Exact Mass: 161.08742999999998
Exact Mass Matches: 161.08742999999998
Found 500 metabolites which its exact mass value is equals to given mass value 161.08742999999998
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Carnitine
(R)-carnitine is the (R)-enantiomer of carnitine. It has a role as an antilipemic drug, a water-soluble vitamin (role), a nutraceutical, a nootropic agent and a Saccharomyces cerevisiae metabolite. It is a conjugate base of a (R)-carnitinium. It is an enantiomer of a (S)-carnitine. Constituent of striated muscle and liver. It is used therapeutically to stimulate gastric and pancreatic secretions and in the treatment of hyperlipoproteinemias. L-Carnitine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Levocarnitine is a Carnitine Analog. Levocarnitine is a natural product found in Mucidula mucida, Pseudo-nitzschia multistriata, and other organisms with data available. Levocarnitine is an amino acid derivative. Levocarnitine facilitates long-chain fatty acid entry into mitochondria, delivering substrate for oxidation and subsequent energy production. Fatty acids are utilized as an energy substrate in all tissues except the brain. (NCI04) Carnitine is not an essential amino acid; it can be synthesized in the body. However, it is so important in providing energy to muscles including the heart-that some researchers are now recommending carnitine supplements in the diet, particularly for people who do not consume much red meat, the main food source for carnitine. Carnitine has been described as a vitamin, an amino acid, or a metabimin, i.e., an essential metabolite. Like the B vitamins, carnitine contains nitrogen and is very soluble in water, and to some researchers carnitine is a vitamin (Liebovitz 1984). It was found that an animal (yellow mealworm) could not grow without carnitine in its diet. However, as it turned out, almost all other animals, including humans, do make their own carnitine; thus, it is no longer considered a vitamin. Nevertheless, in certain circumstances-such as deficiencies of methionine, lysine or vitamin C or kidney dialysis--carnitine shortages develop. Under these conditions, carnitine must be absorbed from food, and for this reason it is sometimes referred to as a metabimin or a conditionally essential metabolite. Like the other amino acids used or manufactured by the body, carnitine is an amine. But like choline, which is sometimes considered to be a B vitamin, carnitine is also an alcohol (specifically, a trimethylated carboxy-alcohol). Thus, carnitine is an unusual amino acid and has different functions than most other amino acids, which are most usually employed by the body in the construction of protein. Carnitine is an essential factor in fatty acid metabolism in mammals. Its most important known metabolic function is to transport fat into the mitochondria of muscle cells, including those in the heart, for oxidation. This is how the heart gets most of its energy. In humans, about 25\\\\\% of carnitine is synthesized in the liver, kidney and brain from the amino acids lysine and methionine. Most of the carnitine in the body comes from dietary sources such as red meat and dairy products. Inborn errors of carnitine metabolism can lead to brain deterioration like that of Reyes syndrome, gradually worsening muscle weakness, Duchenne-like muscular dystrophy and extreme muscle weakness with fat accumulation in muscles. Borurn et al. (1979) describe carnitine as an essential nutrient for pre-term babies, certain types (non-ketotic) of hypoglycemics, kidney dialysis patients, cirrhosis, and in kwashiorkor, type IV hyperlipidemia, heart muscle disease (cardiomyopathy), and propionic or organic aciduria (acid urine resulting from genetic or other anomalies). In all these conditions and the inborn errors of carnitine metabolism, carnitine is essential to life and carnitine supplements are valuable. carnitine therapy may also be useful in a wide variety of clinical conditions. carnitine supplementation has improved some patients who have angina secondary to coronary artery disease. It may be worth a trial in any form of hyperlipidemia or muscle weakness. carnitine supplements may... (-)-Carnitine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=541-15-1 (retrieved 2024-06-29) (CAS RN: 541-15-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3]. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].
