Exact Mass: 177.0650572
Exact Mass Matches: 177.0650572
Found 500 metabolites which its exact mass value is equals to given mass value 177.0650572
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Alliin
Alliin /ˈæli.ɪn/ is a sulfoxide that is a natural constituent of fresh garlic.[1] It is a derivative of the amino acid cysteine. When fresh garlic is chopped or crushed, the enzyme alliinase converts alliin into allicin, which is responsible for the aroma of fresh garlic. Allicin and other thiosulfinates in garlic are unstable and form a number of other compounds, such as diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DAT), dithiins and ajoene.[2] Garlic powder is not a source of alliin, nor is fresh garlic upon maceration, since the enzymatic conversion to allicin takes place in the order of seconds. Alliin was the first natural product found to have both carbon- and sulfur-centered stereochemistry.[3] Constituent of garlic oil (Allium sativum), also from ramsons (Allium ursinum). (R)C(S)S-Alliin is found in garden onion, garlic, and onion-family vegetables. (R)C(S)S-Alliin is found in garden onion. (R)C(S)S-Alliin is a constituent of garlic oil (Allium sativum), also from ramsons (Allium ursinum). Alliin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=556-27-4 (retrieved 2024-07-01) (CAS RN: 556-27-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].
S-(1-Propenyl)-cysteine sulfoxide
S-(1-propenyl)-cysteine sulfoxide, also known as prensco, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. S-(1-propenyl)-cysteine sulfoxide is soluble (in water) and a moderately acidic compound (based on its pKa). S-(1-propenyl)-cysteine sulfoxide can be found in a number of food items such as babassu palm, spirulina, elderberry, and cassava, which makes S-(1-propenyl)-cysteine sulfoxide a potential biomarker for the consumption of these food products. D000970 - Antineoplastic Agents D007004 - Hypoglycemic Agents
N-formylmethionine
N-formyl-L-methionine is a L-methionine derivative in which one of the hydrogens attached to the nitrogen is replaced by a formyl group. It has a role as a metabolite. It is a proteinogenic amino acid, a N-formyl amino acid and a L-methionine derivative. It is a conjugate acid of a N-formyl-L-methioninate. N-Formyl-L-methionine belongs to the class of organic compounds known as methionine and derivatives. Methionine and derivatives are compounds containing methionine or a derivative thereof resulting from reaction of methionine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. N-Formyl-L-methionine is effective in the initiation of protein synthesis. The initiating methionine residue enters the ribosome as N-formylmethionyl-tRNA. This process occurs in Escherichia coli and other bacteria as well as in the mitochondria of eukaryotic cells. Effective in the initiation of protein synthesis. The initiating methionine residue enters the ribosome as N-formylmethionyl tRNA. This process occurs in Escherichia coli and other bacteria as well as in the mitochondria of eucaryotic cells. [HMDB] For-Met-OH is an endogenous metabolite.
4-hydroxy-4-methylglutamate
A glutamic acid derivative that is L-glutamic acid with a methyl and a hydroxy group replacing the two hydrogens at position 4.
dihomomethionine
A sulfur-containing amino acid consisting of 2-aminohexanoic acid having a methylthio substituent at the 6-position.
Alliin
Alliin, also known as (S)-S-allyl-L-cysteine sulfoxide or (S)-3-(allylsulphinyl)-L-alanine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Alliin is soluble (in water) and a moderately acidic compound (based on its pKa). Alliin can be found in a number of food items such as red rice, mandarin orange (clementine, tangerine), ceylon cinnamon, and olive, which makes alliin a potential biomarker for the consumption of these food products. Garlic has been used since antiquity as a therapeutic remedy for certain conditions now associated with oxygen toxicity, and, when this was investigated, garlic did indeed show strong antioxidant and hydroxyl radical-scavenging properties, it is presumed owing to the alliin contained within. Alliin has also been found to affect immune responses in blood . 3-(Allylsulphinyl)-L-alanine is a L-alpha-amino acid. Alliin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=556-27-4 (retrieved 2024-07-01) (CAS RN: 556-27-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Alliin is the main active component of garlic. (±)-Alliin is a putative inhibitor of the main protease of SARS-CoV-2 (Mpro)[1]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].
