Exact Mass: 135.0446

Exact Mass Matches: 135.0446

Found 199 metabolites which its exact mass value is equals to given mass value 135.0446, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Adenine

7H-purin-6-amine

C5H5N5 (135.0545)


Adenine is the parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. It has a role as a human metabolite, a Daphnia magna metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purine nucleobase and a member of 6-aminopurines. It derives from a hydride of a 9H-purine. A purine base and a fundamental unit of adenine nucleotides. Adenine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenine is a natural product found in Fritillaria cirrhosa, Annona purpurea, and other organisms with data available. Adenine is a purine nucleobase with an amine group attached to the carbon at position 6. Adenine is the precursor for adenosine and deoxyadenosine nucleosides. Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (A3372, A3373). Adenine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine base and a fundamental unit of ADENINE NUCLEOTIDES. See also: adenine; dextrose, unspecified form (component of) ... View More ... Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (PMID: 17052198, 17520339). Widespread throughout animal and plant tissue, purine components of DNA, RNA, and coenzymes. Vitamin The parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. Adenine (/ˈædɪnɪn/) (symbol A or Ade) is a purine nucleobase. It is one of the four nucleobases in the nucleic acids of DNA, the other three being guanine (G), cytosine (C), and thymine (T). Adenine derivatives have various roles in biochemistry including cellular respiration, in the form of both the energy-rich adenosine triphosphate (ATP) and the cofactors nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) and Coenzyme A. It also has functions in protein synthesis and as a chemical component of DNA and RNA.[2] The shape of adenine is complementary to either thymine in DNA or uracil in RNA. The adjacent image shows pure adenine, as an independent molecule. When connected into DNA, a covalent bond is formed between deoxyribose sugar and the bottom left nitrogen (thereby removing the existing hydrogen atom). The remaining structure is called an adenine residue, as part of a larger molecule. Adenosine is adenine reacted with ribose, as used in RNA and ATP; Deoxyadenosine is adenine attached to deoxyribose, as used to form DNA. Adenine forms several tautomers, compounds that can be rapidly interconverted and are often considered equivalent. However, in isolated conditions, i.e. in an inert gas matrix and in the gas phase, mainly the 9H-adenine tautomer is found.[3][4] Purine metabolism involves the formation of adenine and guanine. Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which in turn is synthesized from a pre-existing ribose phosphate through a complex pathway using atoms from the amino acids glycine, glutamine, and aspartic acid, as well as the coenzyme tetrahydrofolate. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].

   

S-Methylcysteine

S-Methyl-L-cysteine, substrate for methionine sulfoxide reductase A

C4H9NO2S (135.0354)


S-methylcysteine is a cysteine derivative that is L-cysteine in which the hydrogen attached to the sulfur is replaced by a methyl group. It has a role as a human urinary metabolite and a plant metabolite. It is a tautomer of a S-methylcysteine zwitterion. S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

Homocysteine

(2S)-2-amino-4-sulfanylbutanoic acid

C4H9NO2S (135.0354)


A high level of blood serum homocysteine is a powerful risk factor for cardiovascular disease. Unfortunately, one study which attempted to decrease the risk by lowering homocysteine was not fruitful. This study was conducted on nearly 5000 Norwegian heart attack survivors who already had severe, late-stage heart disease. No study has yet been conducted in a preventive capacity on subjects who are in a relatively good state of health.; Elevated levels of homocysteine have been linked to increased fractures in elderly persons. The high level of homocysteine will auto-oxidize and react with reactive oxygen intermediates and damage endothelial cells and has a higher risk to form a thrombus. Homocysteine does not affect bone density. Instead, it appears that homocysteine affects collagen by interfering with the cross-linking between the collagen fibers and the tissues they reinforce. Whereas the HOPE-2 trial showed a reduction in stroke incidence, in those with stroke there is a high rate of hip fractures in the affected side. A trial with 2 homocysteine-lowering vitamins (folate and B12) in people with prior stroke, there was an 80\\\\\\% reduction in fractures, mainly hip, after 2 years. Interestingly, also here, bone density (and the number of falls) were identical in the vitamin and the placebo groups.; Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. Pyridoxal, folic acid, riboflavin, and Vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocysteinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD. (PMID 17136938, 15630149); Homocysteine is an amino acid with the formula HSCH2CH2CH(NH2)CO2H. It is a homologue of the amino acid cysteine, differing by an additional methylene (-CH2-) group. It is biosynthesized from methionine by the removal of its terminal C? methyl group. Homocysteine can be recycled into methionine or converted into cysteine with the aid of B-vitamins.; Studies reported in 2006 have shown that giving vitamins [folic acid, B6 and B12] to reduce homocysteine levels may not quickly offer benefit, however a significant 25\\\\\\% reduction in stroke was found in the HOPE-2 study even in patients mostly with existing serious arterial decline although the overall death rate was not significantly changed by the intervention in the trial. Clearly, reducing homocysteine does not quickly repair existing... Homocysteine (CAS: 454-29-5) is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with an increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Pyridoxal, folic acid, riboflavin, and vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocystinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD (PMID: 17136938 , 15630149). Moreover, homocysteine is found to be associated with cystathionine beta-synthase deficiency, cystathioninuria, methylenetetrahydrofolate reductase deficiency, and sulfite oxidase deficiency, which are inborn errors of metabolism. [Spectral] L-Homocysteine (exact mass = 135.0354) and L-Valine (exact mass = 117.07898) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Homocysteine is biosynthesized naturally via a multi-step process.[9] First, methionine receives an adenosine group from ATP, a reaction catalyzed by S-adenosyl-methionine synthetase, to give S-adenosyl methionine (SAM-e). SAM-e then transfers the methyl group to an acceptor molecule, (e.g., norepinephrine as an acceptor during epinephrine synthesis, DNA methyltransferase as an intermediate acceptor in the process of DNA methylation). The adenosine is then hydrolyzed to yield L-homocysteine. L-Homocysteine has two primary fates: conversion via tetrahydrofolate (THF) back into L-methionine or conversion to L-cysteine.[10] Biosynthesis of cysteine Mammals biosynthesize the amino acid cysteine via homocysteine. Cystathionine β-synthase catalyses the condensation of homocysteine and serine to give cystathionine. This reaction uses pyridoxine (vitamin B6) as a cofactor. Cystathionine γ-lyase then converts this double amino acid to cysteine, ammonia, and α-ketobutyrate. Bacteria and plants rely on a different pathway to produce cysteine, relying on O-acetylserine.[11] Methionine salvage Homocysteine can be recycled into methionine. This process uses N5-methyl tetrahydrofolate as the methyl donor and cobalamin (vitamin B12)-related enzymes. More detail on these enzymes can be found in the article for methionine synthase. Other reactions of biochemical significance Homocysteine can cyclize to give homocysteine thiolactone, a five-membered heterocycle. Because of this "self-looping" reaction, homocysteine-containing peptides tend to cleave themselves by reactions generating oxidative stress.[12] Homocysteine also acts as an allosteric antagonist at Dopamine D2 receptors.[13] It has been proposed that both homocysteine and its thiolactone may have played a significant role in the appearance of life on the early Earth.[14] L-Homocysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=454-28-4 (retrieved 2024-06-29) (CAS RN: 6027-13-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].