Tryptophol
Tryptophol, also known as indole-3-ethanol, is an indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. It has a role as a Saccharomyces cerevisiae metabolite, an auxin and a plant metabolite. Tryptophol is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID:30120222). Tryptophol production was negatively associated with interferon-gamma production (IFNγ) which suggests that tryptophol has anti-inflammatory properties (PMID:27814509). Tryptophol has also been identified as the hypnotic agent in trypanosomal sleeping sickness, and because it is formed in vivo after ethanol or disulfiram treatment, it is also associated with the study of alcoholism (PMID:7241135). Indole-3-ethanol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases. (PMID 2342128) Tryptophol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=526-55-6 (retrieved 2024-06-29) (CAS RN: 526-55-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.
Aminoadipic acid
Aminoadipic acid (CAS: 542-32-5), also known as 2-aminoadipate, is a metabolite in the principal biochemical pathway of lysine. It is an intermediate in the metabolism (i.e. breakdown or degradation) of lysine and saccharopine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor N-methyl-D-aspartate (NMDA). Aminoadipic acid has also been shown to inhibit the production of kynurenic acid, a broad spectrum excitatory amino acid receptor antagonist, in brain tissue slices (PMID: 8566117). Recent studies have shown that aminoadipic acid is elevated in prostate biopsy tissues from prostate cancer patients (PMID: 23737455). Mutations in DHTKD1 (dehydrogenase E1 and transketolase domain-containing protein 1) have been shown to cause human 2-aminoadipic aciduria and 2-oxoadipic aciduria via impaired decarboxylation of 2-oxoadipate to glutaryl-CoA, which is the last step in the lysine degradation pathway (PMID: 23141293). Aging, diabetes, sepsis, and renal failure are known to catalyze the oxidation of lysyl residues to form 2-aminoadipic acid in human skin collagen and potentially other tissues (PMID: 18448817). Proteolytic breakdown of these tissues can lead to the release of free 2-aminoadipic acid. Studies in rats indicate that aminoadipic acid (along with the three branched-chain amino acids: leucine, valine, and isoleucine) levels are elevated in the pre-diabetic phase and so aminoadipic acid may serve as a predictive biomarker for the development of diabetes (PMID: 15389298). Long-term hyperglycemia of endothelial cells can also lead to elevated levels of aminoadipate which is thought to be a sign of lysine breakdown through oxidative stress and reactive oxygen species (ROS) (PMID: 21961526). 2-Aminoadipate is a potential small-molecule marker of oxidative stress (PMID: 21647514). Therefore, depending on the circumstances aminoadipic acid can act as an acidogen, a diabetogen, an atherogen, and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A diabetogen is a compound that can lead to type 2 diabetes. An atherogen is a compound that leads to atherosclerosis and cardiovascular disease. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of aminoadipic acid are associated with at least two inborn errors of metabolism including 2-aminoadipic aciduria and 2-oxoadipic aciduria. Aminoadipic acid is an organic acid and abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. As a diabetogen, serum aminoadipic levels appear to regulate glucose homeostasis and have been highly predictive of individuals who later develop diabetes (PMID: 24091325). In particular, aminoadipic acid lowers fasting plasma glucose levels and enhances insulin secretion from human islets. As an atherogen, aminoadipic acid has been found to be produced at high levels via protein lysine oxidation in atherosclerotic plaques (PMID: 28069522). A metabolite in the principal biochemical pathway of lysine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor, N-methyl-D-aspartate; (NMDA). L-α-Aminoadipic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1118-90-7 (retrieved 2024-07-01) (CAS RN: 1118-90-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine. Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.
N-methyl-L-glutamic Acid
N-methyl-L-glutamic Acid, also known as N-Methylglutamate or (2S)-2-(methylamino)Pentanedioic acid, is classified as a glutamic acid or a Glutamic acid derivative. Glutamic acids are compounds containing glutamic acid or a derivative thereof resulting from reaction of glutamic acid at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. N-methyl-L-glutamic Acid is considered to be soluble (in water) and acidic KEIO_ID M067
O-acetylhomoserine
Acetylhomoserine is found in pulses. Acetylhomoserine is found in Pisum sativum (peas) Acquisition and generation of the data is financially supported in part by CREST/JST. Found in green tissues of pea (Pisum sativum)
(±)-2,2'-Iminobispropanoic acid
meso-2,2-Iminobispropanoic acid is found in mollusks. meso-2,2-Iminobispropanoic acid is from scallops (Patinopecten yessoensis) and squids (possibly Todarodes pacificus). From scallops (Patinopecten yessoensis) and squids (possibly Todarodes pacificus). meso-2,2-Iminobispropanoic acid is found in mollusks.
