Exact Mass: 138.027

Exact Mass Matches: 138.027

Found 121 metabolites which its exact mass value is equals to given mass value 138.027, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Salicylic acid

2-hydroxybenzoic acid

C7H6O3 (138.0317)


Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. It is a colorless solid, it is a precursor to and a metabolite of aspirin (acetylsalicylic acid). It is a plant hormone. The name is from Latin salix for willow tree. It is an ingredient in some anti-acne products. Salts and esters of salicylic acid are known as salicylates. Salicylic acid modulates COX1 enzymatic activity to decrease the formation of pro-inflammatory prostaglandins. Salicylate may competitively inhibit prostaglandin formation. Salicylates antirheumatic (nonsteroidal anti-inflammatory) actions are a result of its analgesic and anti-inflammatory mechanisms. Salicylic acid works by causing the cells of the epidermis to slough off more readily, preventing pores from clogging up, and allowing room for new cell growth. Salicylic acid inhibits the oxidation of uridine-5-diphosphoglucose (UDPG) competitively with nicotinamide adenosine dinucleotide and noncompetitively with UDPG. It also competitively inhibits the transferring of glucuronyl group of uridine-5-phosphoglucuronic acid to the phenolic acceptor. The wound-healing retardation action of salicylates is probably due mainly to its inhibitory action on mucopolysaccharide synthesis. Salicylic acid is biosynthesized from the amino acid phenylalanine. In Arabidopsis thaliana, it can be synthesized via a phenylalanine-independent pathway. Salicylic acid is an odorless white to light tan solid. Sinks and mixes slowly with water. (USCG, 1999) Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. Salicylic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Salicylic Acid is a beta hydroxy acid that occurs as a natural compound in plants. It has direct activity as an anti-inflammatory agent and acts as a topical antibacterial agent due to its ability to promote exfoliation. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. A compound obtained from the bark of the white willow and wintergreen leaves. It has bacteriostatic, fungicidal, and keratolytic actions. See also: Benzoic Acid (has active moiety); Methyl Salicylate (active moiety of); Benzyl salicylate (is active moiety of) ... View More ... A monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. Salicylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-72-7 (retrieved 2024-06-29) (CAS RN: 69-72-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].

   

4-Hydroxybenzoic acid

4-hydroxybenzoic acid

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in A√ßa√≠ oil, obtained from the fruit of the a√ßa√≠ palm (Euterpe oleracea), at relatively high concetrations (892¬±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843). Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid DVN38-Z and 2,4-Hexadienoic acid GMZ10-P. The taste is more detectable than for those preservatives. Effectiveness increases with chain length of the alcohol, but for some microorganisms this reduces cell permeability and thus counteracts the increased efficiency. 4-Hydroxybenzoic acid is found in many foods, some of which are chicory, corn, rye, and black huckleberry. 4-hydroxybenzoic acid is a monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. It has a role as a plant metabolite and an algal metabolite. It is a conjugate acid of a 4-hydroxybenzoate. 4-Hydroxybenzoic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). See also: Vaccinium myrtillus Leaf (part of); Galium aparine whole (part of); Menyanthes trifoliata leaf (part of) ... View More ... A monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. 4-Hydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-96-7 (retrieved 2024-07-01) (CAS RN: 99-96-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

Gentisate aldehyde

2,5-Dihydroxybenzaldehyde polymer

C7H6O3 (138.0317)


Gentisate aldehyde is a substrate of the enzyme aldehyde oxidase 1 [EC:1.2.3.1] in Valine, leucine and isoleucine degradation, Tyrosine metabolism, Tryptophan metabolism, Vitamin B6 metabolism and Nicotinate and nicotinamide metabolism. (KEGG) [HMDB] Gentisate aldehyde is a substrate of the enzyme aldehyde oxidase 1 [EC:1.2.3.1] in Valine, leucine and isoleucine degradation, Tyrosine metabolism, Tryptophan metabolism, Vitamin B6 metabolism and Nicotinate and nicotinamide metabolism. (KEGG). 2,5-Dihydroxybenzaldehyde (Gentisaldehyde) is a naturally occurring antimicrobial that inhibits the growth of Mycobacterium avium subsp. paratuberculosis. 2,5-Dihydroxybenzaldehyde is active against S. aureus strains with a MIC50 of 500 mg/L[1][2].

