
   

N-(3-Hydroxydecanoyl)-DL-homoserine lactone

N-(3-Hydroxydecanoyl)-DL-homoserine lactone

C14H25NO4 (271.178349)


   
   
   

4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid

NCGC00380621-01!4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid

C14H25NO4 (271.178349)


   

4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid

4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid

C14H25NO4 (271.178349)


   

3-hydroxy-C10-homoserine lactone

3-hydroxy-C10-homoserine lactone

C14H25NO4 (271.178349)


CONFIDENCE standard compound; INTERNAL_ID 216

   

4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid [IIN-based on: CCMSLIB00000847798]

NCGC00380621-01!4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid [IIN-based on: CCMSLIB00000847798]

C14H25NO4 (271.178349)


   

4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid [IIN-based: Match]

NCGC00380621-01!4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid [IIN-based: Match]

C14H25NO4 (271.178349)


   

3OH-C10-HSL

N-(3-hydroxy-decanoyl)-homoserine lactone

C14H25NO4 (271.178349)


   

N-Boc-4-ethyl piperidinecarboxylate

N-Boc-4-ethyl piperidinecarboxylate

C14H25NO4 (271.178349)


   

1-tert-Butyl 4-ethyl azepane-1,4-dicarboxylate

1-tert-Butyl 4-ethyl azepane-1,4-dicarboxylate

C14H25NO4 (271.178349)


   

2-N-BOC-AMINOMETHYL-2-CYCLOHEXYLACETICACID

2-N-BOC-AMINOMETHYL-2-CYCLOHEXYLACETICACID

C14H25NO4 (271.178349)


   

Methyl N-Boc-4-piperidinepropionate

Methyl N-Boc-4-piperidinepropionate

C14H25NO4 (271.178349)


   

Ethyl N-Boc-4-methylpiperidine-4-carboxylate

Ethyl N-Boc-4-methylpiperidine-4-carboxylate

C14H25NO4 (271.178349)


   

2-(2-METHOXYCARBONYL-ETHYL)-PIPERIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

2-(2-METHOXYCARBONYL-ETHYL)-PIPERIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

C14H25NO4 (271.178349)


   

2,3-DICHLOROBENZOICACID

2,3-DICHLOROBENZOICACID

C14H25NO4 (271.178349)


   
   

3-Methyl 1-(2-methyl-2-propanyl) 3-ethyl-1,3-piperidinedicarboxyl ate

3-Methyl 1-(2-methyl-2-propanyl) 3-ethyl-1,3-piperidinedicarboxyl ate

C14H25NO4 (271.178349)


   

1-Boc-4-isopropyl-4-piperidinecarboxylic Acid

1-Boc-4-isopropyl-4-piperidinecarboxylic Acid

C14H25NO4 (271.178349)


   

BOC-1-AMINO-1-CYCLOOCTANECARBOXYLIC ACID

BOC-1-AMINO-1-CYCLOOCTANECARBOXYLIC ACID

C14H25NO4 (271.178349)


   

(R)-2-tert-Butoxycarbonylamino-3-cyclohexylpropionic acid

(R)-2-tert-Butoxycarbonylamino-3-cyclohexylpropionic acid

C14H25NO4 (271.178349)


   

TERT-BUTYL 3-(2-ETHOXY-2-OXOETHYL)PIPERIDINE-1-CARBOXYLATE

TERT-BUTYL 3-(2-ETHOXY-2-OXOETHYL)PIPERIDINE-1-CARBOXYLATE

C14H25NO4 (271.178349)


   

Tert-Butyl 3-(Hydroxymethyl)-2-Oxa-8-Azaspiro[4.5]Decane-8-Carboxylate

Tert-Butyl 3-(Hydroxymethyl)-2-Oxa-8-Azaspiro[4.5]Decane-8-Carboxylate

C14H25NO4 (271.178349)


   

(2S,4S)-N-BOC-4-HYDROXY-3,3-DIMETHYLPYRROLIDINE-2-CARBOXYLICACID

(2S,4S)-N-BOC-4-HYDROXY-3,3-DIMETHYLPYRROLIDINE-2-CARBOXYLICACID

C14H25NO4 (271.178349)


   

N-Boc-4-Piperidin-4-yl-butyric acid

N-Boc-4-Piperidin-4-yl-butyric acid

C14H25NO4 (271.178349)


   

ethyl 3-[2-(2-ethoxy-2-oxoethyl)piperidin-1-yl]propanoate

ethyl 3-[2-(2-ethoxy-2-oxoethyl)piperidin-1-yl]propanoate

C14H25NO4 (271.178349)