(R)-Boschniakine
(R)-Boschniakine is found in fruits. (R)-Boschniakine is an alkaloid from Plantago psyllium (African plantain
Dimaprit
D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists
Alanyllactate
D-Carnitine
The (S)-enantiomer of carnitine. Acquisition and generation of the data is financially supported in part by CREST/JST.
L-Carnitine
Carnitine is a non-essential amino acid and a quaternary ammonium compound. Carnitine is also classified as an alcohol (specifically, a trimethylated carboxy-alcohol). Carnitine exists as one of two stereoisomers (the two enantiomers D-carnitine and L-carnitine. Both are biologically active, but only L-carnitine naturally occurs in animals, and D-carnitine is toxic as it inhibits the activity of the L-form. Carnitine is involved in the metabolism in most mammals, plants, and some bacteria. Carnitine plays a key role in lipid metabolism and beta-oxidation. It is used to transport long-chain fatty acids into the mitochondria to be oxidized for energy production. This is done by forming a long chain acetylcarnitine esters which are then transported by carnitine palmitoyltransferase I and carnitine palmitoyltransferase II. Carnitine also participates in removing products of metabolism from cells. Given its key metabolic roles, carnitine is concentrated in skeletal and cardiac muscle as well as other tissues that metabolize fatty acids as an energy source. A normal 70 kilogram person typically produces 11‚Äì34 mg of carnitine per day. Adults eating mixed diets of red meat and other animal products ingest 60‚Äì180 mg of carnitine per day, while vegans consume about 10‚Äì12 mg per day. Most carnitine obtained from the diet is absorbed in the small intestine before entering the blood.[3] The total body content of carnitine is about 20 grams in a person weighing 70 kilograms, with nearly all of it contained within skeletal muscle cells. Carnitine is so important in providing energy to muscles (including the heart) that some researchers are now recommending carnitine supplements in the diet, particularly for people who do not consume much red meat (the main food source for carnitine). Carnitine has been described as a vitamin, an amino acid, or a metabimin (i.e. an essential metabolite). Like the B vitamins, carnitine contains nitrogen and is very soluble in water. However, most animals, including humans, make their own carnitine; thus, carnitine cannot be considered to be a vitamin. In certain circumstances, such as methionine deficiency, lysine deficiency, vitamin C deficiency or kidney dialysis, carnitine shortages can develop. Under these conditions, carnitine must be absorbed from food, and for this reason, it is sometimes referred to as a "metabimin" or a conditionally essential metabolite. In humans, about 25\\\\% of carnitine is synthesized in the liver, kidney, and brain from lysine and methionine. Most of the carnitine in the body comes from dietary sources such as red meat and dairy products. Inborn errors of carnitine metabolism such as Reye‚Äôs syndrome can lead to brain deterioration gradually worsening muscle weakness, Duchenne-like muscular dystrophy, and extreme muscle weakness with fat accumulation in muscles. Carnitine is an essential nutrient for pre-term babies and individuals who are unable to eat a normal diet (e.g. non-ketotic hypoglycemics, kidney dialysis patients) (PMID: 115309). In conditions such as kwashiorkor, cirrhosis, and heart muscle disease (cardiomyopathy) as well as in inborn errors of metabolism such as type IV hyperlipidemia and propionic aciduria, carnitine is essential to life and carnitine supplements are critically important. Carnitine therapy may also be useful in a wide variety of clinical conditions. Carnitine supplementation has improved some patients who have angina secondary to coronary artery disease. Carnitine supplements may also be useful in many forms of metabolic liver diseases and heart muscle disease. Hearts undergoing severe arrhythmia quickly deplete their stores of carnitine. Athletes, particularly in Europe, have used carnitine supplements for improved endurance. Carnitine may improve muscle building by improving fat utilization and may even be useful in treating obesity. Carnitine may be of value in treating pregnant women, hypothyroid individuals, and male infertility due to t... Malonyl-carnitin, also known as d,l-carnitine or carnitine chloride, is a member of the class of compounds known as carnitines. Carnitines are organic compounds containing the quaternary ammonium compound carnitine. Malonyl-carnitin is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Malonyl-carnitin can be synthesized from butyrate. Malonyl-carnitin is also a parent compound for other transformation products, including but not limited to, O-sebacoylcarnitine, O-(4,8-dimethylnonanoyl)carnitine, and O-(11-carboxyundecanoyl)carnitine. Malonyl-carnitin can be found in avocado, which makes malonyl-carnitin a potential biomarker for the consumption of this food product. Malonyl-carnitin can be found primarily in blood. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3]. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].
