Exact Mass: 162.079309
Exact Mass Matches: 162.079309
Found 500 metabolites which its exact mass value is equals to given mass value 162.079309
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
(E)-methyl ester 3-phenyl-2-propenoic acid
Flavouring compound [Flavornet] Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Safrole
Safrole, also known as shikimol, is a colorless or slightly yellow oily liquid. It is typically extracted from the root-bark or the fruit of sassafras plants in the form of sassafras oil, or synthesized from other related methylenedioxy compounds. It is the principal component of brown camphor oil, and is found in small amounts in a wide variety of plants, where it functions as a natural pesticide. Safrole is found in anise and nutmeg. Banned by FDA for use in food. Safrole is formerly used as a food flavour It is a precursor in the synthesis of the insecticide synergist piperonyl butoxide and the recreational drug MDMA ("Ecstacy"). Safrole is a natural plant constituent, found in oil of sassafras and certain other essential oils. It is a member of the methylenedioxybenzene group of compounds, many of which (e.g. piperonyl butoxide) are extensively used as insecticide synergists. Safrole is a major source of human exposure to safrole is through consumption of spices, such as nutmeg, cinnamon and black pepper, in which safrole is a constituent. Safrole is also present in root beer, and has been used as an additive in chewing gum, toothpaste, soaps and certain pharmaceutical preparations. Safrole is a weak hepatocarcinogen and it is a matter of considerable interest whether the ally1 moiety or the methylenedioxy group, or both, are involved in the mechanism of its carcinogenesis. Safrole is extensively metabolized, giving rise to a large number of metabolites. Metabolism involves essentially two major routes, oxidation of the ally1 side chain, and oxidation of the methylenedioxy group with subsequent cleavage to form the catechol. Safrole undergoes oxidation of the allylic group to yield the 2, 3-epoxide (safrole epoxide). The dihydrodiol is one of the metabolites of safrole, and presumably arises from the hydration of the 2, 3-epoxide. The principal route of metabolism of safrole is through cleavage of the methylenedioxy group, the major metabolites being allylcatechol and its isomer, propenylcatechol. Eugenol and its isomer I-methoxy- 2-hydroxy-4-allylbenzene have been detected as minor metabolites in rat, mouse and human (PMID:6719936). The Ocotea cymbarum oil made of the Ocotea pretiosa, a plant growing in Brazil, and sassafras oil made of Sassafras albidum, a tree growing in eastern North America, are the main natural sources for safrole. It has a characteristic "candy-shop" aroma Occurs in nutmeg. Banned by FDA for use in food. Formerly used as a food flavour
3-(4-Methoxyphenyl)-2-propenal
Isolated from oil of tarragon (Artemisia dracunculus) and other oils. Flavouring ingredient. 3-(4-Methoxyphenyl)-2-propenal is found in many foods, some of which are tarragon, star anise, potato, and sweet basil. 3-(4-Methoxyphenyl)-2-propenal is found in potato. 3-(4-Methoxyphenyl)-2-propenal is isolated from oil of tarragon (Artemisia dracunculus) and other oils. 3-(4-Methoxyphenyl)-2-propenal is a flavouring ingredien 4-Methoxycinnamaldehyde (p-Methoxycinnamaldehyde), an active constituent of Agastache rugosa, exhibits cytoprotective activity against respiratory syncytial virus (RSV) in human larynx carcinoma cell line. 4-Methoxycinnamaldehyde effectively inhibits cytopathic effect of RSV with an estimated IC50 of 0.055 μg/mL[1]. 4-Methoxycinnamaldehyde (p-Methoxycinnamaldehyde), an active constituent of Agastache rugosa, exhibits cytoprotective activity against respiratory syncytial virus (RSV) in human larynx carcinoma cell line. 4-Methoxycinnamaldehyde effectively inhibits cytopathic effect of RSV with an estimated IC50 of 0.055 μg/mL[1].
1,2-Dihydronaphthalene-1,2-diol
A member of the class of naphthalenediols that is 1,2-dihydronaphthalene substituted by hydroxy groups at positions 1 and 2 respectively.