   

3-Hydroxybenzoic acid

3-Hydroxybenzoic acid, copper (2+) (1:1) salt

C7H6O3 (138.0317)


3-Hydroxybenzoic acid, also known as 3-hydroxybenzoate or 3-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3-Hydroxybenzoic acid exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 3-hydroxybenzoic acid is found, on average, in the highest concentration in american cranberries and beers. 3-hydroxybenzoic acid has also been detected, but not quantified in a few different foods, such as bilberries, citrus, and corns. As well, 3-Hydroxybenzoic Acid can be found in the pineapple fruit. It can also be formed by a Pseudomonas species from 3-Chlorobenzoic acid. 3-Hydroxybenzoic acid is a monohydroxybenzoic acid. 3-Hydroxybenzoic acid can be obtained by the alkali fusion of 3-sulfobenzoic acid between 210-220 °C. 3-Hydroxybenzoic acid is a component of castoreum, the exudate from the castor sacs of the mature North American beaver (Castor canadensis) and the European beaver (Castor fiber), used in perfumery. Present in fruits. Isolated from Citrus paradisi (grapefruit) CONFIDENCE standard compound; ML_ID 13 KEIO_ID H019 3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.

   

3,4-Dihydroxybenzaldehyde

protocatechualdehyde, formyl-14C-labeled

C7H6O3 (138.0317)


Protocatechualdehyde, also known as rancinamycin iv or 1,2-dihydroxy-4-formylbenzene, is a member of the class of compounds known as hydroxybenzaldehydes. Hydroxybenzaldehydes are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. Protocatechualdehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Protocatechualdehyde is an almond, bitter, and dry tasting compound and can be found in a number of food items such as plains prickly pear, mugwort, silver linden, and cardamom, which makes protocatechualdehyde a potential biomarker for the consumption of these food products. Protocatechualdehyde can be found primarily in urine. This molecule can be used as a precursor in the vanillin synthesis by biotransformation by cell cultures of Capsicum frutescens, a type of Chili pepper. It is also found in the mushroom Phellinus linteus . 3,4-Dihydroxybenzaldehyde, also known as protocatechuic aldehyde, is a phenolic aldehyde, a compound released from cork stoppers into wine. This molecule can be used as a precursor in vanillin synthesis via biotransformation by cell cultures of Capsicum frutescens, a type of chili pepper. It is also found in the mushroom Phellinus linteus (Wikipedia). D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].

   

Sesamol

5-Hydroxy-1,3-benzodioxole;5-Benzodioxolol;3,4-Methylendioxyphenol;3,4-methylenedioxyphenoL;3,4-(Methylenedioxy)phenol, sesamoL;1,3-Benzodioxol-5-ol

C7H6O3 (138.0317)


Sesamol is a member of benzodioxoles. Sesamol is a natural product found in Sesamum indicum with data available. See also: Sesame Oil (part of). Isolated from sesame oil. Sesamol is found in fats and oils and sesame. Sesamol is found in fats and oils. Sesamol is isolated from sesame oi D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2]. Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2].

   

5-Diazouracil

5-Diazouracil; 2,6-Dioxo-5-diazopyrimidine

C4H2N4O2 (138.0178)


   

2-Hydroxy-5-methylquinone

2-Hydroxy-5-methyl-1,4-benzoquinone

C7H6O3 (138.0317)


   

2-Methoxy-1,4-benzoquinone

2-methoxycyclohexa-2,5-diene-1,4-dione

C7H6O3 (138.0317)


2-Methoxy-1,4-benzoquinone is found in fruits. 2-Methoxy-1,4-benzoquinone is isolated from fruits of Diospyros kaki (Japanese persimmon

   

keratan sulfate II (core 2-linked), degradation product 1

Keratan sulphuric acid II (core 2-linked), degradation product 1

C7H6O3 (138.0317)


keratan sulfate II (core 2-linked), degradation product 1, also known as 2,4-Dihydroxybenzaldehyd or beta-Resorcylaldehyde, is classified as a member of the Hydroxybenzaldehydes. Hydroxybenzaldehydes are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. keratan sulfate II (core 2-linked), degradation product 1 is considered to be soluble (in water) and acidic 2,4-Dihydroxybenzaldehyde is an endogenous metabolite. 2,4-Dihydroxybenzaldehyde is an endogenous metabolite.