N-Acetylthreonine
N-Acetyl-L-threonine (or N-Acetylthreonine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylthreonine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylthreonine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-threonine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\% of all human proteins and 68\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylthreonine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free threonine can also occur. Excessive amounts N-acetyl amino acids including N-acetylthreonine (as well as N-acetylglycine, N-acetylserine, N-acetylmethionine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylglutamine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylthreonine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetylthreonine has been identified in the human placenta (PMID: 32033212).
Nicotine imine
Nicotine-delta 1-(5)-iminium ion is an intermediate in the metabolic conversion of nicotine to cotinine. This product is generated by liver enzymes. [HMDB] Nicotine-delta 1-(5)-iminium ion is an intermediate in the metabolic conversion of nicotine to cotinine. This product is generated by liver enzymes.
1-(2,3-Dihydro-1H-pyrrolizin-5-yl)-2-propen-1-one
Proline-derived Maillard product. Proline-derived Maillard product
3-[(5-Methyl-2-furanyl)methyl]-1H-pyrrole
Putative proline-derived Maillard product formed in model reactions with 1-pyrroline and 5-methylfurfural. Putative proline-derived Maillard product formed in model reactions with 1-pyrroline and 5-methylfurfural
3,4-Dihydro-4-[(5-methyl-2-furanyl)methylene]-2H-pyrrole
Putative proline-derived Maillard product formed in model reactions with proline or 1-pyrroline and 5-methylfurfural. Putative proline-derived Maillard product formed in model reactions with proline or 1-pyrroline and 5-methylfurfural
Glutamic acid gamma-methyl ester
Glutamate gamma-methyl ester, also known as L-Glutamic acid 5-methyl ester or g-methyl-L-glutamate (CAS# 1499-55-4) is a white amorphous powder and soluble in water. Its melting point is 182 degree Celsius and should be stored at 2-8 degree Celsius Glutamic acid gamma-methyl ester has been identified in the human placenta (PMID: 32033212).
hydroxybutyrylglycine
Hydroxybutyrylglycine is classified as a member of the N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. Hydroxybutyrylglycine is considered to be slightly soluble (in water) and acidic.ÂÂ
2-(Diaminomethylideneamino)ethylsulfanylmethanimidamide
2-Aminoadipic acid
Aminoadipic acid, also known as a-aminoadipate or Aad, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Aminoadipic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Aminoadipic acid exists in all eukaryotes, ranging from yeast to humans. Within humans, aminoadipic acid participates in a number of enzymatic reactions. In particular, aminoadipic acid can be biosynthesized from allysine; which is mediated by the enzyme Alpha-aminoadipic semialdehyde dehydrogenase. In addition, aminoadipic acid and oxoglutaric acid can be converted into oxoadipic acid and L-glutamic acid; which is catalyzed by the enzyme kynurenine/alpha-aminoadipate aminotransferase, mitochondrial. In humans, aminoadipic acid is involved in the metabolic disorder called 2-aminoadipic 2-oxoadipic aciduria. Outside of the human body, Aminoadipic acid is found, on average, in the highest concentration within a few different foods, such as wheats, milk (cow), and ryes and in a lower concentration in dills, garden onions, and white cabbages. Aminoadipic acid has also been detected, but not quantified in, several different foods, such as barley, cow milks, cow milks, cow milks, and cow milks. This could make aminoadipic acid a potential biomarker for the consumption of these foods. Aminoadipic acid is a potentially toxic compound. Aminoadipic acid, with regard to humans, has been found to be associated with several diseases such as alpha-aminoadipic and alpha-ketoadipic aciduria, colorectal cancer, metastatic melanoma, and eosinophilic esophagitis; aminoadipic acid has also been linked to the inborn metabolic disorder 2-ketoadipic acidemia. A metabolite in the principal biochemical pathway of lysine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor, N-methyl-D-aspartate; (NMDA). D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine. Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.