   

2-Hydroxymethylserine

alpha-(Hydroxymethyl)serine

C4H9NO4 (135.0532)


   

(+)-threo-2-Amino-3,4-dihydroxybutanoic acid

(+)-threo-2-Amino-3,4-dihydroxybutanoic acid

C4H9NO4 (135.0532)


(+)-threo-2-Amino-3,4-dihydroxybutanoic acid is found in mushrooms. (+)-threo-2-Amino-3,4-dihydroxybutanoic acid is isolated from the mushroom Lyophyllum ulmariu

   

DL-Homocysteine

2-Amino-4-mercaptobutyric acid

C4H9NO2S (135.0354)


DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain.

   

S-methylcysteine

S-methylcysteine, hydrochloride, (L-Cys)-isomer

C4H9NO2S (135.0354)


Methylcysteine is one of the identified number of bioactive substances in garlic that are water soluble (PMID 16484549). It has been suggested that the use of these organosulfur agents derived from garlic could protect partially oxidized and glycated LDL or plasma against further oxidative and glycative deterioration, which might benefit patients with diabetic-related vascular diseases (PMID 15161248). It may also exert some chemopreventive effects on chemical carcinogenesis. However, it should be borne in mind that may also demonstrate promotion potential, depending on the organ examined (PMID 9591199). Methylcystein is a biomarker for the consumption of dried and cooked beans. S-n-methylcysteine, also known as (2r)-2-amino-3-(methylsulfanyl)propanoic acid or 3-(methylthio)-L-alanine, is a member of the class of compounds known as L-cysteine-s-conjugates. L-cysteine-s-conjugates are compounds containing L-cysteine where the thio-group is conjugated. S-n-methylcysteine is soluble (in water) and a moderately acidic compound (based on its pKa). S-n-methylcysteine can be found in soft-necked garlic, which makes S-n-methylcysteine a potential biomarker for the consumption of this food product. S-n-methylcysteine can be found primarily in blood and urine. S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

1-Hydroxybenzotriazole

1-Hydroxybenzotriazole, ammonium salt

C6H5N3O (135.0433)


   

1H-Pyrazolo[3,4-d]pyrimidin-4-amine

1H-Pyrazolo[3,4-d]pyrimidin-4-amine

C5H5N5 (135.0545)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D009676 - Noxae > D000963 - Antimetabolites Pyrazoloadenine is a potent RET (REarranged during Transfection) lung cancer oncoprotein inhibitor. Pyrazoloadenine shows anticancer activity[1][2].

   

2-Aminopurine

2,3-dihydro-1H-purin-2-imine

C5H5N5 (135.0545)


   

9h-Purin-9-amine

9h-Purin-9-amine

C5H5N5 (135.0545)


   

Mecysteine

methyl 2-amino-3-sulfanylpropanoate

C4H9NO2S (135.0354)


   

N-Methylcysteine

2-(Methylamino)-3-sulphanylpropanoic acid

C4H9NO2S (135.0354)


   

Thiomorpholine 1,1-dioxide

1lambda6-thiomorpholine-1,1-dione

C4H9NO2S (135.0354)


   

S-N-Methylcysteine

S-methylcysteine, hydrochloride, (L-Cys)-isomer

C4H9NO2S (135.0354)