1-EBIO
D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators
1,2-Dihydronaphthalene-1,2-diol
This compound belongs to the family of Naphthalenes. These are compounds containing a naphthalene moiety, which consists of two fused benzene rings.
(1S,2S)-1,2-dihydronaphthalene-1,2-diol
The (1S,2S)-isomer of trans-1,2-dihydronaphthalene-1,2-diol.
Methyl_cinnamate
Methyl cinnamate is a methyl ester resulting from the formal condensation of methyl cinnamic acid with methanol. It is found naturally in the essential oils of Alpinia and Basil leaf oil, and widely used in the flavor and perfume industries. It has a role as a flavouring agent, a fragrance, an insect attractant, a volatile oil component and an anti-inflammatory agent. It is a methyl ester and an alkyl cinnamate. Methyl cinnamate is a natural product found in Melaleuca viridiflora, Alpinia formosana, and other organisms with data available. Methyl cinnamate is a metabolite found in or produced by Saccharomyces cerevisiae. The E (trans) isomer of methyl cinnamate. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Cassiastearoptene
Cassiastearoptene, also known as 2-methoxy cinnamaldehyde, is a member of the class of compounds known as cinnamaldehydes. Cinnamaldehydes are organic aromatic compounds containing a cinnamlaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal. Cassiastearoptene is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cassiastearoptene is a sweet, cassia, and cinnamon tasting compound found in ceylon cinnamon, chinese cinnamon, herbs and spices, and sweet basil, which makes cassiastearoptene a potential biomarker for the consumption of these food products. Cassiastearoptene is a member of cinnamaldehydes. 2-Methoxycinnamaldehyde is a natural product found in Illicium verum and Cinnamomum verum with data available. See also: Cinnamon (part of); Chinese Cinnamon (part of); Cinnamomum cassia twig (part of). Cassiastearoptene is found in ceylan cinnamon. Cassiastearoptene is a flavouring ingredient. It is isolated from oils of Cinnamomum cassia (Chinese cinnamon). 2-Methoxycinnamaldehyde (o-Methoxycinnamaldehyde) is a natural compound of Cinnamomum cassia, with antitumor activity[1][2][3]. 2-Methoxycinnamaldehyde inhibits proliferation and induces apoptosis by mitochondrial membrane potential (ΔΨm) loss, activation of both caspase-3 and caspase-9[2]. 2-Methoxycinnamaldehyde effectively inhibits platelet-derived growth factor (PDGF)-induced HASMC migration[3]. 2-Methoxycinnamaldehyde (o-Methoxycinnamaldehyde) is a natural compound of Cinnamomum cassia, with antitumor activity[1][2][3]. 2-Methoxycinnamaldehyde inhibits proliferation and induces apoptosis by mitochondrial membrane potential (ΔΨm) loss, activation of both caspase-3 and caspase-9[2]. 2-Methoxycinnamaldehyde effectively inhibits platelet-derived growth factor (PDGF)-induced HASMC migration[3].
Methyl cinnamate
Methyl cinnamate is found in ceylan cinnamon. Methyl cinnamate occurs in essential oils e.g. from Ocimum and Alpinia species Also present in various fruits, e.g. guava, feijoa, strawberry. Methyl cinnamate is a flavouring agent.Methyl cinnamate is the methyl ester of cinnamic acid and is a white or transparent solid with a strong, aromatic odor. It is found naturally in a variety of plants, including in fruits, like strawberry, and some culinary spices, such as Sichuan pepper and some varieties of basil. Eucalyptus olida has the highest known concentrations of methyl cinnamate (98\\\\\%) with a 2-6\\\\\% fresh weight yield in the leaf and twigs. Occurs in essential oils e.g. from Ocimum and Alpinia subspecies Also present in various fruits, e.g. guava, feijoa, strawberry. Flavouring agent Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
L-4-Hydroxyglutamine
L-4-Hydroxyglutamine is found in root vegetables. L-4-Hydroxyglutamine is present in Hemerocallis fulva (day lily Present in Hemerocallis fulva (day lily). L-4-Hydroxyglutamine is found in root vegetables.