   

alpha-Furyl methyl diketone

1-(furan-2-yl)propane-1,2-dione

C7H6O3 (138.0317)


alpha-Furyl methyl diketone is found in coffee and coffee products. alpha-Furyl methyl diketone is a constituent of coffee aroma. Constituent of coffee aroma. alpha-Furyl methyl diketone is found in coffee and coffee products.

   

5-Diazouracil

5-(diazyn-1-ium-1-yl)-6-oxo-1,6-dihydropyrimidin-2-olate

C4H2N4O2 (138.0178)


   

3,6-Dihydroxycyclohepta-2,4,6-trien-1-one

3,6-Dihydroxycyclohepta-2,4,6-trien-1-one

C7H6O3 (138.0317)


   

3,4-Dihydroxybenzaldehyde

3,4-Dihydroxybenzaldehyde, Vetec(TM) reagent grade, 97\\%

C7H6O3 (138.0317)


Protocatechualdehyde, also known as rancinamycin iv or 1,2-dihydroxy-4-formylbenzene, is a member of the class of compounds known as hydroxybenzaldehydes. Hydroxybenzaldehydes are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. Protocatechualdehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Protocatechualdehyde is an almond, bitter, and dry tasting compound and can be found in a number of food items such as plains prickly pear, mugwort, silver linden, and cardamom, which makes protocatechualdehyde a potential biomarker for the consumption of these food products. Protocatechualdehyde can be found primarily in urine. This molecule can be used as a precursor in the vanillin synthesis by biotransformation by cell cultures of Capsicum frutescens, a type of Chili pepper. It is also found in the mushroom Phellinus linteus . 3,4-dihydroxybenzaldehyde is a dihydroxybenzaldehyde. Also known as protocatechuic aldehyde, protocatechualdehyde is a naturally-occuring phenolic aldehyde that is found in barley, green cavendish bananas, grapevine leaves and root of the herb S. miltiorrhiza. Protocatechualdehyde possesses antiproliferative and pro-apoptotic properties against human breast cancer cells and colorectal cancer cells by reducing the expression of pro-oncogenes β-catenin and cyclin D1. 3,4-Dihydroxybenzaldehyde is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. See also: Black Cohosh (part of). 3,4-Dihydroxybenzaldehyde, also known as protocatechuic aldehyde, is a phenolic aldehyde, a compound released from cork stoppers into wine. This molecule can be used as a precursor in vanillin synthesis via biotransformation by cell cultures of Capsicum frutescens, a type of chili pepper. It is also found in the mushroom Phellinus linteus (Wikipedia). D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].

   

3-Hydroxybenzoicacid

3-Hydroxybenzoic acid

C7H6O3 (138.0317)


A monohydroxybenzoic acid that is benzoic acid substituted by a hydroxy group at position 3. It has been isolated from Taxus baccata. It is used as an intermediate in the synthesis of plasticisers, resins, pharmaceuticals, etc. 3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.

   

1-Butanesulfonic acid

1-Butanesulfonic acid

C4H10O3S (138.0351)


   

Thioisonicotinamide

4-Pyridinecarbothioamide

C6H6N2S (138.0252)


   

2-(hydroxymethyl)cyclohexa-2,5-diene-1,4-dione

2-(hydroxymethyl)cyclohexa-2,5-diene-1,4-dione

C7H6O3 (138.0317)


   

2,3-Dihydroxybenzaldehyde

2,3-Dihydroxybenzaldehyde

C7H6O3 (138.0317)


   

2-Hydroxy-6-methylcyclohexa-2,5-diene-1,4-dione

2-Hydroxy-6-methylcyclohexa-2,5-diene-1,4-dione

C7H6O3 (138.0317)


   

2,2-Sulfinyldiethanol

2,2-Sulfinyldiethanol

C4H10O3S (138.0351)


   

2-Hydroxy-3-methylcyclohexa-2,5-diene-1,4-dione

2-Hydroxy-3-methylcyclohexa-2,5-diene-1,4-dione

C7H6O3 (138.0317)


   

1-(2-Furanyl)-1, 2-propanedione

1-(2-Furanyl)-1, 2-propanedione

C7H6O3 (138.0317)


   

S-ethyl ethanesulfinothioate

S-ethyl ethanesulfinothioate

C4H10OS2 (138.0173)


   

4-hydroxybenzoate

4-Hydroxybenzoic acid

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

3-Hydroxybenzoate

3-Hydroxybenzoicacid

C7H6O3 (138.0317)


3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.

