Exact Mass: 173.9753572
Exact Mass Matches: 173.9753572
Found 408 metabolites which its exact mass value is equals to given mass value 173.9753572
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Aconitate [cis or trans]
cis-Aconitic acid is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. The enzyme aconitase (aconitate hydratase; EC 4.2.1.3) catalyses the stereo-specific isomerization of citrate to isocitrate via cis-aconitate in the tricarboxylic acid cycle. Present in apple fruits, maple syrup and passion fruit juice cis-Aconitic acid, also known as (Z)-aconitic acid, plays several important biological roles: Intermediate in the Citric Acid Cycle: cis-Aconitic acid is an intermediate in the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle or citric acid cycle. It is formed from citrate by the enzyme aconitase and is rapidly converted into isocitrate, another key intermediate in the cycle. The TCA cycle is central to cellular respiration, generating energy-rich molecules like NADH and FADH2. Regulation of Aconitase Activity: The conversion of citrate to cis-aconitate and then to isocitrate by aconitase is an important regulatory step in the TCA cycle. This conversion helps in maintaining the balance of the cycle and is influenced by factors like the energy status of the cell. Role in Cholesterol Synthesis: cis-Aconitic acid is also involved in the synthesis of cholesterol. It serves as a precursor for the synthesis of mevalonate, a key intermediate in the cholesterol biosynthesis pathway. Potential Involvement in Disease: Altered metabolism or accumulation of cis-aconitic acid has been associated with certain diseases, including neurodegenerative disorders and cancer. Its role in these conditions is an area of ongoing research. Plant Growth and Development: In plants, cis-aconitic acid has been found to play a role in growth and development, including seed germination and leaf senescence. In summary, cis-aconitic acid is a crucial intermediate in the TCA cycle, impacting energy production and various metabolic pathways in cells. Its role extends to cholesterol synthesis and potentially to various disease processes, highlighting its importance in cellular metabolism and physiology. cis-Aconitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=585-84-2 (retrieved 2024-07-01) (CAS RN: 585-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
4-Sulfophenol
4-Hydroxybenzenesulfonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-67-9 (retrieved 2024-08-06) (CAS RN: 98-67-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Phenyl dihydrogen phosphate
CONFIDENCE standard compound; INTERNAL_ID 2498 KEIO_ID P033
Dehydroascorbic acid
Dehydroascorbic acid (DHA) is an oxidized form of ascorbic acid (vitamin C). It is actively imported into the endoplasmic reticulum of cells via glucose transporters. It is trapped therein by reduction back to ascorbate by glutathione and other thiols. Dehydroascorbic acid, also known as L-dehydroascorbate or DHAA, belongs to the class of organic compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Dehydroascorbic acid has similar biological activity as ascorbic acid. Currently dehydroascorbic acid is an experimental drug with no known approved indications. Dehydroascorbic acid may be a unique E. coli metabolite. Norepinephrine and dehydroascorbic acid can be biosynthesized from dopamine and ascorbic acid through its interaction with the enzyme dopamine beta-hydroxylase. In humans, dehydroascorbic acid is involved in the metabolic disorder called tyrosinemia type I. Concerning dehydroascorbic acids antiviral effect against herpes simplex virus type 1, it is suggested that dehydroascorbic acid acts after replication of viral DNA and prevents the assembly of progeny virus particles. This is important because one study has found that after an ischemic stroke, dehydroascorbic acid has neuroprotective effects by reducing infarct volume, neurological deficits, and mortality. This reaction is reversible, but dehydroascorbic acid can instead undergo irreversible hydrolysis to 2,3-diketogulonic acid. In addition, unlike ascorbic Dehydroascorbic acid acid can cross the blood brain barrier and is then converted to ascorbic acid to enable retention in the brain. Dehydroascorbic acid is made from the oxidation of ascorbic acid. The exact mechanism of action is still being investigated, but some have been elucidated. Both compounds have been shown to have antiviral effects against herpes simplex virus type 1, influenza virus type A and poliovirus type 1 with dehydroascorbic acid having the stronger effect. In the body, both dehydroascorbic acid and ascorbic acid have similar biological activity as antivirals but dehydroascorbic acid also has neuroprotective effects. Even though dehydroascorbic acid and ascorbic acid have similar effects, their mechanism of action seems to be different. Dehydroascorbic acid, also known as dehydroascorbate, is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Dehydroascorbic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Dehydroascorbic acid can be found in a number of food items such as white cabbage, gram bean, mexican groundcherry, and common pea, which makes dehydroascorbic acid a potential biomarker for the consumption of these food products. Dehydroascorbic acid may be a unique E.coli metabolite. Dehydroascorbic acid (DHA) is an oxidized form of ascorbic acid (vitamin C). It is actively imported into the endoplasmic reticulum of cells via glucose transporters. It is trapped therein by reduction back to ascorbate by glutathione and other thiols. The (free) chemical radical semidehydroascorbic acid (SDA) also belongs to the group of oxidized ascorbic acids . D018977 - Micronutrients > D014815 - Vitamins Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke.
