Exact Mass: 161.0508
Exact Mass Matches: 161.0508
Found 318 metabolites which its exact mass value is equals to given mass value 161.0508
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Indole-3-carboxylic acid
Indole-3-carboxylic acid, also known as 3-carboxyindole or 3-indolecarboxylate, belongs to the class of organic compounds known as indolecarboxylic acids and derivatives. Indolecarboxylic acids and derivatives are compounds containing a carboxylic acid group (or a derivative thereof) linked to an indole. Naphthylmethylindoles: Any compound containing a 1H-indol-3-yl-(1-naphthyl)methane structure with substitution at the nitrogen atom of the indole ring by an alkyl, haloalkyl, alkenyl, cycloalkylmethyl, cycloalkylethyl, 1-(N-methyl-2-piperidinyl)methyl, or 2-(4-morpholinyl)ethyl group whether or not further substituted in the indole ring to any extent and whether or not substituted in the naphthyl ring to any extent. One example given is JWH-250. Outside of the human body, indole-3-carboxylic acid has been detected, but not quantified in several different foods, such as brassicas, broccoli, pulses, common beets, and barley. This could make indole-3-carboxylic acid a potential biomarker for the consumption of these foods. Notice the pentyl group substituted onto the nitrogen atom of the indole ring. Note that this definition encompasses only those compounds that have OH groups attached to both the phenyl and the cyclohexyl rings, and so does not include compounds such as O-1871 which lacks the cyclohexyl OH group, or compounds such as JWH-337 or JWH-344 which lack the phenolic OH group. Present in plants, e.g. apple (Pyrus malus), garden pea (Pisum sativum) and brassicas Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].
2,8-Quinolinediol
2,8-Quinolinediol, also known as quinoline-2,8-diol or 8-hydroxycarbostyril, belongs to the class of organic compounds known as quinolones and derivatives. Quinolones and derivatives are compounds containing a quinoline moiety that bears a ketone group. 2,8-Quinolinediol has been identified in urine (PMID: 30089834).
Quinoline-4,8-diol
This compound belongs to the family of Hydroxyquinolines. These are compounds containing a quinoline moiety bearing an hydroxyl group. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
4,6-Dihydroxyquinoline
4,6-Dihydroxyquinoline is the product of the conversion of 5-hydroxykynurenamine by the enzyme monoamine oxidase, both metabolites from the 5-hydroxytryptophan metabolism. (PMIDs 7160021, 312499) [HMDB] 4,6-Dihydroxyquinoline is the product of the conversion of 5-hydroxykynurenamine by the enzyme monoamine oxidase, both metabolites from the 5-hydroxytryptophan metabolism. (PMIDs 7160021, 312499). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
S-Allylcysteine
Occurs in garlic. Potential nutriceutical. S-Allylcysteine is found in garden onion, soft-necked garlic, and onion-family vegetables. S-Allylcysteine is found in garden onion. S-Allylcysteine occurs in garlic. Potential nutriceutica D000970 - Antineoplastic Agents S-Allyl-L-cysteine, one of the organosulfur compounds found in AGE, possess various biological effects including neurotrophic activity, anti-cancer activity, anti-inflammatory activity. S-Allyl-L-cysteine, one of the organosulfur compounds found in AGE, possess various biological effects including neurotrophic activity, anti-cancer activity, anti-inflammatory activity.
2-Indolecarboxylic acid
2-Indolecarboxylic acid is a strong inhibitor of lipid peroxidation, similar to melatonin and some structurally related indole compounds. Lipid peroxidation with tert-butyl hydroperoxide is a source of free radicals (PMID 12236544). 2-Indolecarboxylic acid is a phenolic components known to exist in Korean ginseng (Koryo Insam Hakhoechi (1996), 20(3), 284-290) and brown rice (Hanguk Nonghwa Hakhoechi (1995), 38(5), 478-83). 2-Indolecarboxylic acid is a strong inhibitor of lipid peroxidation, similar to melatonin and some structurally related indole compounds. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Indole-2-carboxylic acid is a strong inhibitor of lipid peroxidation. Indole-2-carboxylic acid (I2CA) specifically and competitively inhibits the potentiation by glycine of NMDA-gated current[1][2]. Indole-2-carboxylic acid is a strong inhibitor of lipid peroxidation. Indole-2-carboxylic acid (I2CA) specifically and competitively inhibits the potentiation by glycine of NMDA-gated current[1][2].