Norcotinine
Norcotinine is a metabolite of nicotine. It has been detected in smokers urine (about 1\\% of total nicotine and metabolites). Two pathways for its formation are possible, demethylation of cotinine or oxidative metabolism of nornicotine. Animal and human studies have demonstrated the existence of both of these pathways. [HMDB] Norcotinine is a metabolite of nicotine. It has been detected in smokers urine (about 1\\% of total nicotine and metabolites). Two pathways for its formation are possible, demethylation of cotinine or oxidative metabolism of nornicotine. Animal and human studies have demonstrated the existence of both of these pathways.
3-Mercapto-3-methyl-1-butyl acetate
3-Mercapto-3-methyl-1-butyl acetate is found in fruits. 3-Mercapto-3-methyl-1-butyl acetate is present in passion fruit volatiles. Present in passion fruit volatiles. 3-Mercapto-3-methyl-1-butyl acetate is found in fruits.
Serylglycine
Serylglycine is a dipeptide composed of serine and glycine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.
Glycyl-Serine
Glycyl-Serine is a dipeptide composed of glycine and serine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite.
4,5-Dihydro-1-benzoxepin-3(2H)-one
Compound 4,5-Dihydro-1-benzoxepin-3(2H)-one and derivations are flavorants with watermelon like taste and odou Compd. and derivs. are flavorants with watermelon like taste and odour
Dimethicone
Dimethicone, also known as ((CH3)3Si)2O or HMDSO, belongs to the class of organic compounds known as disiloxanes. These are organosilicon compounds with the general formula H[Si](R)(R)O[Si](H)(R)R (R= organyl, R-R= H or organyl). Dimethicone is found, on average, in the highest concentration within a few different foods, such as carobs, lettuces, and common salsifies. Dimethicone has also been detected, but not quantified, in several different foods, such as black walnuts, sweet bay, asparagus, ceylon cinnamons, and hyssops. This could make dimethicone a potential biomarker for the consumption of these foods. An organosiloxane consisting of two trimethylsilyl groups covalently bound to a central oxygen. It is used in foods as a defoaming agent. Dimethicone is found in many foods, some of which are american pokeweed, hyssop, tea, and sweet bay. D001697 - Biomedical and Dental Materials
Ethyl 4-(methylthio)butyrate
Ethyl 4-(methylthio)butyrate is a flavouring agent. Flavouring agent
Ethyl 3-(methylthio)butanoate
Ethyl 3-(methylthio)butanoate is used in food flavouring of baked goods etc.
3,6-Dimethyl-2(3H)-benzofuranone
(±)-3,6-Dimethyl-2(3H)-benzofuranone is a flavouring agent for candies etc. It is used as a food additive
Cinnamyl formate
Cinnamyl formate is a flavouring ingredient. Flavouring ingredient
Allyl benzoate
Allyl benzoate is used in food flavouring. It is used in food flavouring
2-(1-Ethoxyethoxy)propanoic acid
2-(1-Ethoxyethoxy)propanoic acid belongs to the family of Carboxylic Acids. These are compounds containing a carboxylic acid group with the formula -C(=O)OH.
Aminorex
C78272 - Agent Affecting Nervous System > C29728 - Anorexiant
1,3-Diacetylbenzene
1,3-diacetylbenzene is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. 1,3-diacetylbenzene is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 1,3-diacetylbenzene can be found in tea, which makes 1,3-diacetylbenzene a potential biomarker for the consumption of this food product.
1,4-Diacetylbenzene
1,4-diacetylbenzene is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. 1,4-diacetylbenzene is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 1,4-diacetylbenzene can be found in tea, which makes 1,4-diacetylbenzene a potential biomarker for the consumption of this food product.
(+/-)-Ethyl 3-mercapto-2-methylbutanoate
It is used as a food additive .
Tox21_113911
5-hydroxy-1-tetralone can be used as a fluorescent labeling reagent for the determination of glycosphingolipid from biological samples[1].
(+)-2,3-Dihydro-6-methyl-3-methylene-2-benzofuranol
(R)-(E)-2-(2,4-Hexadiynylidene)tetrahydro-3-furanol
2-hydroxy-2-(1-hydroxyethyl)-3-methylbutanoic acid
(4Z)-lachnophyllumlactone|(Z)-form-Lachophllum lactone|Lachnophyllum lactone|trans-Lachnophyllumlacton
2,6-Dideoxy-3-C-methl-arabino-hdexose-D-Pyranose-form|2,6-Dideoxy-3-C-methyl-ribo-hexose-D-form|2,6-Dideoxy-3-C-methyl-xylo-hexose,9CI-L-form|Mycarose|Olivomycose.