   

4-Hydroxybenzoic acid

Sodium 4-hydroxy-benzoate

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

Salicylic Acid

Salicylic Acid

C7H6O3 (138.0317)


Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].

   

protocatechuic aldehyde

3,4-dihydroxybenzaldehyde

C7H6O3 (138.0317)


Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].

   

p-Hydroxybenzoic acid

p-Hydroxybenzoic acid

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

2,5-Dihydroxybenzaldehyde

2,5-Dihydroxybenzaldehyde

C7H6O3 (138.0317)


A dihydroxybenzaldehyde carrying hydroxy groups at positions 2 and 5. 2,5-Dihydroxybenzaldehyde (Gentisaldehyde) is a naturally occurring antimicrobial that inhibits the growth of Mycobacterium avium subsp. paratuberculosis. 2,5-Dihydroxybenzaldehyde is active against S. aureus strains with a MIC50 of 500 mg/L[1][2].

   

4-Carboxyphenol

4-Carboxyphenol

C7H6O3 (138.0317)


   

Salicylic acid; LC-tDDA; CE10

Salicylic acid; LC-tDDA; CE10

C7H6O3 (138.0317)


   

Salicylic acid; LC-tDDA; CE20

Salicylic acid; LC-tDDA; CE20

C7H6O3 (138.0317)


   

Salicylic acid; LC-tDDA; CE30

Salicylic acid; LC-tDDA; CE30

C7H6O3 (138.0317)


   

Salicylic acid; LC-tDDA; CE40

Salicylic acid; LC-tDDA; CE40

C7H6O3 (138.0317)


   

3-Hydroxybenzoic acid

3-Hydroxybenzoic acid

C7H6O3 (138.0317)


   

3,4-dihydroxybenzaldehyde

3,4-dihydroxybenzaldehyde

C7H6O3 (138.0317)


   

2-Pyridylthioamide

2-Pyridinecarbothioamide

C6H6N2S (138.0252)


   

4-Pyridylthioamide

4-Pyridinecarbothioamide

C6H6N2S (138.0252)


   

Zinc phthalate

2-methoxycyclohexa-2,5-diene-1,4-dione

C7H6O3 (138.0317)


   

a-Furyl methyl diketone

1-(furan-2-yl)propane-1,2-dione

C7H6O3 (138.0317)


   

Isopropyl methanesulfonate

Isopropyl methanesulfonate

C4H10O3S (138.0351)


   

Methanesulfonic acid,propyl ester

Methanesulfonic acid,propyl ester

C4H10O3S (138.0351)


   

2-Amino-5-methylthiophene-3-carbonitrile

2-Amino-5-methylthiophene-3-carbonitrile

C6H6N2S (138.0252)


   

Sodium 3-methyl-2-oxobutanoate

Sodium 3-methyl-2-oxobutanoate

C5H7NaO3 (138.0293)


   

BENZENE, 1-ETHYNYL-2,4-DIFLUORO-

BENZENE, 1-ETHYNYL-2,4-DIFLUORO-

C8H4F2 (138.0281)


   

1H-Pyrazole-3-carbonitrile,4-nitro-

1H-Pyrazole-3-carbonitrile,4-nitro-

C4H2N4O2 (138.0178)


   

4-(aminomethyl)thiophene-2-carbonitrile

4-(aminomethyl)thiophene-2-carbonitrile

C6H6N2S (138.0252)


   

1,3-benzodioxol-4-ol

1,3-benzodioxol-4-ol

C7H6O3 (138.0317)


   

1-ethynyl-3,5-difluorobenzene

1-ethynyl-3,5-difluorobenzene

C8H4F2 (138.0281)


   

4-Fluoro-2,1,3-benzoxadiazole

4-Fluoro-2,1,3-benzoxadiazole

C6H3FN2O (138.0229)


   

methyl acetoacetate sodium salt

methyl acetoacetate sodium salt

C5H7NaO3 (138.0293)


   

Diethylsulfit

Diethylsulfit

C4H10O3S (138.0351)


   

2-Methyl-2-propanesulfinothioic S-acid

2-Methyl-2-propanesulfinothioic S-acid

C4H10OS2 (138.0173)