Phenol sulphate
Phenol sulphate, also known as phenylsulfate or aryl sulphate, belongs to the class of organic compounds known as phenylsulfates. Phenylsulfates are compounds containing a sulfate group conjugated to a phenyl group. In normal humans, phenol sulphate is primarily a gut-derived metabolite that arises from the activity of the bacterial enzyme tyrosine phenol-lyase, which is responsible for the synthesis of phenol from dietary tyrosine (PMID: 31015435). Phenol sulphate can also arise from the consumption of phenol or from phenol poisoning (PMID: 473790). Phenol sulphate is produced from the conjugation of phenol with sulphate in the liver. In particular, phenol sulphate can be biosynthesized from phenol and phosphoadenosine phosphosulfate through the action of the enzyme sulfotransferase 1A1 in the liver. Phenol sulphate can be found in most mammals (mice, rats, sheep, dogs, humans) and likely most animals. Phenol sulphate is a uremic toxin (PMID: 30068866). It is a protein-bound uremic solute that induces reactive oxygen species (ROS) production and decreases glutathione levels, rendering cells vulnerable to oxidative stress (PMID: 29474405). In experimental models of diabetes, phenol sulphate administration has been shown to induce albuminuria and podocyte damage. In a diabetic patient cohort, phenol sulphate levels were found to significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria (PMID: 31015435).
cis-2-Chloro-4-carboxymethylenebut-2-en-1,4-olide
This compound belongs to the family of Butenolides. These are dihydrofurans with a carbonyk group at the C2 carbon atom.
Phenylmethylsulfonyl fluoride
Component of corn gluten (Zea mays). obtained comly. by extraction of corn gluten with alkaline aq. 2-propanol. Moisture control agent. It is used in edible coatings for nuts and other foods and as a binder in confectionery glazes. GRAS approved D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
trans-Aconitic acid
trans-Aconitic acid, also known as trans-aconitate or (e)-aconitic acid, belongs to the class of organic compounds known as tricarboxylic acids and derivatives. These are carboxylic acids containing exactly three carboxyl groups. trans-Aconitic acid exists in all living species, ranging from bacteria to humans. trans-Aconitic acid is a dry, musty, and nut tasting compound. Outside of the human body, trans-aconitic acid has been detected, but not quantified in several different foods, such as garden tomato fruits, root vegetables, soy beans, and rices. trans-Aconitic acid is normally present in human urine, and it has been suggested that is present in larger amounts with Reyes syndrome and organic aciduria. trans-Aconitic acid in the urine is a biomarker for the consumption of soy products. trans-Aconitic acid is a substrate of enzyme trans-Aconitic acid 2-methyltransferase (EC2.1.1.144). Isolated from Asarum europaeum, from cane-sugar molasses, roasted chicory root, roasted malt barley, passion fruit, sorghum root and sugar beet. Flavouring agent used in fruit flavours and alcoholic beverages. Aconitic acid is an organic acid. The two isomers are cis-aconitic acid and trans-aconitic acid. The conjugate base of cis-aconitic acid, cis-aconitate is an intermediate in the isomerisation of citrate to isocitrate in the citric acid cycle. It is acted upon by aconitase. Trans-aconitate in the urine is a biomarker for the consumption of soy products. (E)-Aconitic acid is found in many foods, some of which are cereals and cereal products, rice, garden tomato (variety), and root vegetables. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A117 trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase. trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase.
Brassilexin
Isolated from leaves of brown mustard (Brassica juncea) (Cruciferae). Brassilexin is found in many foods, some of which are cauliflower, chinese mustard, herbs and spices, and chinese cabbage. Brassilexin is found in brassicas. Brassilexin is isolated from leaves of brown mustard (Brassica juncea) (Cruciferae
2,5-Dimethyl-3-(methyldithio)furan
2,5-Dimethyl-3-(methyldithio)furan is found in coffee and coffee products. 2,5-Dimethyl-3-(methyldithio)furan is a component of coffee aroma. Component of coffee aroma. 2,5-Dimethyl-3-(methyldithio)furan is found in coffee and coffee products.
Dehydroascorbide(1-)
Dehydroascorbide(1-) is classified as a member of the Furanones. Furanones are compounds containing a furan ring bearing a ketone group. Dehydroascorbide(1-) is considered to be soluble (in water) and acidic COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
5-Fluoroorotic acid
C5H3FN2O4 (174.00768499999998)
Magnesium hydrogen phosphate trihydrate
It is used as a food additive
cis-Aconitic acid
(Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
Dehydroascorbate
Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke.
phosphoric acid-(2-chloro-ethyl ester)-methyl ester|Phosphorsaeure-(2-chlor-aethylester)-methylester
cis-Aconitic acid
The cis-isomer of aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
trans-Aconitic acid
The trans-isomer of aconitic acid. trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase. trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase.