3-Formyl-6-hydroxyindole
3-Formyl-6-hydroxyindole is found in mushrooms. 3-Formyl-6-hydroxyindole is an alkaloid from the edible mushroom Agrocybe cylindrace
trans-S-(1-Propenyl)-L-cysteine
trans-S-(1-Propenyl)-L-cysteine is found in onion-family vegetables. trans-S-(1-Propenyl)-L-cysteine is a constituent of garlic
4-Acetylimidazo[4,5-c]pyridine
4-Acetylimidazo[4,5-c]pyridine is maillard produced derived from histidine and glucos Maillard production derived from histidine and glucose
(1,2,5,6-Tetrahydropyridine-4-yl)methylphosphinic acid
1,5-Isoquinolinediol
D000970 - Antineoplastic Agents > D000067856 - Poly(ADP-ribose) Polymerase Inhibitors D004791 - Enzyme Inhibitors
S-Propenylcysteine
S-propenylcysteine is a member of the class of compounds known as L-cysteine-s-conjugates. L-cysteine-s-conjugates are compounds containing L-cysteine where the thio-group is conjugated. S-propenylcysteine is soluble (in water) and a moderately acidic compound (based on its pKa). S-propenylcysteine can be found in soft-necked garlic, which makes S-propenylcysteine a potential biomarker for the consumption of this food product. S-1-Propenyl-L-cysteine is a stereoisomer of S-allyl-l-cysteine, extracted from garlic, with immunomodulatory effects and reduces blood pressure in a hypertensive animal model[1]. S-1-Propenyl-L-cysteine exhibits antioxidative efficacy through a NO-dependent BACH1 signaling pathway[2]. S-1-Propenyl-L-cysteine is orally active. S-1-Propenyl-L-cysteine is a stereoisomer of S-allyl-l-cysteine, extracted from garlic, with immunomodulatory effects and reduces blood pressure in a hypertensive animal model[1].
S-Ethyl 2-acetylaminoethanethioate
It is used as a food additive .
2-keto-3-deoxy-L-rhamnonate
2-keto-3-deoxy-l-rhamnonate, also known as kdr or 2-dehydro-3,6-dideoxy-L-mannonate, belongs to medium-chain keto acids and derivatives class of compounds. Those are keto acids with a 6 to 12 carbon atoms long side chain. 2-keto-3-deoxy-l-rhamnonate is soluble (in water) and a weakly acidic compound (based on its pKa). 2-keto-3-deoxy-l-rhamnonate can be found in a number of food items such as red beetroot, evergreen huckleberry, winter squash, and pepper (c. pubescens), which makes 2-keto-3-deoxy-l-rhamnonate a potential biomarker for the consumption of these food products.
1,5-isoquinolinediol
D000970 - Antineoplastic Agents > D000067856 - Poly(ADP-ribose) Polymerase Inhibitors D004791 - Enzyme Inhibitors
5-carboxyindole
An indolecarboxylic acid in which the carboxy group is the only substituent and is located at position 5.
Jineol
A dihydroxyquinoline that is quinoline substituted by hydroxy groups at positions 3 and 8. Isolated from the centipede Scolopendra subspinipes, it exhibits cytotoxic activity against human tumour cell lines. Jineol is a cytotoxic alkaloid from the centipede Scolopendra subspinipes. Jineol exhibits modest cytotoxic activity in vitro against the growth of human tumor cell lines[1].