Isoalliin
Present in onion (Allium cepa). Isoalliin is found in many foods, some of which are mamey sapote, eggplant, common cabbage, and abiyuch. Isoalliin is found in garden onion. Isoalliin is present in onion (Allium cepa D000970 - Antineoplastic Agents D007004 - Hypoglycemic Agents
Cycloalliin
Lucenin 2 is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Lucenin 2 is soluble (in water) and a very weakly acidic compound (based on its pKa). Lucenin 2 can be found in flaxseed, which makes lucenin 2 a potential biomarker for the consumption of this food product. Cycloalliin is found in garden onion. Cycloalliin is a constituent of onion (Allium cepa)
5-Hydroxytryptophol
5-Hydroxytryptophol is a relatively minor metabolite of serotonin that is excreted primarily as the glucuronide conjugate in human urine. 5-Hydroxytryptophol becomes more important quantitatively during alcohol intoxication, when a shift in the metabolism of serotonin occurs from 5-hydroxyindole acetic acid toward increased (15-fold higher) formation of 5-hydroxytryptophol due to the inhibition of aldehyde dehydrogenase by ethanol-derived acetaldehyde. Urinary excretion of 5-hydroxytryptophol has also been shown to be markedly increased for several hours following intake of foods rich in serotonin, such as bananas. Wide interspecies variation has been reported in the metabolism serotonin to 5-hydroxytryptophol; 5-Hydroxytryptophol makes up 35\\\% of the excreted serotonin metabolites in the rat on average and 10 to 20\\\% in several other species. Human UDP-glucuronosyltransferase 1A6 (UGT1A6) plays a predominant role in the glucuronidation of 5-hydroxytryptophol by human liver microsomes. (PMID 15258112) [HMDB]. 5-Hydroxytryptophol is found in many foods, some of which are climbing bean, macadamia nut (m. tetraphylla), pepper (c. frutescens), and scarlet bean. 5-Hydroxytryptophol is a relatively minor metabolite of serotonin that is excreted primarily as the glucuronide conjugate in human urine. 5-Hydroxytryptophol becomes more important quantitatively during alcohol intoxication, when a shift in the metabolism of serotonin occurs from 5-hydroxyindole acetic acid toward increased (15-fold higher) formation of 5-hydroxytryptophol due to the inhibition of aldehyde dehydrogenase by ethanol-derived acetaldehyde. Urinary excretion of 5-hydroxytryptophol has also been shown to be markedly increased for several hours following intake of foods rich in serotonin, such as bananas. Wide interspecies variation has been reported in the metabolism serotonin to 5-hydroxytryptophol; 5-Hydroxytryptophol makes up 35\\\% of the excreted serotonin metabolites in the rat on average and 10 to 20\\\% in several other species. Human UDP-glucuronosyltransferase 1A6 (UGT1A6) plays a predominant role in the glucuronidation of 5-hydroxytryptophol by human liver microsomes. (PMID 15258112). 5-Hydroxytryptophol is a mammalian serotonin metabolite, acting as a marker of acute alcohol consumption.
Plantagonine
Plantagonine is found in fruits. Plantagonine is an alkaloid from Plantago psyllium (African plantain). Alkaloid from Plantago psyllium (African plantain). Plantagonine is found in fruits.
O-Ureidohomoserine
O-Ureidohomoserine is involved in the canavanine biosynthesis pathway. It can be generated from the enzymatic reduction of canavaninosuccinate or enzymatic oxidation of L-canaline. The canavanine biosynthesis pathway is analogous to the animal Krebs-Henseleit ornithine-urea cycle. Feeding experiments demonstrated the existence of enzyme activities of canaline-dependent ornithine carbamyltransferase, ureidohomoserine-dependent argininosuccinate synthetase, and canavaninosuccinate-dependent argininosuccinate lyase in Canavalia lineate. The canaline-dependent ornithine carbamyltransferase has been purified subsequently. The synthesis of ureidohomoserine is probably the rate-limiting step. Ureidohomoserine interacted with canaline or canavanine to affect synergistically L. minor growth by enhancing individual canavanine or canaline toxicity and increasing the additive growth reduction caused by canavanine plus canaline. The ornithineurea cycle amino acids effectively counteracted both the additive and synergistic growth-inhibiting properties of the canaline-urea cycle compounds.(PMID: 16659513). O-Ureidohomoserine is involved in the canavanine biosynthesis pathway. It can be generated from the enzymatic reduction of canavaninosuccinate or enzymatic oxidation of L-canaline.