S-n-methylcysteine, also known as (2r)-2-amino-3-(methylsulfanyl)propanoic acid or 3-(methylthio)-L-alanine, is a member of the class of compounds known as L-cysteine-s-conjugates. L-cysteine-s-conjugates are compounds containing L-cysteine where the thio-group is conjugated. S-n-methylcysteine is soluble (in water) and a moderately acidic compound (based on its pKa). S-n-methylcysteine can be found in soft-necked garlic, which makes S-n-methylcysteine a potential biomarker for the consumption of this food product. S-n-methylcysteine can be found primarily in blood and urine. S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

3-(METHYLTHIO)ALANINE

3-(METHYLTHIO)ALANINE

C4H9NO2S (135.0354)


   

4-Hydroxybenzotriazole

4-Hydroxybenzotriazole

C6H5N3O (135.0433)


CONFIDENCE standard compound; INTERNAL_ID 2380 CONFIDENCE Reference Standard (Level 1); Source; 4OHBT_MSMS.txt CONFIDENCE standard compound; INTERNAL_ID 8681 CONFIDENCE standard compound; INTERNAL_ID 8213 CONFIDENCE standard compound; INTERNAL_ID 4201 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2900 CONFIDENCE standard compound; INTERNAL_ID 2236

   

1-Hydroxybenzotriazole

1-Hydroxybenzotriazole

C6H5N3O (135.0433)


CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2378; ORIGINAL_PRECURSOR_SCAN_NO 2376 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2376; ORIGINAL_PRECURSOR_SCAN_NO 2375 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2379; ORIGINAL_PRECURSOR_SCAN_NO 2375 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2370; ORIGINAL_PRECURSOR_SCAN_NO 2369 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2440; ORIGINAL_PRECURSOR_SCAN_NO 2438 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2380; ORIGINAL_PRECURSOR_SCAN_NO 2378 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5008; ORIGINAL_PRECURSOR_SCAN_NO 5005 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5019; ORIGINAL_PRECURSOR_SCAN_NO 5018 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5044; ORIGINAL_PRECURSOR_SCAN_NO 5043 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5043; ORIGINAL_PRECURSOR_SCAN_NO 5039 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5051; ORIGINAL_PRECURSOR_SCAN_NO 5048 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5050; ORIGINAL_PRECURSOR_SCAN_NO 5049 INTERNAL_ID 852; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5050; ORIGINAL_PRECURSOR_SCAN_NO 5049 CONFIDENCE standard compound; INTERNAL_ID 2232 CONFIDENCE Reference Standard (Level 1); Source; 1OHBT_MSMS.txt CONFIDENCE standard compound; EAWAG_UCHEM_ID 2899

   

Aminopurine

Aminopurine

C5H5N5 (135.0545)


   

4-amino-2,3-dihydroxy-butyric acid

4-amino-2,3-dihydroxy-butyric acid

C4H9NO4 (135.0532)


   

2-amino-3-sulfanylbutanoic acid

2-amino-3-sulfanylbutanoic acid

C4H9NO2S (135.0354)


   

methyl D-cysteinate

methyl D-cysteinate

C4H9NO2S (135.0354)


   

Zarzissine

Zarzissine

C5H5N5 (135.0545)


A organonitrogen heterocyclic compound that is 1H-imidazo[4,5-d]pyridazine substituted by an amino group at position 2. A guanidine alkaloid isolated from Anchinoe paupertas, it exhibits cytotoxic activity against human and murine tumor cell lines.

   

2,3,4-trihydroxybutanamide

2,3,4-trihydroxybutanamide

C4H9NO4 (135.0532)


   

Adenine

Adenine

C5H5N5 (135.0545)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2357 INTERNAL_ID 2357; CONFIDENCE Reference Standard (Level 1) MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GFFGJBXGBJISGV_STSL_0142_Adenine_0125fmol_180430_S2_LC02_MS02_16; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].

   

L-Homocysteine

DL-Homocysteine

C4H9NO2S (135.0354)


A homocysteine that has L configuration. L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].

   

Homocysteine

DL-Homocysteine

C4H9NO2S (135.0354)


A sulfur-containing amino acid consisting of a glycine core with a 2-mercaptoethyl side-chain. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; FFFHZYDWPBMWHY_STSL_0127_Homocysteine_8000fmol_180506_S2_LC02_MS02_123; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].

   

Methylcysteine

S-Methyl-L-cysteine

C4H9NO2S (135.0354)


S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

Adenine hydrochloride

Adenine hydrochloride

C5H5N5 (135.0545)


   

Adenine; LC-tDDA; CE10

Adenine; LC-tDDA; CE10

C5H5N5 (135.0545)


   

Adenine; LC-tDDA; CE20

Adenine; LC-tDDA; CE20

C5H5N5 (135.0545)


   

Adenine; LC-tDDA; CE30

Adenine; LC-tDDA; CE30

C5H5N5 (135.0545)


   

Adenine; LC-tDDA; CE40

Adenine; LC-tDDA; CE40

C5H5N5 (135.0545)


   

3,N4-Etheno-cytosine

3,N4-Etheno-cytosine

C6H5N3O1 (135.0433)


   

S-Methyl-L-cysteine

S-Methyl-L-cysteine

C4H9NO2S (135.0354)


S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

mecysteine

mecysteine

C4H9NO2S (135.0354)


C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D005100 - Expectorants

   

(+)-Threo-form

(+)-threo-2-Amino-3,4-dihydroxybutanoic acid

C4H9NO4 (135.0532)