4,6,8-Decatriyne-1,2-diol,9CI|4,6,8-Decatriyne-1,2-diol,9CI-(-)-form|Deca-4,6,8-triin-1,2-diol|Deca-4,6,8-triyn-1,2-diol|deca-4,6,8-triyne-1,2-diol
(3Xi,4Ra)-deca-4,5-diene-7,9-diyne-1,3-diol|Deca-4,5-dien-7,9-diin-1,3-diol
isosafrole
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.089
4-Methylcinnamic acid
CONFIDENCE standard compound; INTERNAL_ID 111
Methylcinnamate
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1066 Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Methyl cinnamate
A methyl ester resulting from the formal condensation of methyl cinnamic acid with methanol. It is found naturally in the essential oils of Alpinia and Basil leaf oil, and widely used in the flavor and perfume industries. Annotation level-3
safrole
A member of the class of benzodioxoles that is 1,3-benzodioxole which is substituted by an allyl group at position 5. It is found in several plants, including black pepper, cinnamon and nutmeg, and is present in several essential oils, notably that of sassafras. It has insecticidal properties and has been used as a topical antiseptic. Although not thought to pose a significant carcinogenic risk to humans, findings of weak carcinogenicity in rats have resulted in the banning of its (previously widespread) use in perfumes and soaps, and as a food additive.
Gly-ser
A dipeptide composed of glycine and L-serine joined by a peptide linkage.
Ser-gly
A dipeptide formed from L-serine and glycine residues.
&beta
2-Methoxycinnamaldehyde (o-Methoxycinnamaldehyde) is a natural compound of Cinnamomum cassia, with antitumor activity[1][2][3]. 2-Methoxycinnamaldehyde inhibits proliferation and induces apoptosis by mitochondrial membrane potential (ΔΨm) loss, activation of both caspase-3 and caspase-9[2]. 2-Methoxycinnamaldehyde effectively inhibits platelet-derived growth factor (PDGF)-induced HASMC migration[3]. 2-Methoxycinnamaldehyde (o-Methoxycinnamaldehyde) is a natural compound of Cinnamomum cassia, with antitumor activity[1][2][3]. 2-Methoxycinnamaldehyde inhibits proliferation and induces apoptosis by mitochondrial membrane potential (ΔΨm) loss, activation of both caspase-3 and caspase-9[2]. 2-Methoxycinnamaldehyde effectively inhibits platelet-derived growth factor (PDGF)-induced HASMC migration[3].
6-ETHYL-5-METHYL-2-OXO-1,2-DIHYDRO-PYRIDINE-3-CARBONITRILE
Pyrimidine,5-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-
3-Pyridinecarbonitrile,1,2-dihydro-1,4,6-trimethyl-2-oxo-
1H-Benzimidazole-2-methanol,alpha-methyl-,(alphaS)-(9CI)
3-METHOXY-6,6A-DIHYDRO-1AH-1-OXA-CYCLOPROPA[A]INDENE
2H-Pyrrolo[2,3-b]pyridin-2-one, 1,3-dihydro-3,3-dimethyl-
5,6,7,8-tetrahydro-1,8-naphthyridine-2-carbaldehyde
Imidazo[1,2-a]pyridin-3-ylboronic acid
C7H7BN2O2 (162.06005520000002)
Phenidone
D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents Phenidone, an orally active dual inhibitor of cyclooxygenase (COX) and lipoxygenase (LOX), ameliorates rat paralysis in experimental autoimmune encephalomyelitis. Phenidone is a potent hypotensive agent in the spontaneously hypertensive rat[1][2]. Phenidone is used as a photographic developer[3].