1,2-Dehydrosalsolinol
1,2-dehydrosalsolinol(1-methyl-6,7-dihydroxy-3,4-dihydroisoquinolines) is formed through the decarboxylation of salsolinol-1-carboxylic acid (1-methyl-6,7-dihydroxy-1,2,3,4- tetrahydroisoquinoline-1-carboxylic acid), a novel endogenous catecholic adduct of dopamine and pyruvic acid, examined in nuclei-free homogenates of rat liver, whole brain, and kidney, as well as in buffer only. Liquid chromatographic analysis of incubations for varying times (30 min to 5 h) showed that the tetrahydroisoquinoline substrate decarboxylated oxidatively, forming the DSAL (PMID: 3369867). It is involved in Tyrosine Metabolism. 1,2-dehydrosalsolinol(1-methyl-6,7-dihydroxy-3,4-dihydroisoquinolines) is formed through the decarboxylation of salsolinol-1-carboxylic acid (1-methyl-6,7-dihydroxy-1,2,3,4- tetrahydroisoquinoline-1-carboxylic acid), a novel endogenous catecholic adduct of dopamine and pyruvic acid, examined in nuclei-free homogenates of rat liver, whole brain, and kidney, as well as in buffer only. Liquid chromatographic analysis of incubations for varying times (30 min to 5 h) showed that the tetrahydroisoquinoline substrate decarboxylated oxidatively, forming the DSAL (PMID: 3369867)
Polyvidone
Polyvidone is used as a diluent in colour additive mixtures for marking food; in coatings on fresh citrus fruits; as a clarifying agent for beer, wine and vinegar; as a tableting adjuvant. A cross-linked form of PVP is also used as a disintegrant (see also excipients) in pharmaceutical tablets. It is also known as cross-linked polyvinyl pyrrolidone, Polyvinyl Polypyrrolidone (PVPP), crospovidone, crospolividone. Basically, PVPP is a highly cross-linked version of PVP, which makes it insoluble in water but it still absorbs water and swells very rapidly and generate a swelling force. That is why it can be used a disintegrant in tablets. It is also used to bind impurities to remove them from solutions.It is also used as a fining to extract impurities (via agglomeration followed by filtration). Using the same principle it is used to remove polyphenols in beer production and thus clear beers with stable foam are produced. PVPP can be used as well as a drug taken as a tablet or suspension and it absorbs compounds (so called Endotoxins) causing diarrhoea. (Cf. bone char, charcoal.); As a food additive, PVP is a stabilizer and has E number E1201. PVPP is E1202. It is also used in the wine industry as a fining agent for white wine. Other references state that as polyvinyl pyrrolidone and its derivatives are fully from mineral synthetic origin. Therefore, its use in the production should not be a problem for vegans. PVP is soluble in water and other polar solvents. In water it has the useful property of Newtonian viscosity. When dry it is a light flaky powder, which readily absorbs up to 40\\% of its weight in atmospheric water. In solution, it has excellent wetting properties and readily forms films. This makes it good as a coating or an additive to coatings. PVP was first synthesized by Prof. Walter Reppe and a patent was filed in 1939 for one of the most interesting derivatives of acetylene chemistry. PVP was initially used as a blood plasma substitute and later in a wide variety of applications in medicine, pharmacy, cosmetics and industrial production. Polyvinylpolypyrrolidone (PVPP, crospovidone) is a highly cross-linked modification of PVP. Polyvinylpyrrolidone (PVP) is a water-soluble polymer made from the monomer N-vinylpyrrolidone:. It is used as a diluent in colour additive mixtures for marking food; in coatings on fresh citrus fruits; as a clarifying agent for beer, wine and vinegar; as a tableting adjuvant A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07B - Intestinal adsorbents D006401 - Hematologic Agents > D001802 - Blood Substitutes > D010952 - Plasma Substitutes D013501 - Surface-Active Agents > D007466 - Iodophors D001697 - Biomedical and Dental Materials D000890 - Anti-Infective Agents D010592 - Pharmaceutic Aids
2-Propenyl 2-aminobenzoate
2-Propenyl 2-aminobenzoate is a flavour ingredient. Flavour ingredient
1-Isothiocyanato-3-phenylpropane
1-Isothiocyanato-3-phenylpropane is found in brassicas. 1-Isothiocyanato-3-phenylpropane is isolated from horseradish. Isolated from horseradish. 1-Isothiocyanato-3-phenylpropane is found in horseradish and brassicas.
5-[2H-Pyrrol-4-(3H)-ylidenemethyl]-2-furanmethanol
Putative proline-derived Maillard product formed in model reactions with proline and ascorbic acid. Putative proline-derived Maillard product formed in model reactions with proline and ascorbic acid
N,N-dimethylindoliumolate
This compound belongs to the family of Indoles and Derivatives. These are compounds containing an indole moiety, which consists of pyrrole ring fused to benzene to form 2,3-benzopyrrole.