   

2-amino-3,4-dihydroxybutanoic acid

(+)-threo-2-Amino-3,4-dihydroxybutanoic acid

C4H9NO4 (135.0532)


   

3H-Imidazo[4,5-b]pyridine, 4-oxide

3H-Imidazo[4,5-b]pyridine, 4-oxide

C6H5N3O (135.0433)


   

6-fluoroindole

6-fluoroindole

C8H6FN (135.0484)


   

2-Fluorophenylacetonitrile

2-Fluorophenylacetonitrile

C8H6FN (135.0484)


   

3-Thiophenamine,tetrahydro-, 1,1-dioxide

3-Thiophenamine,tetrahydro-, 1,1-dioxide

C4H9NO2S (135.0354)


   

furo[2,3-d]pyrimidin-4-amine

furo[2,3-d]pyrimidin-4-amine

C6H5N3O (135.0433)


   

Piperidin-3-one hydrochloride

Piperidin-3-one hydrochloride

C5H10ClNO (135.0451)


   

OXAZOLO[4,5-B]PYRIDIN-2-AMINE

OXAZOLO[4,5-B]PYRIDIN-2-AMINE

C6H5N3O (135.0433)


   

1H-1,2,4-Triazole,3-(1H-imidazol-1-yl)-(9CI)

1H-1,2,4-Triazole,3-(1H-imidazol-1-yl)-(9CI)

C5H5N5 (135.0545)


   

AM0210000 [RTECS]

AM0210000 [RTECS]

C8H6FN (135.0484)


   

2,1,3-benzoxadiazol-4-amine

2,1,3-benzoxadiazol-4-amine

C6H5N3O (135.0433)


   

3-Fluoro-4-methylbenzonitrile

3-Fluoro-4-methylbenzonitrile

C8H6FN (135.0484)


   

n-isopropyl-2-chloroacetamide

n-isopropyl-2-chloroacetamide

C5H10ClNO (135.0451)


   

1H-pyrazolo[3,4-b]pyrazin-3-amine

1H-pyrazolo[3,4-b]pyrazin-3-amine

C5H5N5 (135.0545)


   

3-fluorobenzyl cyanide

3-fluorobenzyl cyanide

C8H6FN (135.0484)


   

Nitroacetaldehyde dimethyl acetal

Nitroacetaldehyde dimethyl acetal

C4H9NO4 (135.0532)


   

6H-Pyrrolo[2,3-d]pyrimidin-6-one, 5,7-dihydro- (8CI)

6H-Pyrrolo[2,3-d]pyrimidin-6-one, 5,7-dihydro- (8CI)

C6H5N3O (135.0433)


   

2-Chloro-N-ethyl-N-methylacetamide

2-Chloro-N-ethyl-N-methylacetamide

C5H10ClNO (135.0451)


   

OXAZOLO[4,5-C]PYRIDIN-2-AMINE

OXAZOLO[4,5-C]PYRIDIN-2-AMINE

C6H5N3O (135.0433)


   

1H-Pyrazolo[4,3-d]pyrimidin-7-amine

1H-Pyrazolo[4,3-d]pyrimidin-7-amine

C5H5N5 (135.0545)


   

1,5,9-triazabicyclo[4.3.0]nona-3,5,7-trien-2-one

1,5,9-triazabicyclo[4.3.0]nona-3,5,7-trien-2-one

C6H5N3O (135.0433)


   

1H-Benzotriazol-5-ol

1H-Benzotriazol-5-ol

C6H5N3O (135.0433)


   

1h-pyrrolo[2,3-d]pyrimidin-2(7h)-one

1h-pyrrolo[2,3-d]pyrimidin-2(7h)-one

C6H5N3O (135.0433)


   

4-Fluoro-2-methylbenzonitrile

4-Fluoro-2-methylbenzonitrile

C8H6FN (135.0484)


   

ethyl4-hydroxy-2-methylpyrimidine-5-carboxylate

ethyl4-hydroxy-2-methylpyrimidine-5-carboxylate

C6H5N3O (135.0433)


   

tetrazolo[1,5-a]pyridin-8-amine

tetrazolo[1,5-a]pyridin-8-amine

C5H5N5 (135.0545)


   

S-methyl-D-cysteine

S-methyl-D-cysteine

C4H9NO2S (135.0354)


   

1H-1,2,3-Triazolo[4,5-c]pyridin-7-amine(9CI)

1H-1,2,3-Triazolo[4,5-c]pyridin-7-amine(9CI)

C5H5N5 (135.0545)


   

1H-Imidazole-4-carboxamide, 5-ethynyl- (9CI)

1H-Imidazole-4-carboxamide, 5-ethynyl- (9CI)

C6H5N3O (135.0433)


   

1H-Imidazo[4,5-f][1,4]oxazepine (9CI)

1H-Imidazo[4,5-f][1,4]oxazepine (9CI)

C6H5N3O (135.0433)


   

Acetamide,2-chloro-N-propyl-

Acetamide,2-chloro-N-propyl-

C5H10ClNO (135.0451)


   

Isoxazolo[4,5-b]pyridin-3-amine

Isoxazolo[4,5-b]pyridin-3-amine

C6H5N3O (135.0433)


   

1-Methylcyclopropanesulfonamide

1-Methylcyclopropanesulfonamide

C4H9NO2S (135.0354)


   