1H-Pyrrolo[2,3-b]pyridin-5-ylboronic acid
C7H7BN2O2 (162.06005520000002)
Pyrrolo[1,2-a]pyrazine, octahydro-, hydrochloride (1:1), (8aR)-
Pyrrolo[1,2-a]pyrazine, octahydro-, hydrochloride (1:1), (8aS)-
1,2,3,4,6,7,8,8a-octahydropyrrolo[1,2-a]pyrazine,hydrochloride
(1H-PYRROLO[3,2-B]PYRIDIN-6-YL)BORONIC ACID
C7H7BN2O2 (162.06005520000002)
Poly(dimethylsiloxane-co-diphenylsiloxane), trimethylsilyl terminated
1,2-Dihydrobenzocyclobutene-1-carboxylic acid methyl ester
2H-Benzimidazol-2-one,1,3-dihydro-4,6-dimethyl-(9CI)
cis-5-Methyl-1H-hexahydropyrrolo[3,4-b]pyrrole Dihydrochloride
3-PYRIDINECARBONITRILE, 1,2-DIHYDRO-6-(1-METHYLETHYL)-2-OXO-
1-(2-METHOXYPHENYL)-4-(3-CHLOROPROPYL)PIPERAZINEDIHYDROCHLORIDE
1H-Isoindol-1-one,7-amino-2,3-dihydro-2-methyl-(9CI)
(1R,2R)-1,2-dihydronaphthalene-1,2-diol
A trans-1,2-dihydronaphthalene-1,2-diol with a (1R,2R)-configuration.
(1S,2R)-1,2-dihydronaphthalene-1,2-diol
A cis-1,2-dihydronaphthalene-1,2-diol with a (1S,2R)-configuration.
AI3-00579
Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
AI3-05957
4-Methoxycinnamaldehyde (p-Methoxycinnamaldehyde), an active constituent of Agastache rugosa, exhibits cytoprotective activity against respiratory syncytial virus (RSV) in human larynx carcinoma cell line. 4-Methoxycinnamaldehyde effectively inhibits cytopathic effect of RSV with an estimated IC50 of 0.055 μg/mL[1]. 4-Methoxycinnamaldehyde (p-Methoxycinnamaldehyde), an active constituent of Agastache rugosa, exhibits cytoprotective activity against respiratory syncytial virus (RSV) in human larynx carcinoma cell line. 4-Methoxycinnamaldehyde effectively inhibits cytopathic effect of RSV with an estimated IC50 of 0.055 μg/mL[1].
N,N-dihydroxy-L-isoleucinate
C6H12NO4- (162.07662919999999)
An N,N-dihydroxy-alpha-amino-acid anion resulting from removal of a proton from the carboxylic acid group of N,N-dihydroxy-L-isoleucine.
3-Ammonio-2,3-dideoxy-scyllo-inosose(1+)
C6H12NO4+ (162.07662919999999)
Methyl 2-(trimethylsilyloxy)acetate
C6H14O3Si (162.07121740000002)
(2S,3R)-Butan-1,2,3,4-tetraol 2,4-isopropylidene acetal
(1R,2S)-1,2-Dihydronaphthalene-1,2-diol
The cis-1,2-dihydronaphthalene-1,2-diol with a (1R,2S)-configuration.
p-Methoxycinnamaldehyde
4-Methoxycinnamaldehyde (p-Methoxycinnamaldehyde), an active constituent of Agastache rugosa, exhibits cytoprotective activity against respiratory syncytial virus (RSV) in human larynx carcinoma cell line. 4-Methoxycinnamaldehyde effectively inhibits cytopathic effect of RSV with an estimated IC50 of 0.055 μg/mL[1]. 4-Methoxycinnamaldehyde (p-Methoxycinnamaldehyde), an active constituent of Agastache rugosa, exhibits cytoprotective activity against respiratory syncytial virus (RSV) in human larynx carcinoma cell line. 4-Methoxycinnamaldehyde effectively inhibits cytopathic effect of RSV with an estimated IC50 of 0.055 μg/mL[1].
butyl 2-(methylsulfanyl)acetate
A carboxylic ester obtained by the formal condensation of the carboxy group of (methylthio)acetic acid with butan-1-ol.
6-hydroxymyosmine
A monohydroxypyridine that is myosmine substituted by a hydroxy group at position 6; major microspecies at pH 7.3. It is a metabolite of nornicotine produced by Shinella sp. strain HZN7.