1,2,3,4-Tetrahydroisoquinoline-3-carboxylic acid
4-Aminophthalhydrazide
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents
Luminol
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
indole-3-glycol
Indole-3-glycol is a member of the class of compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-glycol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Indole-3-glycol can be found in a number of food items such as common wheat, common pea, japanese persimmon, and broccoli, which makes indole-3-glycol a potential biomarker for the consumption of these food products.
5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline
alpha-(4-Hydroxy-phenoxy)-isobutyronitril|alpha-(4-hydroxy-phenoxy)-isobutyronitrile
Di-Me ether,nitrile-(3,4-Dihydroxyphenyl)acetic acid
TTP6QLQ4M8
Arecaidine hydrochloride, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine hydrochloride is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine hydrochloride, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine hydrochloride is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine hydrochloride, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine hydrochloride is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2].
Guvacoline hydrochloride
Guvacoline hydrochloride, a pyridine alkaloid found in Areca triandra, can act as a weak full agonist of atrial and ileal muscarinic receptors[1][2]. Guvacoline hydrochloride, a pyridine alkaloid found in Areca triandra, can act as a weak full agonist of atrial and ileal muscarinic receptors[1][2]. Guvacoline hydrochloride, a pyridine alkaloid found in Areca triandra, can act as a weak full agonist of atrial and ileal muscarinic receptors[1][2].
5-Hydroxytryptophol
5-Hydroxytryptophol is a mammalian serotonin metabolite, acting as a marker of acute alcohol consumption.
N-Formylmethionine
A L-methionine derivative in which one of the hydrogens attached to the nitrogen is replaced by a formyl group. For-Met-OH is an endogenous metabolite.
3-[5-(Hydroxymethyl)furfurylidene]-1-pyrroline
5-AMINO-1H-BENZO[D]IMIDAZOLE-2-CARBOXYLIC ACID HYDROCHLORIDE
IMIDAZO[1,2-B]PYRIDAZINE-6-CARBOXYLIC ACID MONOHYDROCHLORIDE
2-METHYL-PYRAZOLO[1,5-A]PYRIMIDINE-3-CARBOXYLIC ACID
2H-INDOL-2-ONE, 1,3-DIHYDRO-5-HYDROXY-1,3-DIMETHYL-
D-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic acid
Methyl 1,2,3,6-Tetrahydropyridine-4-carboxylate Hydrochloride
Pyrido[3,4-d]pyrimidin-4(1H)-one, 5-methoxy- (9CI)
2-[[1-(methylamino)-2-nitroethenyl]amino]ethanethiol
(1R,2S)-Methyl 1-amino-2-vinylcyclopropanecarboxylate hydrochloride
Pyrido[2,3-b]pyrazine, 3-methyl-, 1,4-dioxide (9CI)
1-(3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)ethanone
1-METHYL-1H-IMIDAZO[4,5-C]PYRIDINE-6-CARBOXYLIC ACID
[1,2,4]Triazolo[1,5-a]pyridine-6-carboxylic acid methyl ester
2,2-Dimethyl-2,3-Dihydro-Benzo[E][1,3]Oxazin-4-One
2-Butanamine, 1,1,1-trifluoro-3-methyl-, hydrochloride (1:1)
Pyrido[2,3-b]pyrazine, 2-methyl-, 1,4-dioxide (9CI)
(1S,4R)-Methyl 4-aminocyclopent-2-enecarboxylate hydrochloride
(S)-1,2,3,4-TETRAHYDRO-ISOQUINOLINE-1-CARBOXYLIC ACID
(R)-1,2,3,4-Tetrahydroisoquinoline-1-carboxylic acid
3-Oxa-9-azabicyclo[3.3.1]nonan-7-one Hydrochloride
Pyrido[3,4-b]pyrazine-2,3-dione, 1,4-dihydro-4-methyl- (9CI)
Pyrido[2,3-b]pyrazine-2,3-dione, 1,4-dihydro-4-methyl- (9CI)
1-CYCLOPROPYL-2,4-DIOXO-1,2,3,4-TETRAHYDROPYRIMIDINE-5-CARBONITRILE