1H-Pyrazolo[4,3-B]Pyridin-5-ol

1H-Pyrazolo[4,3-B]Pyridin-5-ol

C6H5N3O (135.0433)


   

2-Methoxypyrimidine-5-carbonitrile

2-Methoxypyrimidine-5-carbonitrile

C6H5N3O (135.0433)


   

2H-1,2-Thiazine,tetrahydro-, 1,1-dioxide

2H-1,2-Thiazine,tetrahydro-, 1,1-dioxide

C4H9NO2S (135.0354)


   

PYRROLO[1,2-D][1,2,4]TRIAZIN-1(2H)-ONE

PYRROLO[1,2-D][1,2,4]TRIAZIN-1(2H)-ONE

C6H5N3O (135.0433)


   

Diethylcarbamic chloride

Diethylcarbamic chloride

C5H10ClNO (135.0451)


   

1H-Pyrazolo[3,4-c]pyridin-3(2H)-one

1H-Pyrazolo[3,4-c]pyridin-3(2H)-one

C6H5N3O (135.0433)


   

1-Hydroxybenzotriazole hydrate

1-Hydroxybenzotriazole hydrate

C6H5N3O (135.0433)


   

5-Fluoroindole

5-Fluoroindole

C8H6FN (135.0484)


   

3-(Methylsulfonyl)azetidine

3-(Methylsulfonyl)azetidine

C4H9NO2S (135.0354)


   

1,2,4-Triazolo[4,3-apyrazin-8-amine

1,2,4-Triazolo[4,3-apyrazin-8-amine

C5H5N5 (135.0545)


   

Thiomorpholine 1,1-dioxide

Thiomorpholine 1,1-dioxide

C4H9NO2S (135.0354)


   

Imidazo[1,2-a]pyrimidin-5(1H)-one

Imidazo[1,2-a]pyrimidin-5(1H)-one

C6H5N3O (135.0433)


   

OXAZOLO[5,4-B]PYRIDIN-2-AMINE

OXAZOLO[5,4-B]PYRIDIN-2-AMINE

C6H5N3O (135.0433)


   

1H-pyrazolo[3,4-b]pyridin-5-ol

1H-pyrazolo[3,4-b]pyridin-5-ol

C6H5N3O (135.0433)


   

D-Homocysteine

(R)-2-AMINO-4-MERCAPTOBUTANOIC ACID

C4H9NO2S (135.0354)


   

4-Fluoro-3-methylbenzonitrile

4-Fluoro-3-methylbenzonitrile

C8H6FN (135.0484)


   

2-chloro-n,n-dimethyl-propanamid

2-chloro-n,n-dimethyl-propanamid

C5H10ClNO (135.0451)


   

2-chloro-N-ethylpropionamide

2-chloro-N-ethylpropionamide

C5H10ClNO (135.0451)


   

1H-Imidazo[4,5-b]pyridin-2(3H)-one

1H-Imidazo[4,5-b]pyridin-2(3H)-one

C6H5N3O (135.0433)


   

1H-IMIDAZO[4,5-B]PYRAZIN-2-AMINE

1H-IMIDAZO[4,5-B]PYRAZIN-2-AMINE

C5H5N5 (135.0545)


   

3,N4-ethenocytosine

imidazo[1,2-c]pyrimidin-5(6H)-one

C6H5N3O (135.0433)


   

1,4-Oxathiane, 4,4-dihydro-4-imino-, 4-oxide

1,4-Oxathiane, 4,4-dihydro-4-imino-, 4-oxide

C4H9NO2S (135.0354)


   

6-Aminopurine phosphate

6-Aminopurine phosphate

C5H5N5 (135.0545)


   

Isoxazolo[5,4-c]pyridin-3-amine

Isoxazolo[5,4-c]pyridin-3-amine

C6H5N3O (135.0433)


   

5-(1H-PYRROL-2-YL)-1H-TETRAZOLE

5-(1H-PYRROL-2-YL)-1H-TETRAZOLE

C5H5N5 (135.0545)


   

5-Fluoro-2-methylbenzonitrile

5-Fluoro-2-methylbenzonitrile

C8H6FN (135.0484)


   

4-Fluoroindole

4-Fluoroindole

C8H6FN (135.0484)


   

3H-IMIDAZO[4,5-B]PYRIDIN-6-OL

3H-IMIDAZO[4,5-B]PYRIDIN-6-OL

C6H5N3O (135.0433)


   

5-Methoxy-2-pyrimidinecarbonitrile

5-Methoxy-2-pyrimidinecarbonitrile

C6H5N3O (135.0433)


   

1H-Imidazole-1-carboximidamide,N-cyano-

1H-Imidazole-1-carboximidamide,N-cyano-

C5H5N5 (135.0545)


   

Pyrazolo[1,5-a]pyrimidin-5-ol

Pyrazolo[1,5-a]pyrimidin-5-ol

C6H5N3O (135.0433)


   

PYRAZOLO[1,5-A]PYRIMIDIN-7(4H)-ONE

PYRAZOLO[1,5-A]PYRIMIDIN-7(4H)-ONE

C6H5N3O (135.0433)


   

IMIDAZO[4,5-B]PYRIDIN-5-OL

IMIDAZO[4,5-B]PYRIDIN-5-OL

C6H5N3O (135.0433)


   