Dehydroascorbic acid
D018977 - Micronutrients > D014815 - Vitamins Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke.
Aconitic acid
Aconitic acid is an organic acid. The two isomers are cis-aconitic acid and trans-aconitic acid. The conjugate base of cis-aconitic acid, cis-aconitate is an intermediate in the isomerisation of citrate to isocitrate in the citric acid cycle. It is acted upon by aconitase. Aconitic acid is found in many foods, some of which are oat, barley, red beetroot, and sunflower. Annotation level-2
Aconitic acid (not validated, isomer of 273)
Annotation level-2
Aconitic acid (not validated, isomer of 271)
Annotation level-2
3-chloro-2-hydroxypropanesulphonic acid
CONFIDENCE standard compound; INTERNAL_ID 309; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 685; ORIGINAL_PRECURSOR_SCAN_NO 683 CONFIDENCE standard compound; INTERNAL_ID 309; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 687; ORIGINAL_PRECURSOR_SCAN_NO 683 CONFIDENCE standard compound; INTERNAL_ID 309; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 696; ORIGINAL_PRECURSOR_SCAN_NO 693 CONFIDENCE standard compound; INTERNAL_ID 309; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 681; ORIGINAL_PRECURSOR_SCAN_NO 679 CONFIDENCE standard compound; INTERNAL_ID 309; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 693; ORIGINAL_PRECURSOR_SCAN_NO 691 CONFIDENCE standard compound; INTERNAL_ID 309; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 678; ORIGINAL_PRECURSOR_SCAN_NO 677
Aconitate
trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase. trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase.
1H-Imidazole-4-carboxylic acid, 5-(chlorocarbonyl)- (9CI)
3,6-Difluoro-pyrazine-2-carboxylic acid Methyl ester
4-bromo-1h-pyrazole-5-carbaldehyde
C4H3BrN2O (173.94287279999998)
3-Pyridinesulfonamide,6-hydroxy-(7CI)
C5H6N2O3S (174.00991259999998)
5-CHLORO-1,3-DIMETHYL-1H-PYRAZOLE-4-CARBOXYLIC ACID
3-Chloro-4-fluorophenylboronic acid
C6H5BClFO2 (174.00551420000002)
1H-PYRAZOLE-4-CARBOXYLICACID, 3-CHLORO-1-METHYL-, METHYL ESTER
(2-Chloro-6-fluorophenyl)boronic acid
C6H5BClFO2 (174.00551420000002)
5-Thiazoleacetic acid,2-amino-4,5-dihydro-4-oxo-
C5H6N2O3S (174.00991259999998)
5-bromo-1H-pyrazole-3-carbaldehyde
C4H3BrN2O (173.94287279999998)
1H-Imidazole-4-propanoicacid, a-chloro-, (S)- (9CI)
4-(Aminomethyl)thiophene-2-carbonitrile hydrochloride
1-Cyclopentene-1-carboxylic acid, 2-(chlorocarbonyl)- (9CI)
1H-Imidazole-4-carboxylic acid,5-(chloromethyl)-2-methyl-
5-(Aminomethyl)thiophene-2-carbonitrile hydrochloride
2-Chloro-4-fluorophenylboronic acid
C6H5BClFO2 (174.00551420000002)
(5-Chloro-2-fluorophenyl)boronic acid
C6H5BClFO2 (174.00551420000002)
3-Chloro-5-fluorophenylboronic acid
C6H5BClFO2 (174.00551420000002)
4-CHLORO-2,5-DIMETHYL-2H-PYRAZOLE-3- CARBOXYLIC ACID
(3-Chloro-2-fluorophenyl)boronic acid
C6H5BClFO2 (174.00551420000002)
5-bromo-1H-imidazole-4-carbaldehyde
C4H3BrN2O (173.94287279999998)
1H-Cyclopenta[5,6]thiopyrano[2,3-d]imidazole (9CI)
2-Chloro-3-fluorophenylboronic acid
C6H5BClFO2 (174.00551420000002)
p-toluenesulfonyl fluoride
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
tert-Butyl chromate solution in carbon tetrachloride
5-CHLORO-6-OXO-1,6-DIHYDROPYRIMIDINE-4-CARBOXYLIC ACID
Tetracyclo[3.3.0.02,8.03,6]octane, 4,4-dichloro- (9CI)
Allyl 2-chloro-1,1,2-trifluoroethyl ether
C5H6ClF3O (174.00592519999998)
(2-AMINO-3-PYRIDINYL)-[1,1-BIPHENYL]-4-YL-METHANONE
C5H6N2O3S (174.00991259999998)
Ytterbium
Yb (173.938873)
Ytterbium, also known as 70yb or yterbio, is a member of the class of compounds known as homogeneous lanthanide compounds. Homogeneous lanthanide compounds are inorganic compounds containing only metal atoms, with the largest atom being a lanthanide atom. Ytterbium can be found in a number of food items such as corn, almond, white cabbage, and pistachio, which makes ytterbium a potential biomarker for the consumption of these food products. In 1878, the Swiss chemist Jean Charles Galissard de Marignac separated from the rare earth "erbia" another independent component, which he called "ytterbia", for Ytterby, the village in Sweden near where he found the new component of erbium. He suspected that ytterbia was a compound of a new element that he called "ytterbium" (in total, four elements were named after the village, the others being yttrium, terbium and erbium). In 1907, the new earth "lutecia" was separated from ytterbia, from which the element "lutecium" (now lutetium) was extracted by Georges Urbain, Carl Auer von Welsbach, and Charles James. After some discussion, Marignacs name "ytterbium" was retained. A relatively pure sample of the metal was not obtained until 1953. At present, ytterbium is mainly used as a dopant of stainless steel or active laser media, and less often as a gamma ray source .