Carnitine
L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3]. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].
Me ether,nitrile-3-(4-Hydroxyphenyl)-propanoic acid
1beta-amino-2alpha,3beta,5beta-trihydroxycycloheptane
4,7-dideoxy-alpha-homonojirimycin|alpha-7-deoxyhomonojirimycin
(-)-N-(2,3-dihydroxy-3-methylbutyl)acetamide|N-Ac-(S)-1-Amino-3-methyl-2,3-butanediol
α-Aminoadipic acid
An optically active form of 2-aminoadipic acid having D-configuration. The L-enantiomer of 2-aminoadipic acid. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 9 Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine. Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.
alpha-Aminoadipate
Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine. Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.
Levocarnitine
Used in sport and infant nutrition. Carnitine is a quaternary ammonium compound biosynthesized from the amino acids lysine and methionine. In living cells, it is required for the transport of fatty acids from the cytosol into the mitochondria during the breakdown of lipids (or fats) for the generation of metabolic energy. It is often sold as a nutritional supplement. Carnitine was originally found as a growth factor for mealworms and labeled vitamin Bt. Carnitine exists in two stereoisomers: its biologically active form is L-carnitine, while its enantiomer, D-carnitine, is biologically inactive.; Carnitine is not an essential amino acid; Levocarnitine is a carrier molecule in the transport of long chain fatty acids across the inner mitochondrial membrane. It also exports acyl groups from subcellular organelles and from cells to urine before they accumulate to toxic concentrations. Lack of carnitine can lead to liver, heart, and muscle problems. Carnitine deficiency is defined biochemically as abnormally low plasma concentrations of free carnitine, less than 20 µmol/L at one week post term and may be associated with low tissue and/or urine concentrations. Further, this condition may be associated with a plasma concentration ratio of acylcarnitine/levocarnitine greater than 0.4 or abnormally elevated concentrations of acylcarnitine in the urine. Only the L isomer of carnitine (sometimes called vitamin BT) affects lipid metabolism. The "vitamin BT" form actually contains D,L-carnitine, which competitively inhibits levocarnitine and can cause deficiency. Levocarnitine can be used therapeutically to stimulate gastric and pancreatic secretions and in the treatment of hyperlipoproteinemias.; There is a close correlation between changes in plasma levels of osteocalcin and osteoblast activity and a reduction in osteocalcin plasma levels is an indicator of reduced osteoblast activity, which appears to underlie osteoporosis in elderly subjects and in postmenopausal women. Administration of a carnitine mixture or propionyl-L-carnitine is capable of increasing serum osteocalcin concentrations of animals thus treated, whereas serum osteocalcin levels tend to decrease with age in control animals.; it can be synthesized in the body. However, it is so important in providing energy to muscles including the heart-that some researchers are now recommending carnitine supplements in the diet, particularly for people who do not consume much red meat, the main food source for carnitine. Carnitine has been described as a vitamin, an amino acid, or a metabimin, i.e., an essential metabolite. Like the B vitamins, carnitine contains nitrogen and is very soluble in water, and to some researchers carnitine is a vitamin (Liebovitz 1984). It was found that an animal (yellow mealworm) could not grow without carnitine in its diet. However, as