S-Propenylcysteine
S-1-Propenyl-L-cysteine is a stereoisomer of S-allyl-l-cysteine, extracted from garlic, with immunomodulatory effects and reduces blood pressure in a hypertensive animal model[1]. S-1-Propenyl-L-cysteine exhibits antioxidative efficacy through a NO-dependent BACH1 signaling pathway[2]. S-1-Propenyl-L-cysteine is orally active. S-1-Propenyl-L-cysteine is a stereoisomer of S-allyl-l-cysteine, extracted from garlic, with immunomodulatory effects and reduces blood pressure in a hypertensive animal model[1].
S-Allylcysteine
An S-hydrocarbyl-L-cysteine that is L-cysteine in which the hydrogen attached to the sulphur is replaced by a prop-2-enyl group. It commonly occurs in garlic and has been found to exhibit antineoplastic activity. S-allylcysteine is an S-hydrocarbyl-L-cysteine that is L-cysteine in which the hydrogen attached to the sulphur is replaced by a prop-2-enyl group. It commonly occurs in garlic and has been found to exhibit antineoplastic activity. It has a role as a metabolite and an antineoplastic agent. It is a tautomer of a S-allylcysteine zwitterion. See also: Garlic (part of). C26170 - Protective Agent > C275 - Antioxidant D000970 - Antineoplastic Agents S-Allyl-L-cysteine, one of the organosulfur compounds found in AGE, possess various biological effects including neurotrophic activity, anti-cancer activity, anti-inflammatory activity. S-Allyl-L-cysteine, one of the organosulfur compounds found in AGE, possess various biological effects including neurotrophic activity, anti-cancer activity, anti-inflammatory activity.
4-HO-I3CHO
4-hydroxyindole-3-carbaldehyde is a heteroarenecarbaldehyde that is 4-hydroxyindole in which the hydrogen at position 3 has been replaced by a formyl group. It has a role as a plant metabolite. It is a member of hydroxyindoles and a heteroarenecarbaldehyde. 4-hydroxy-1H-indole-3-carbaldehyde is a natural product found in Arabidopsis thaliana with data available. A heteroarenecarbaldehyde that is 4-hydroxyindole in which the hydrogen at position 3 has been replaced by a formyl group. 4-Hydroxy-1H-indole-3-carbaldehyde is a plant metabolite found in Capparis spinosa L.. 4-Hydroxy-1H-indole-3-carbaldehyde can be used in the synthesis of fluorescent probe[1][2]. 4-Hydroxy-1H-indole-3-carbaldehyde is a plant metabolite found in Capparis spinosa L.. 4-Hydroxy-1H-indole-3-carbaldehyde can be used in the synthesis of fluorescent probe[1][2].
1H-Indole-3-carboxylic acid
IPB_RECORD: 302; CONFIDENCE confident structure CONFIDENCE confident structure; IPB_RECORD: 302
3-Indolecarboxylic acid
An indole-3-carboxylic acid carrying a carboxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 2301; CONFIDENCE confident structure Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].
Indole-3-carboxylic_acid
Acquisition and generation of the data is financially supported by the Max-Planck-Society
Indole-3-carboxylic acid
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; KMAKOBLIOCQGJP-UHFFFAOYSA-N_STSL_0237_Indole-3-carboxylic acid_4000fmol_190403_S2_LC02MS02_082; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
Indole-2-carboxylic acid
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Indole-2-carboxylic acid is a strong inhibitor of lipid peroxidation. Indole-2-carboxylic acid (I2CA) specifically and competitively inhibits the potentiation by glycine of NMDA-gated current[1][2]. Indole-2-carboxylic acid is a strong inhibitor of lipid peroxidation. Indole-2-carboxylic acid (I2CA) specifically and competitively inhibits the potentiation by glycine of NMDA-gated current[1][2].