4-Chloro-3-fluorobenzeneboronic acid
C6H5BClFO2 (174.00551420000002)
DL-Aspartic acid hemimagnesium salt
C4H8MgNO5+ (174.02529579999998)
2,4-Dichloro-5-fluoro-3-pyidinecarboxylic acid
C5HClFNCO2H (173.97580940000003)
4-Chloro-2-fluorophenylboronic acid
C6H5BClFO2 (174.00551420000002)
Bicyclo[3.1.0]hexane, 3-(bromomethyl)-, cis- (8CI)
2-IMINO-4-OXO-[1,3]THIAZINANE-6-CARBOXYLIC ACID
C5H6N2O3S (174.00991259999998)
(2-Chloro-5-fluorophenyl)boronic acid
C6H5BClFO2 (174.00551420000002)
Methyl 3-chloro-1-Methyl-1H-pyrazole-5-carboxylate
(5R)-5-[(1R)-1,2-dihydroxyethyl]oxolane-2,3,4-trione
cis-Aconitate
Cis-aconitic acid, also known as (Z)-1-propene-1,2,3-tricarboxylic acid or cis-aconitate, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Cis-aconitic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Cis-aconitic acid is a very mild, musty, and nutty tasting compound and can be found in a number of food items such as red beetroot, barley, corn, and oat, which makes cis-aconitic acid a potential biomarker for the consumption of these food products. Cis-aconitic acid can be found primarily in most biofluids, including urine, saliva, sweat, and breast milk, as well as in human prostate tissue. Cis-aconitic acid exists in all living species, ranging from bacteria to humans. In humans, cis-aconitic acid is involved in several metabolic pathways, some of which include the oncogenic action of succinate, congenital lactic acidosis, the oncogenic action of fumarate, and the oncogenic action of 2-hydroxyglutarate. Cis-aconitic acid is also involved in several metabolic disorders, some of which include pyruvate dehydrogenase deficiency (E3), glutaminolysis and cancer, mitochondrial complex II deficiency, and the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria. Moreover, cis-aconitic acid is found to be associated with schizophrenia and lung Cancer. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
(2Z,4Z)-2-amino-5-chloro-6-oxohexa-2,4-dienoate
C6H5ClNO3- (173.99579500000002)
(5E)-3-imino-4-sulfanyl-5-(sulfanylmethylidene)pyrrolidin-2-one
Hydroxy-[[hydroxy(oxido)phosphoryl]methyl]phosphinate
CH4O6P2-2 (173.94831440000002)
(2E,4E)-2-amino-5-chloro-6-oxohexa-2,4-dienoate
C6H5ClNO3- (173.99579500000002)
5-[(1S)-1,2-dihydroxyethyl]-4-hydroxyfuran-2,3-dione
Phenylmethylsulfonyl fluoride
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
Phenyl phosphate
An aryl phosphate resulting from the mono-esterification of phosphoric acid with phenol.
Phenylsulfate
An aryl sulfate that is phenol bearing an O-sulfo substituent.
trans-2-Chloro-4-carboxymethylenebut-2-en-1,4-olide
monodehydro-L-ascorbate(1-)
The conjugate base of monodehydro-L-ascorbic acid arising from deprotonation of the 4-hydroxy group; major species at pH 7.3.
3-hydroxybenzenesulfonic acid
An arenesulfonic acid that is phenol substituted by a sulfo group at C-3.
2-hydroxybenzenesulfonic acid
An arenesulfonic acid that is phenol substituted by a sulfo group at C-2.