1H-Pyrazolo[3,4-b]pyridin-3(2H)-one

1H-Pyrazolo[3,4-b]pyridin-3(2H)-one

C6H5N3O (135.0433)


   

Imidazo[1,2-b]pyridazin-6-ol

Imidazo[1,2-b]pyridazin-6-ol

C6H5N3O (135.0433)


   

2-Fluoro-3-methylbenzonitrile

2-Fluoro-3-methylbenzonitrile

C8H6FN (135.0484)


   

2-Fluoro-6-methylbenzonitrile

2-Fluoro-6-methylbenzonitrile

C8H6FN (135.0484)


   

1H-Imidazo[4,5-c]pyridin-4-ol

1H-Imidazo[4,5-c]pyridin-4-ol

C6H5N3O (135.0433)


   

2,4-Diamino-5-cyanopyrimidine

2,4-Diamino-5-cyanopyrimidine

C5H5N5 (135.0545)


   

2-aminocyclopentan-1-one

2-aminocyclopentan-1-one

C5H10ClNO (135.0451)


   

(1S,4S)-2-Oxa-5-azabicyclo[2.2.1]heptaneHCl

(1S,4S)-2-Oxa-5-azabicyclo[2.2.1]heptaneHCl

C5H10ClNO (135.0451)


   

Oxazolo[5,4-c]pyridin-2-amine

Oxazolo[5,4-c]pyridin-2-amine

C6H5N3O (135.0433)


   

1,3-Dihydro-2H-Imidazo[4,5-c]Pyridin-2-One

1,3-Dihydro-2H-Imidazo[4,5-c]Pyridin-2-One

C6H5N3O (135.0433)


   

7-Fluoro-1H-indole

7-Fluoro-1H-indole

C8H6FN (135.0484)


   

5-Pyrimidinecarbonitrile, 4-methoxy- (8CI)

5-Pyrimidinecarbonitrile, 4-methoxy- (8CI)

C6H5N3O (135.0433)


   

4-Hydroxy-2-methylpyrimidine-5-carbonitrile

4-Hydroxy-2-methylpyrimidine-5-carbonitrile

C6H5N3O (135.0433)


   

1h-Pyrazolo[3,4-B]Pyridin-3-Ol

1h-Pyrazolo[3,4-B]Pyridin-3-Ol

C6H5N3O (135.0433)


   

(1S,4S)-2-Oxa-5-azabicyclo[2.2.1]heptane HCl

(1S,4S)-2-Oxa-5-azabicyclo[2.2.1]heptane HCl

C5H10ClNO (135.0451)


   

5-Pyrimidinecarbonitrile, 4,6-diamino- (9CI)

5-Pyrimidinecarbonitrile, 4,6-diamino- (9CI)

C5H5N5 (135.0545)


   

1H-1,2,4-Triazolo[3,4-b][1,3,5]triazepine(9CI)

1H-1,2,4-Triazolo[3,4-b][1,3,5]triazepine(9CI)

C5H5N5 (135.0545)


   

[1,2,4]Triazolo[1,5-a]pyrazin-2-amine

[1,2,4]Triazolo[1,5-a]pyrazin-2-amine

C5H5N5 (135.0545)


   

1-methylpyrrolidin-3-one,hydrochloride

1-methylpyrrolidin-3-one,hydrochloride

C5H10ClNO (135.0451)


   

8-Aminopurine

8-Aminopurine

C5H5N5 (135.0545)


   

4-Oxopiperidinium chloride

4-Oxopiperidinium chloride

C5H10ClNO (135.0451)


   

2-Aminopurine

2-Aminopurine

C5H5N5 (135.0545)


D009676 - Noxae > D000963 - Antimetabolites

   

3-Pyridazinecarbonitrile, 6-hydrazino

3-Pyridazinecarbonitrile, 6-hydrazino

C5H5N5 (135.0545)


   

3-Chloro-N,N-diMethylpropanamide

3-Chloro-N,N-diMethylpropanamide

C5H10ClNO (135.0451)


   

Pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one

Pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one

C6H5N3O (135.0433)


   

2-methyl-3,5,7,8,9-pentazabicyclo[4.3.0]nona-2,4,6,8-tetraene

2-methyl-3,5,7,8,9-pentazabicyclo[4.3.0]nona-2,4,6,8-tetraene

C5H5N5 (135.0545)


   

2-[(2-hydroxyethyl)thio]acetamide

2-[(2-hydroxyethyl)thio]acetamide

C4H9NO2S (135.0354)


   

N-Allylmethanesulfonamide

N-Allylmethanesulfonamide

C4H9NO2S (135.0354)


   

[1,2,4]Triazolo[4,3-a]pyridin-3(2H)-one

[1,2,4]Triazolo[4,3-a]pyridin-3(2H)-one

C6H5N3O (135.0433)


   

Ethenesulfonic acid dimethylamide

Ethenesulfonic acid dimethylamide

C4H9NO2S (135.0354)


   

6-Methoxy-pyrazine-2-carbonitrile

6-Methoxy-pyrazine-2-carbonitrile

C6H5N3O (135.0433)


   

Imidazo[1,2-A]Pyrazin-8-Ol

Imidazo[1,2-A]Pyrazin-8-Ol

C6H5N3O (135.0433)


   

3-Fluoro-5-methylbenzonitrile

3-Fluoro-5-methylbenzonitrile

C8H6FN (135.0484)


   