(R)-5,5-Dimethyl-1,3-thiazolidine-4-carboxylic acid
2-amino-3h-quinazolin-4-one
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Cyclopenta[c]pyrrol-5(1H)-one, hexahydro-, hydrochloride (1:1)
4-(1,2-dihydrotriazol-5-ylidene)cyclohexa-2,5-dien-1-one
2-(1,2,4-triazol-1-yl)ethanimidamide,hydrochloride
9-methyl-2,8,10-triazabicyclo[4.4.0]deca-2,4,8,11-tetraen-7-one
1-Methyl-1H-benzo[d][1,2,3]triazole-5-carbaldehyde
3,4-Dihydro-2H-pyrido[3,2-b][1,4]oxazine-7-carbonitrile
6-(2H-1,2-oxazol-5-ylidene)cyclohexa-2,4-dien-1-one
(4R)-2,2-Dimethyl-1,3-thiazolidine-4-carboxylic acid
4-Hydroxy-1H-indole-3-carbaldehyde
4-Hydroxy-1H-indole-3-carbaldehyde is a plant metabolite found in Capparis spinosa L.. 4-Hydroxy-1H-indole-3-carbaldehyde can be used in the synthesis of fluorescent probe[1][2]. 4-Hydroxy-1H-indole-3-carbaldehyde is a plant metabolite found in Capparis spinosa L.. 4-Hydroxy-1H-indole-3-carbaldehyde can be used in the synthesis of fluorescent probe[1][2].
771-50-6
Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].
trans-S-(1-Propenyl)-L-cysteine
Trans-s-(1-propenyl)-l-cysteine belongs to cysteine and derivatives class of compounds. Those are compounds containing cysteine or a derivative thereof resulting from reaction of cysteine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Trans-s-(1-propenyl)-l-cysteine is soluble (in water) and a moderately acidic compound (based on its pKa). Trans-s-(1-propenyl)-l-cysteine can be found in onion-family vegetables, which makes trans-s-(1-propenyl)-l-cysteine a potential biomarker for the consumption of this food product. trans-S-(1-Propenyl)-L-cysteine is found in onion-family vegetables. trans-S-(1-Propenyl)-L-cysteine is a constituent of garlic S-1-Propenyl-L-cysteine is a stereoisomer of S-allyl-l-cysteine, extracted from garlic, with immunomodulatory effects and reduces blood pressure in a hypertensive animal model[1]. S-1-Propenyl-L-cysteine exhibits antioxidative efficacy through a NO-dependent BACH1 signaling pathway[2]. S-1-Propenyl-L-cysteine is orally active. S-1-Propenyl-L-cysteine is a stereoisomer of S-allyl-l-cysteine, extracted from garlic, with immunomodulatory effects and reduces blood pressure in a hypertensive animal model[1].
(2R)-2-azaniumyl-3-[(prop-2-en-1-yl)sulfanyl]propanoate
N-Ethyl-N-nitro-N-nitrosoguanidine
D009676 - Noxae > D009153 - Mutagens > D009604 - Nitrosoguanidines D009676 - Noxae > D002273 - Carcinogens
3-Hydroxy-3-methylglutarate(1-)
A dicarboxylic acid monoanion resulting from the removal of a proton from one of the carboxylic acid groups of 3-hydroxy-3-methylglutaric acid.
4,6-Quinolinediol
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
4,8-Quinolinediol
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
S-allylcysteine zwitterion
An L-alpha-amino acid zwitterion obtained by transfer of a proton from the carboxy to the amino group of S-allylcysteine. Major species at pH 7.3.
4-trifluoromethylaniline
A substituted aniline that is a benzene ring substituted with an amino group at position 1 and a trifluoromethyl group at position 4.
Quinoline-4,6-diol
Quinoline substituted by hydroxy groups at the 4- and 6-positions. It is the product of 5-hydroxytryptophan metabolism, via monoamine oxidase catalysed conversion of 5-hydroxykynurenamine.