   

2-Propenoic acid,3-(2-furanyl)-, (2E)-

2-Propenoic acid,3-(2-furanyl)-, (2E)-

C7H6O3 (138.0317)


   

Perbenzoic acid

Perbenzoic acid

C7H6O3 (138.0317)


   

3-fluoromethyl-3-chloromethyloxetane

3-fluoromethyl-3-chloromethyloxetane

C5H8ClFO (138.0248)


   

2-ethenylthio-pyrimidine

2-ethenylthio-pyrimidine

C6H6N2S (138.0252)


   

3-azido-2-fluoropyridine

3-azido-2-fluoropyridine

C5H3FN4 (138.0342)


   

sodium,4-oxopentanoate

sodium,4-oxopentanoate

C5H7NaO3 (138.0293)


   

2-Fluoropurine

2-Fluoropurine

C5H3FN4 (138.0342)


   

1-Ethynyl-3,4-fluorobenzene

1-Ethynyl-3,4-fluorobenzene

C8H4F2 (138.0281)


   

Furylacrylic acid

Furylacrylic acid

C7H6O3 (138.0317)


   

2,2-Difluoromalonamide

2,2-Difluoromalonamide

C3H4F2N2O2 (138.0241)


   

Chloromethyl(dimethyl)methoxysilane

Chloromethyl(dimethyl)methoxysilane

C4H11ClOSi (138.0268)


   

1-CYCLOPENTENE-1,2-DICARBOXYLIC ANHYDRIDE

1-CYCLOPENTENE-1,2-DICARBOXYLIC ANHYDRIDE

C7H6O3 (138.0317)


   

(2-METHYL-1,3-THIAZOL-4-YL)ACETONITRILE

(2-METHYL-1,3-THIAZOL-4-YL)ACETONITRILE

C6H6N2S (138.0252)


   

2-Amino-4-methyl-3-thiophenecarbonitrile

2-Amino-4-methyl-3-thiophenecarbonitrile

C6H6N2S (138.0252)


   

sodium,3-methyl-2-oxobutanoate

sodium,3-methyl-2-oxobutanoate

C5H7NaO3 (138.0293)


   

1-methoxysulfonylpropane

1-methoxysulfonylpropane

C4H10O3S (138.0351)


   

3-Pyridinecarbothioamide

3-Pyridinecarbothioamide

C6H6N2S (138.0252)


   

2-KETOVALERIC ACID, SODIUM SALT

2-KETOVALERIC ACID, SODIUM SALT

C5H7NaO3 (138.0293)


   

5-aminomethyl-thiophene-3-carbonitrile

5-aminomethyl-thiophene-3-carbonitrile

C6H6N2S (138.0252)


   

Ethanol,2-(ethylsulfonyl)-

Ethanol,2-(ethylsulfonyl)-

C4H10O3S (138.0351)


   

6-METHYLIMIDAZO[2,1-B]THIAZOLE

6-METHYLIMIDAZO[2,1-B]THIAZOLE

C6H6N2S (138.0252)


   

butyldichloroborane

butyldichloroborane

C4H9BCl2 (138.0174)


   

3-(3-furyl)acrylic acid

3-(3-furyl)acrylic acid

C7H6O3 (138.0317)


   

3,5-DIHYDROXYBENZALDEHYDE

3,5-DIHYDROXYBENZALDEHYDE

C7H6O3 (138.0317)


   

Imidazo[5,1-b]thiazole, 7-methyl- (9CI)

Imidazo[5,1-b]thiazole, 7-methyl- (9CI)

C6H6N2S (138.0252)


   

2-Pyridinecarbothioamide

2-Pyridinecarbothioamide

C6H6N2S (138.0252)


   

(2E)-3-(3-Furyl)acrylic acid

(2E)-3-(3-Furyl)acrylic acid

C7H6O3 (138.0317)


   

3-(Methylsulfonyl)-1-propanol

3-(Methylsulfonyl)-1-propanol

C4H10O3S (138.0351)


   

2-[(2-Chloroethyl)thio]propane

2-[(2-Chloroethyl)thio]propane

C5H11ClS (138.027)


   

2,2-oxydiethanethiol

2,2-oxydiethanethiol

C4H10OS2 (138.0173)


   