7H-Purin-6-amine

7H-Purin-6-amine

C5H5N5 (135.0545)


   

5H-Pyrrolo[2,3-d]pyrimidin-5-one, 6,7-dihydro- (9CI)

5H-Pyrrolo[2,3-d]pyrimidin-5-one, 6,7-dihydro- (9CI)

C6H5N3O (135.0433)


   

Pyrazolo[1,5-a]pyrimidin-5(4H)-one,2-amino-6,7-dihydro-

Pyrazolo[1,5-a]pyrimidin-5(4H)-one,2-amino-6,7-dihydro-

C6H5N3O (135.0433)


   

3-Aminocyclopentanone hydrochloride

3-Aminocyclopentanone hydrochloride

C5H10ClNO (135.0451)


   

cyclobutanesulfonamide

cyclobutanesulfonamide

C4H9NO2S (135.0354)


   

3-Ethynyl-4-fluoroaniline

3-Ethynyl-4-fluoroaniline

C8H6FN (135.0484)


   

ISOXAZOLO[5,4-B]PYRIDIN-3-AMINE

ISOXAZOLO[5,4-B]PYRIDIN-3-AMINE

C6H5N3O (135.0433)


   

Acetofenate

Acetofenate

C8H7O2- (135.0446)


   

2-Fluoro-5-methylbenzonitrile

2-Fluoro-5-methylbenzonitrile

C8H6FN (135.0484)


   

2-(3-Fluorophenyl)acetonitrile

2-(3-Fluorophenyl)acetonitrile

C8H6FN (135.0484)


   

2-Fluoro-4-methylbenzonitrile

2-Fluoro-4-methylbenzonitrile

C8H6FN (135.0484)


   

5H-pyrrolo[3,2-d]pyrimidin-4-ol

5H-pyrrolo[3,2-d]pyrimidin-4-ol

C6H5N3O (135.0433)


   

3-Fluoro-2-methylbenzonitrile

3-Fluoro-2-methylbenzonitrile

C8H6FN (135.0484)


   

[1,2,4]TRIAZOLO[1,5-A]PYRIMIDIN-7-AMINE

[1,2,4]TRIAZOLO[1,5-A]PYRIMIDIN-7-AMINE

C5H5N5 (135.0545)


   

2(1H)-Pyrimidinone,4-amino-1-ethynyl-

2(1H)-Pyrimidinone,4-amino-1-ethynyl-

C6H5N3O (135.0433)


   

2-oxa-5-azabicyclo[4.1.0]heptane hydrochloride

2-oxa-5-azabicyclo[4.1.0]heptane hydrochloride

C5H10ClNO (135.0451)


   

Pyrazolo[1,5-a]pyriMidin-5(4H)-one

Pyrazolo[1,5-a]pyriMidin-5(4H)-one

C6H5N3O (135.0433)


   

3-chloro-N-ethylpropanaMide

3-chloro-N-ethylpropanaMide

C5H10ClNO (135.0451)


   

3,7,8,9-tetrazabicyclo[4.3.0]nona-2,4,6,9-tetraen-2-amine

3,7,8,9-tetrazabicyclo[4.3.0]nona-2,4,6,9-tetraen-2-amine

C5H5N5 (135.0545)


   

2,5-Dihydro-4H-pyrazolo[4,3-c]pyridin-4-one

2,5-Dihydro-4H-pyrazolo[4,3-c]pyridin-4-one

C6H5N3O (135.0433)


   

3-fluoroindole

3-fluoroindole

C8H6FN (135.0484)


   

2,1,3-Benzoxadiazol-5-amine

2,1,3-Benzoxadiazol-5-amine

C6H5N3O (135.0433)


   

Polyethyleneimine

Polyethyleneimine

C5H10ClNO (135.0451)


   

1-h-pyrazolo[3,4-b]pyridin-4-ol

1-h-pyrazolo[3,4-b]pyridin-4-ol

C6H5N3O (135.0433)


   

6-methyltetrazolo[1,5-b]pyridazine

6-methyltetrazolo[1,5-b]pyridazine

C5H5N5 (135.0545)


   

Pyrrolo[2,3-d]pyrimidin-4-ol

Pyrrolo[2,3-d]pyrimidin-4-ol

C6H5N3O (135.0433)


   

2-Methyl-2-Nitro-1,3-Propanediol

2-Methyl-2-Nitro-1,3-Propanediol

C4H9NO4 (135.0532)


   

1H-Benzotriazol-1-ol

1H-Benzotriazol-1-ol

C6H5N3O (135.0433)


   

5-Pyrimidinecarbonitrile, 2-hydrazino- (9CI)

5-Pyrimidinecarbonitrile, 2-hydrazino- (9CI)

C5H5N5 (135.0545)


   

p-Toluate

p-Toluate

C8H7O2- (135.0446)


   

3-(Dimethyl-Lambda~4~-Sulfanyl)propanoic Acid

3-(Dimethyl-Lambda~4~-Sulfanyl)propanoic Acid

C5H11O2S+ (135.048)


   

rel-(2S,3R)-2-Amino-3,4-dihydroxybutanoic acid

rel-(2S,3R)-2-Amino-3,4-dihydroxybutanoic acid

C4H9NO4 (135.0532)


   

Pyrrolo[1,2-d][1,2,4]triazin-4(3H)-one

Pyrrolo[1,2-d][1,2,4]triazin-4(3H)-one

C6H5N3O (135.0433)


   

(3R)-3-amino-4-sulfanylbutanoic acid

(3R)-3-amino-4-sulfanylbutanoic acid

C4H9NO2S (135.0354)


   

Adenin

InChI=1\C5H5N5\c6-4-3-5(9-1-7-3)10-2-8-4\h1-2H,(H3,6,7,8,9,10

C5H5N5 (135.0545)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].