it turned out, almost all other animals, including humans, do make their own carnitine; thus, it is no longer considered a vitamin. Nevertheless, in certain circumstances-such as deficiencies of methionine, lysine or vitamin C or kidney dialysis--carnitine shortages develop. Under these conditions, carnitine must be absorbed from food, and for this reason it is sometimes referred to as a "metabimin" or a conditionally essential metabolite. Like the other amino acids used or manufactured by the body, carnitine is an amine. But like choline, which is sometimes considered to be a B vitamin, carnitine is also an alcohol (specifically, a trimethylated carboxy-alcohol). Thus, carnitine is an unusual amino acid and has different functions than most other amino acids, which are most usually employed by the body in the construction of protein. Carnitine is an essential factor in fatty acid metabolism in mammals. Its most important known metabolic function is to transport fat into the mitochondria of muscle cells, including those in the heart, for oxidation. This is how the heart gets most of its energy. In humans, about 25\\\\\%... MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; PHIQHXFUZVPYII_STSL_0119_Carnitine hydrochrolide_0125fmol_180430_S2_LC02_MS02_131; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3]. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].
Tryptophol
An indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.
Carnitine
An amino-acid betaine that is butanoate substituted with a hydroxy group at position C-3 and a trimethylammonium group at C-4.
Aminoadipate
Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine. Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.
3-(5-Methylfurfuryl)pyrrole
A diarylmethane in which the two aryl groups are specified as 5-methylfuran-2-yl and pyrrol-3-yl.
3-(5-Methylfurfurylidene)-1-pyrroline
(2S,3R)-2-AMINO-3-HYDROXY-4,4-DIMETHYLPENTANOIC ACID
3-Chloro-1-(1-pyrrolidinyl)-1-propanone
C7H12ClNO (161.06073719999998)
2-chloro-N-cyclopentylacetamide(SALTDATA: FREE)
C7H12ClNO (161.06073719999998)
C-(2-METHYL-IMIDAZO[1,2-A]PYRIDIN-3-YL)-METHYLAMINE
1-ethyl-3-Methyl-1H-pyrazol-4-amine hydrochloride
C6H12ClN3 (161.07197019999998)
Pyrrolidine, 1-(2-chloro-1-oxopropyl)- (9CI)
C7H12ClNO (161.06073719999998)
4,5-dimethyl-1H-benzimidazol-6-amine(SALTDATA: 2HCl)
Cyclopenta[c]pyrrol-5(1H)-one, hexahydro-, hydrochloride (1:1)
C7H12ClNO (161.06073719999998)
1-(3-chloropropyl)pyrrolidin-2-one
C7H12ClNO (161.06073719999998)
(1,5-DIMETHYL-1H-PYRAZOL-4-YL)METHANAMINE HYDROCHLORIDE
C6H12ClN3 (161.07197019999998)
Phenylpyrrolidone
1-Phenyl-2-pyrrolidinone (1-Phenylpyrrolidin-2-one) is a phenyl analogue of GABA with sedative effect, decreasing the exploratory behavior of rats at 50-100 mg/kg (i.v.). 1-Phenyl-2-pyrrolidinone also has been proved to inhibit emotional reactions in dogs and cats. 1-Phenyl-2-pyrrolidinone induces decreases in the pressor reaction to emotional stress without accompanied by normalization of the function of baroreceptor reflexes[1][2].
5-Acetylindoline,1-(2,3-dihydro-1H-indol-5-yl)ethanone
1H-Benzimidazole-2-methanamine,alpha-methyl-,(R)-(9CI)
1-(IMIDAZO[1,2-A]PYRIDIN-2-YL)-N-METHYLMETHANAMINE
tetrahydro-5-(2-hydroxyethyl)-1,3,5-triazine-2(1H)-thione
C5H11N3OS (161.06227959999998)
Fenamole
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
N-(IMIDAZO[1,2-A]PYRIDIN-6-YLMETHYL)-N-METHYLAMINE
SYM 2081
SYM 2081 is a high-affinity ligand and potent, selective agonist of kainate receptors, inhibits [3H]-kainate binding with an IC50 of 35 nM, almost 3000- and 200-fold selectivity for kainate receptors over AMPA and NMDA receptors respectively[1].