2,6-Dihydroxybenzaldehyde

2,6-Dihydroxybenzaldehyde

C7H6O3 (138.0317)


   

2-Chlorostyrene

2-Chlorostyrene

C8H7Cl (138.0236)


   

3-Chlorostyrene

3-Chlorostyrene

C8H7Cl (138.0236)


   

(4-METHYL-1,3-THIAZOL-2-YL)ACETONITRILE

(4-METHYL-1,3-THIAZOL-2-YL)ACETONITRILE

C6H6N2S (138.0252)


   

5-Acetyl-2-furaldehyde

5-Acetyl-2-furaldehyde

C7H6O3 (138.0317)


   

5-fluoro-6-hydroxypicolinonitrile

5-fluoro-6-hydroxypicolinonitrile

C6H3FN2O (138.0229)


   

6-Fluoropurine

6-Fluoropurine

C5H3FN4 (138.0342)


   

3-Nitro-1H-pyrazole-4-carbonitrile

3-Nitro-1H-pyrazole-4-carbonitrile

C4H2N4O2 (138.0178)


   

BENZENE, 1-ETHYNYL-2,3-DIFLUORO-

BENZENE, 1-ETHYNYL-2,3-DIFLUORO-

C8H4F2 (138.0281)


   

4-Chlorostyrene

4-Chlorostyrene

C8H7Cl (138.0236)


   

3-amino-1,3-oxazolidin-2-one,hydrochloride

3-amino-1,3-oxazolidin-2-one,hydrochloride

C3H7ClN2O2 (138.0196)


   

3-amino-5-methylthiophene-2-carbonitrile

3-amino-5-methylthiophene-2-carbonitrile

C6H6N2S (138.0252)


   

5-(Aminomethyl)-2-thiophenecarbonitrile

5-(Aminomethyl)-2-thiophenecarbonitrile

C6H6N2S (138.0252)


   

4-Nitrophenolate

4-Nitrophenolate

C6H4NO3- (138.0191)


A phenolate anion that is the conjugate base of 4-nitrophenol; major species at pH 7.3.

   

1-Ethylsulfinylsulfanylethane

1-Ethylsulfinylsulfanylethane

C4H10OS2 (138.0173)


   

2-Nitrophenolate

2-Nitrophenolate

C6H4NO3- (138.0191)


   

Desoxyphyllostin

Desoxyphyllostin

C7H6O3 (138.0317)


   

3,4-Dihydroxycyclohepta-2,4,6-trien-1-one

3,4-Dihydroxycyclohepta-2,4,6-trien-1-one

C7H6O3 (138.0317)


   

139-85-5

InChI=1\C7H6O3\c8-4-5-1-2-6(9)7(10)3-5\h1-4,9-10

C7H6O3 (138.0317)


D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].

   

Sesamol

InChI=1\C7H6O3\c8-5-1-2-6-7(3-5)10-4-9-6\h1-3,8H,4H

C7H6O3 (138.0317)


D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2]. Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2].

   

Phenol-2-carboxylic acid

InChI=1\C7H6O3\c8-6-4-2-1-3-5(6)7(9)10\h1-4,8H,(H,9,10

C7H6O3 (138.0317)


Salicylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-72-7 (retrieved 2024-07-09) (CAS RN: 69-72-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].

   

m-Hba

InChI=1\C7H6O3\c8-6-3-1-2-5(4-6)7(9)10\h1-4,8H,(H,9,10

C7H6O3 (138.0317)


3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.

   

b-Resorcylaldehyde

(1RS,2RS)-Guaiacylglycerol 2-glucoside

C7H6O3 (138.0317)


Isolated from Pinus sylvestris ( Scotch pine) needles. A polyphenol metabolite detected in biological fluids [PhenolExplorer] 2,4-Dihydroxybenzaldehyde is an endogenous metabolite. 2,4-Dihydroxybenzaldehyde is an endogenous metabolite.