6-methylpyrazolo[1,5-a]pyrimidine-2-carboxylic acid(SALTDATA: FREE)
3-Methyl-3H-imidazo[4,5-b]pyridine-7-carboxylic acid
Pyrido[3,4-b]pyrazine-2,3-dione, 1,4-dihydro-1-methyl- (9CI)
2-MethyliMidazo[1,2-a]pyriMidine-3-carboxylic acid
(S)-1-(5-FLUOROPYRIMIDIN-2-YL)ETHANAMINE HYDROCHLORIDE
(1S,3R,4R)-2-azabicyclo[2.2.1]heptane-3-carboxylic acid hydrochloride
Pyrido[2,3-b]pyrazine-2,3-dione, 1,4-dihydro-6-methyl- (9CI)
B-(2,3-dihydro-1-oxo-1H-isoindol-4-yl)-Boronic acid
[3-(4-pyridinyl)-1,2,4-oxadiazol-5-yl]methanol(SALTDATA: FREE)
1,2,3-Oxadiazolium,5-hydroxy-3-(phenylmethyl)-, inner salt
C9H9N2O2+ (177.06639940000002)
(S)-1,2,3,4-TETRAHYDRO-QUINOLINE-2-CARBOXYLIC ACID
(R)-1,2,3,4-TETRAHYDRO-QUINOLINE-2-CARBOXYLIC ACID
Methyl [1,2,4]triazolo[1,5-a]pyridine-5-carboxylate
1-METHYL-1H-PYRAZOLO[3,4-B]PYRIDINE-3-CARBOXYLIC ACID
2-(5-ethyl-1,2,4-oxadiazol-3-yl)ethanamine,hydrochloride
C6H12ClN3O (177.06688519999997)
(3-propan-2-yl-1,2,4-oxadiazol-5-yl)methanamine
C6H12ClN3O (177.06688519999997)
Benzene, 1-[(1R)-1-isocyanatoethyl]-3-methoxy- (9CI)
Benzene, 1-[(1S)-1-isocyanatoethyl]-3-methoxy- (9CI)
Pyrrolo[2,1-f][1,2,4]triazine-6-carboxaldehyde, 1,4-dihydro-5-methyl-4-oxo- (9CI)
3-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid
1-(2-methylpyridin-4-yl)cyclopropane-1-carboxylic acid
2-Methylpyrazolo[1,5-a]pyrimidine-6-carboxylic acid
Pyrido[2,3-b]pyrazine-2,3-dione, 1,4-dihydro-8-methyl- (9CI)
6-methylpyrazolo[1,5-a]pyrimidine-3-carboxylic acid
3H-Pyrazolo[3,4-c]pyridine-5-carboxylic acid, Methyl ester
2,3-dihydro-1h-indole-2-carboxylic acid methyl ester
3-Amino-1H-pyrrolo[2,3-b]pyridine-2-carboxylic acid
3a,4,7,7a-tetrahydro-4,7-ethano-1H-isoindole-1,3(2H)-dione
1-(6-HYDROXYPYRAZOLO[1,5-B]PYRIDAZIN-3-YL)ETHANONE
Pyrido[2,3-b]pyrazine-2,3-dione, 1,4-dihydro-7-methyl- (9CI)
4-methyl-2,3-dihydro-1,4-benzoxazine-7-carbaldehyde
Pyrido[2,3-b]pyrazine-2,3-dione, 1,4-dihydro-1-methyl- (9CI)
(4R,5S)-(+)-4-Methyl-5-phenyl-2-oxazolidinone
D000890 - Anti-Infective Agents > D023303 - Oxazolidinones
2-Methyl-2,3,4,5-tetrahydro-1,5-benzoxazepin-4-one
L-dihomomethionine
An L-polyhomomethionine in which there are four methylene groups between the alpha-carbon and sulfur atoms.
Salumycin
A member of the class of indazoles that is 4,7-dihydro-2H-indazole substituted by oxo groups at positions 4 and 7, and a methylamino group at position 5. It is produced by Streptomyces albus J1074 mutant strain.
(3R)-3-[[carboxy(hydroxy)methyl]amino]butanoic acid
(2S,4S)-4-amino-2-hydroxy-2-methylpentanedioic acid
L-dihomomethionine zwitterion
An L-polyhomomethionine zwitterion obtained by transfer of a proton from the carboxy to the amino group of L-dihomomethionine; major species at pH 7.3.
4-hydroxy-4-methyl-L-glutamic acid
A 4-hydroxy-4-methylglutamic acid that has L-configuration.
Soothe
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07B - Intestinal adsorbents D006401 - Hematologic Agents > D001802 - Blood Substitutes > D010952 - Plasma Substitutes D013501 - Surface-Active Agents > D007466 - Iodophors D001697 - Biomedical and Dental Materials D000890 - Anti-Infective Agents D010592 - Pharmaceutic Aids
2-amino-4-{[(C-hydroxycarbonimidoyl)amino]oxy}butanoic acid
5-[2H-Pyrrol-4-(3H)-ylidenemethyl]-2-furanmethanol
(4S)-4-hydroxy-4-methyl-L-glutamic acid
A 4-hydroxy-4-methyl-L-glutamic acid that has S-configuration.