   

4-N-BOC-CYCLOHEXYACETIC ACID METHYL ESTER

4-N-BOC-CYCLOHEXYACETIC ACID METHYL ESTER

C14H25NO4 (271.178349)


   

1-TERT-BUTYL 4-METHYL 4-ETHYLPIPERIDINE-1,4-DICARBOXYLATE

1-TERT-BUTYL 4-METHYL 4-ETHYLPIPERIDINE-1,4-DICARBOXYLATE

C14H25NO4 (271.178349)


   

3-(Boc-amino)-3-cyclohexylpropionic Acid

3-(Boc-amino)-3-cyclohexylpropionic Acid

C14H25NO4 (271.178349)


   

(2S,4S)-6-FLUORO-2,5-DIOXO-2,3-DIHYDROSPIRO[CHROMENE-4,4-IMIDAZOLIDINE]-2-CARBOXAMIDE

(2S,4S)-6-FLUORO-2,5-DIOXO-2,3-DIHYDROSPIRO[CHROMENE-4,4-IMIDAZOLIDINE]-2-CARBOXAMIDE

C14H25NO4 (271.178349)


   

[(1S)-3-Methyl-1-[[(2R)-2-methyloxiranyl]carbonyl]butyl]carbamic acid 1,1-dimethylethyl ester

[(1S)-3-Methyl-1-[[(2R)-2-methyloxiranyl]carbonyl]butyl]carbamic acid 1,1-dimethylethyl ester

C14H25NO4 (271.178349)


   

tert-butyl 2-(2-ethoxy-2-oxoethyl)piperidine-1-carboxylate

tert-butyl 2-(2-ethoxy-2-oxoethyl)piperidine-1-carboxylate

C14H25NO4 (271.178349)


   

2-BROMO-6-SEC-BUTOXYPYRIDINE

2-BROMO-6-SEC-BUTOXYPYRIDINE

C14H25NO4 (271.178349)


   

1-Oxa-9-azaspiro[5.5]undecane-9-carboxylic acid, 3-hydroxy-, 1,1-dimethylethyl ester

1-Oxa-9-azaspiro[5.5]undecane-9-carboxylic acid, 3-hydroxy-, 1,1-dimethylethyl ester

C14H25NO4 (271.178349)


   

3-Isopropyl-1-{[(2-methyl-2-propanyl)oxy]carbonyl}-3-piperidineca rboxylic acid

3-Isopropyl-1-{[(2-methyl-2-propanyl)oxy]carbonyl}-3-piperidineca rboxylic acid

C14H25NO4 (271.178349)


   

(S)-4,4-DIMETHYL-PYRROLIDINE-1,2-DICARBOXYLIC ACID 1-TERT-BUTYL ESTER 2-ETHYL ESTER

(S)-4,4-DIMETHYL-PYRROLIDINE-1,2-DICARBOXYLIC ACID 1-TERT-BUTYL ESTER 2-ETHYL ESTER

C14H25NO4 (271.178349)


   

3-hydroxy-N-(2-oxooxolan-3-yl)decanamide

3-hydroxy-N-(2-oxooxolan-3-yl)decanamide

C14H25NO4 (271.178349)


   

3-Hydroxy-N-[(3S)-2-oxooxolan-3-yl]decanamide

3-Hydroxy-N-[(3S)-2-oxooxolan-3-yl]decanamide

C14H25NO4 (271.178349)


   

Hept-3-enoylcarnitine

Hept-3-enoylcarnitine

C14H25NO4 (271.178349)


   

Hept-4-enoylcarnitine

Hept-4-enoylcarnitine

C14H25NO4 (271.178349)


   

Hept-5-enoylcarnitine

Hept-5-enoylcarnitine

C14H25NO4 (271.178349)


   

(2E)-Hept-2-enoylcarnitine

(2E)-Hept-2-enoylcarnitine

C14H25NO4 (271.178349)


   

4-Oxo-4-[(3-oxo-2-decanyl)amino]butanoic acid

4-Oxo-4-[(3-oxo-2-decanyl)amino]butanoic acid

C14H25NO4 (271.178349)


   
   

hexahydro-1h-pyrrolizin-1-ylmethyl 2,3-dihydroxy-3-methylpentanoate

hexahydro-1h-pyrrolizin-1-ylmethyl 2,3-dihydroxy-3-methylpentanoate

C14H25NO4 (271.178349)