   

Salicylate

Salicylic Acid

C7H6O3 (138.0317)


Salicylic acid, also known as O-hydroxybenzoic acid or ionil-plus, is a member of the class of compounds known as salicylic acids. Salicylic acids are ortho-hydroxylated benzoic acids. Salicylic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Salicylic acid is a faint, nutty, and phenolic tasting compound and can be found in a number of food items such as pistachio, oriental wheat, black cabbage, and bayberry, which makes salicylic acid a potential biomarker for the consumption of these food products. Salicylic acid can be found primarily in blood, feces, saliva, and urine, as well as in human liver and skin tissues. Salicylic acid exists in all living species, ranging from bacteria to humans. In humans, salicylic acid is involved in the salicylic acid action pathway. Salicylic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Salicylic acid (from Latin salix, willow tree) is a lipophilic monohydroxybenzoic acid, a type of phenolic acid, and a beta hydroxy acid (BHA). It has the formula C7H6O3. This colorless crystalline organic acid is widely used in organic synthesis and functions as a plant hormone. It is derived from the metabolism of salicin. In addition to serving as an important active metabolite of aspirin (acetylsalicylic acid), which acts in part as a prodrug to salicylic acid, it is probably best known for its use as a key ingredient in topical anti-acne products. The salts and esters of salicylic acid are known as salicylates . Oral rat LD50: 891 mg/kg. Inhalation rat LC50: > 900 mg/m3/1hr. Irritation: skin rabbit: 500 mg/24H mild. Eye rabbit: 100 mg severe. Investigated a mutagen and reproductive effector (DrugBank). Salicylic acid directly and irreversibly inhibits the activity of both types of cyclo-oxygenases (COX-1 and COX-2) to decrease the formation of precursors of prostaglandins and thromboxanes from arachidonic acid. Salicylate may competitively inhibit prostaglandin formation. Salicylates antirheumatic (nonsteroidal anti-inflammatory) actions are a result of its analgesic and anti-inflammatory mechanisms. Salicylic acid is a key ingredient in many skin-care products for the treatment of acne, psoriasis, calluses, corns, keratosis pilaris, and warts. It works by causing the cells of the epidermis to slough off more readily, preventing pores from clogging up, and allowing room for new cell growth. Because of its effect on skin cells, salicylic acid is used in several shampoos used to treat dandruff. Salicylic acid is also used as an active ingredient in gels which remove verrucas (plantar warts). Salicylic acid inhibits the oxidation of uridine-5-diphosphoglucose (UDPG) competitively with nicotinamide adenosine dinucleotide (NAD) and noncompetitively with UDPG. It also competitively inhibits the transferring of glucuronyl group of uridine-5-phosphoglucuronic acid (UDPGA) to the phenolic acceptor. The wound-healing retardation action of salicylates is probably due mainly to its inhibitory action on mucopolysaccharide synthesis (T3DB). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].

   

6-Hydroxynicotinate(1-)

6-Hydroxynicotinate(1-)

C6H4NO3- (138.0191)


A monocarboxylic acid anion resulting from the deprotonation of 6-hydroxynicotinic acid; the major species at pH 7.3.

   

5-Hydroxypyridine-2-carboxylate

5-Hydroxypyridine-2-carboxylate

C6H4NO3- (138.0191)


   

2-Amino-4-carboxypyrimidine

2-Amino-4-carboxypyrimidine

C5H4N3O2- (138.0304)


   

picolinic acid-N-oxide

picolinic acid-N-oxide

C6H4NO3- (138.0191)


   

6-Hydroxypicolinate

6-Hydroxypicolinate

C6H4NO3- (138.0191)


   

Salicylic Acid-d4

Salicylic Acid-d4

C7H6O3 (138.0317)


   

methoxybenzoquinone

2-methoxycyclohexa-2,5-diene-1,4-dione

C7H6O3 (138.0317)


   

1-(2-Furyl)propane-1,2-dione

1-(2-Furyl)propane-1,2-dione

C7H6O3 (138.0317)


   

4-Oxocyclohex-2,5-dienecarboxylate

4-Oxocyclohex-2,5-dienecarboxylate

C7H6O3 (138.0317)


   

4-hydroxybenzoic

NA

C7H6O3 (138.0317)


{"Ingredient_id": "HBIN010507","Ingredient_name": "4-hydroxybenzoic","Alias": "NA","Ingredient_formula": "C7H6O3","Ingredient_Smile": "C1=CC(=CC=C1C(=O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "32621","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

1-(methanesulfinylsulfanyl)propane

1-(methanesulfinylsulfanyl)propane

C4H10OS2 (138.0173)


   

[(propane-1-sulfinyl)sulfanyl]methane

[(propane-1-sulfinyl)sulfanyl]methane

C4H10OS2 (138.0173)