   

Hydroxymethylserine

Hydroxymethylserine

C4H9NO4 (135.0532)


   

Benzeneacetate

Benzeneacetate

C8H7O2- (135.0446)


D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

(2S)-2-azaniumyl-4-sulfanylbutanoate

(2S)-2-azaniumyl-4-sulfanylbutanoate

C4H9NO2S (135.0354)


   

(2R)-2-azaniumyl-3-(methylsulfanyl)propanoate

(2R)-2-azaniumyl-3-(methylsulfanyl)propanoate

C4H9NO2S (135.0354)


   

m-Methylbenzoate

m-Methylbenzoate

C8H7O2- (135.0446)


   

(2S)-2-azaniumyl-3-methylsulfanylpropanoate

(2S)-2-azaniumyl-3-methylsulfanylpropanoate

C4H9NO2S (135.0354)


   

3-Hydroxyhomoserine

3-Hydroxyhomoserine

C4H9NO4 (135.0532)


   

2-Methylbenzoate

2-Methylbenzoate

C8H7O2- (135.0446)


   

(2R)-2-azaniumyl-4-sulfanylbutanoate

(2R)-2-azaniumyl-4-sulfanylbutanoate

C4H9NO2S (135.0354)


   

4-hydroxy-L-allo-threonine

4-hydroxy-L-allo-threonine

C4H9NO4 (135.0532)


   

2-Ammonio-4-sulfanylbutanoate

2-Ammonio-4-sulfanylbutanoate

C4H9NO2S (135.0354)


   

alpha-(Hydroxymethyl)serine

alpha-(Hydroxymethyl)serine

C4H9NO4 (135.0532)


   

4-Hydroxy-L-threonine

4-Hydroxy-L-threonine

C4H9NO4 (135.0532)


A hydroxy-amino acid consisting of L-threonine having a hydroxy substituent at the 4-position.

   

S-methylcysteine zwitterion

S-methylcysteine zwitterion

C4H9NO2S (135.0354)


An S-alkyl-L-cysteine zwitterion obtained by transfer of a proton from the carboxy to the amino group of S-methylcysteine; major species at pH 7.3.

   

m-toluate

m-toluate

C8H7O2 (135.0446)


A toluate that is the conjugate base of m-toluic acid.

   

homocysteine zwitterion

homocysteine zwitterion

C4H9NO2S (135.0354)


An amino acid zwitterion of homocysteine arising from transfer of a proton from the carboxy to the amino group; major species at pH 7.3.

   

Phenylacetate

Phenylacetate

C8H7O2 (135.0446)


A monocarboxylic acid anion that is the conjugate base of phenylacetic acid.

   

L-homocysteine zwitterion

L-homocysteine zwitterion

C4H9NO2S (135.0354)


An amino acid zwitterion arising from transfer of a proton from the carboxy to the amino group of L-homocysteine; major species at pH 7.3.

   

4-hydroxy-L-threonine zwitterion

4-hydroxy-L-threonine zwitterion

C4H9NO4 (135.0532)


An amino acid zwitterion arising from transfer of a proton from the carboxy to the amino group of 4-hydroxy-L-threonine; major species at pH 7.3.

   

O-Toluate

O-Toluate

C8H7O2 (135.0446)


A toluate that is the conjugate base of o-toluic acid.

   

S-methylcysteine

S-methylcysteine

C4H9NO2S (135.0354)


A cysteine derivative that is L-cysteine in which the hydrogen attached to the sulfur is replaced by a methyl group.

   

4-Hydroxythreonine

4-Hydroxythreonine

C4H9NO4 (135.0532)


   

Hydroxythreonine

Hydroxythreonine

C4H9NO4 (135.0532)


   

α-hydroxymethylserine

alpha-hydroxymethylserine

C4H9NO4 (135.0532)


{"Ingredient_id": "HBIN015557","Ingredient_name": "\u03b1-hydroxymethylserine","Alias": "alpha-hydroxymethylserine","Ingredient_formula": "C4H9NO4","Ingredient_Smile": "CNC(CO)(C(=O)O)O","Ingredient_weight": "135.12 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15891","TCMID_id": "31238;10520","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "129856910","DrugBank_id": "NA"}

   

(2s,3r)-3-hydroxy-2-(hydroxyamino)butanoic acid

(2s,3r)-3-hydroxy-2-(hydroxyamino)butanoic acid

C4H9NO4 (135.0532)


   

1h,3h-imidazo[4,5-d]pyridazin-2-imine

1h,3h-imidazo[4,5-d]pyridazin-2-imine

C5H5N5 (135.0545)


   

(2r,3s)-2-amino-3,4-dihydroxybutanoic acid

(2r,3s)-2-amino-3,4-dihydroxybutanoic acid

C4H9NO4 (135.0532)


   

2,3,4-trihydroxybutanimidic acid

2,3,4-trihydroxybutanimidic acid

C4H9NO4 (135.0532)