Ethanone,2-chloro-1-(1-piperidinyl)-
C7H12ClNO (161.06073719999998)
ethyl(furan-2-ylmethyl)azanium,chloride
C7H12ClNO (161.06073719999998)
(2S,3S)-3-(2-AMINO-PHENYLSULFANYL)-2-HYDROXY-3-(4-METHOXY-PHENYL)-PROPIONICACID
1,3,5-TRIMETHYL-1H-PYRAZOL-4-AMINE HYDROCHLORIDE
C6H12ClN3 (161.07197019999998)
(1,3-Dimethyl-1H-pyrazol-4-yl)methylamine hydrochloride
C6H12ClN3 (161.07197019999998)
4,6-Bis[(2H3)methyloxy]-2-pyrimidinamine
C6H3D6N3O2 (161.10713646800002)
(2-METHOXY-1-METHYL-ETHYL)-(4-METHYLSULFANYL-BENZYL)-AMINE
1-(1H-BENZOIMIDAZOL-2-YL)-3-METHYLSULFANYL-PROPYLAMINE
Methyl 4-fluoro-4-piperidinecarboxylate
C7H12FNO2 (161.08520240000001)
Azoxybacilin
A non-proteinogenic alpha-amino acid that is (2S)-2-aminobutanoic acid substituted by a (Z)-methyl-NNO-azoxy moiety at position 4. It is an antibiotic isolated from the culture broth of Bacillus cereus and exhibits antifungal activity.
(1S,3R,4S,6R)-4-amino-6-(hydroxymethyl)cyclohexane-1,3-diol
D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors D004791 - Enzyme Inhibitors
Tryptaminium
An ammonium ion that is the conjugate acid of tryptamine arising from protonation of the primary amino group; major species at pH 7.3. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
(2S,3E)-2-amino-4-(2-aminoethoxy)but-3-enoate
C6H13N2O3+ (161.09261279999998)
(1r,3s,4r,5s)-3-Amino-2,3,6-Trideoxy-3-Methyl-Alpha-L-Arabino-Hexopyranose
(3~{r})-3-(2-Hydroxy-2-Oxoethylamino)butanoic Acid
N-methyl-L-glutamic acid
A N-methyl-L-alpha-amino acid with L-glutamic acid as the amino acid component.
Dimaprit
D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists
2-Aminoadipic acid
An alpha-amino acid that is adipic acid bearing a single amino substituent at position 2. An intermediate in the formation of lysine.
O-Acetylhomoserine
An alpha-amino acid that is homoserine in which the alcoholic hydroxy group has been converted to the corresponding acetate.
1-(2,3-Dihydro-1H-pyrrolizin-5-yl)-2-propen-1-one
A member of the class of pyrrolizines that is 2,3-dihydro-1H-pyrrolizine carrying an acryloyl substituent at position 5.
3,4-Dihydro-4-[(5-methyl-2-furanyl)methylene]-2H-pyrrole
A member of the class of pyrrolines that is 1-pyrroline carrying a 5-methyl-2-furanyl)methylene at position 3.
2,2-Iminodipropanoic acid
An amino dicarboxylic acid that is 2,2-iminodiacetic acid substituted by methyl groups at positions 2 and 2.
O-acetyl-L-homoserine zwitterion
Zwitterionic form of O-acetyl-L-homoserine having an anionic carboxy group and a protonated alpha-amino group; major species at pH 7.3.
4-methyl-L-glutamic acid
An amino dicarboxylic acid that is L-glutamic acid substituted by a methyl group at position 4.
N-Methyl-DL-glutamic acid
N-Methyl-DL-glutamic acid is a L-Glutamic acid (HY-14608) analog with cytotoxic effects[1][2].