Classification Term: 1734
Methyl-branched fatty acids (ontology term: CHEMONTID:0003544)
Fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present." []
found 47 associated metabolites at family
metabolite taxonomy ontology rank level.
Ancestor: Branched fatty acids
Child Taxonomies: There is no child term of current ontology term.
Tiglic acid
Tiglic acid is a monocarboxylic unsaturated organic acid. It is found in croton oil and in several other natural products. It has also been isolated from the defensive secretion of certain beetles. Tiglic acid, also known as tiglate or tiglinsaeure, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Tiglic acid has a double bond between the second and third carbons of the chain. Tiglic acid and angelic acid form a pair of cis-trans isomers. Tiglic acid is a volatile and crystallizable substance with a sweet, warm, spicy odour. It is used in making perfumes and flavoring agents. The salts and esters of tiglic acid are called tiglates. Tiglic acid is a 2-methylbut-2-enoic acid having its double bond in trans-configuration. It has a role as a plant metabolite. It is functionally related to a crotonic acid. Tiglic acid is a natural product found in Aloe africana, Azadirachta indica, and other organisms with data available. See also: Arctium lappa Root (part of); Petasites hybridus root (part of). A branched-chain fatty acid consisting of 2-butenoic acid having a methyl group at position 2. Flavouring ingredient KEIO_ID T016 Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1]. Tiglic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=80-59-1 (retrieved 2025-01-17) (CAS RN: 80-59-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Mesaconic acid
Mesaconic acid, also known as 2-methylfumarate or citronic acid, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Mesaconic acid is a dicarboxylic butenoic acid, with a methyl group in position 2 and the double bound between carbons 2 and 3. Mesaconic acid was first studied for its physical properties in 1874 by Jacobus van ‘t Hoff (https://web.archive.org/web/20051117102410/http://dbhs.wvusd.k12.ca.us/webdocs/Chem-History/Van\\%27t-Hoff-1874.html). It is now known to be involved in the biosynthesis of vitamin B12 and it is also a competitor inhibitor of the reduction of fumarate. Mesaconic acid is one of several isomeric carboxylic acids obtained from citric acid. Is used as a fire retardant, recent studies revealed this acid is a competitive inhibitor of fumarate reduction. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D003879 - Dermatologic Agents
Isovaleric acid
Isovaleric acid, is a natural fatty acid found in a wide variety of plants and essential oils. Isovaleric acid is clear colorless liquid that is sparingly soluble in water, but well soluble in most common organic solvents. It has been suggested that isovaleric acid from pilot whales, a species frequently consumed in the Faroe Islands, may be the unusual dietary factor in prolonged gestation in the population of the Faroe Islands. Previous studies suggested that was due to the high intake of n-3 polyunsaturated fatty acids has been, but fatty acid data for eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA) in blood lipids of Faroese and Norwegians was reviewed in terms of the type of fish eaten (mostly lean white fish with DHA much greater than EPA); the popular lean fish, thus, probably provides too little EPA to produce a marked effect on human biochemistry (PMID 2646392). Isovaleric acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Flavouring agent. Simple esters are used in flavourings. Constituent of hops, cheese etc.; an important component of cheese aroma and flavour CONFIDENCE standard compound; INTERNAL_ID 152 KEIO_ID I018 Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human. Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human.
Isocaproic acid
Isocaproic acid, a metabolite of 20 alpha-hydroxycholesterol (PMID 14446007) and is an important metabolite in early placentas enabling the convertion from cholesterol to pregnenolone to Dehydroepiandrosterone (DHEA) (PMID 11972299). Found in bananas and lime oil 4-Methylpentanoic acid (Isocaproic Acid) is a Short chain fatty acid (SCFA)[1].
Valproic acid
Valproic acid (VPA) is considered to be a drug of first choice and one of the most frequently-prescribed antiepileptic drugs worldwide for the therapy of generalized and focal epilepsies, including special epileptic. It is a broad-spectrum antiepileptic drug and is usually well tolerated. Rarely, serious complications may occur in some patients, including hemorrhagic pancreatitis, coagulopathies, bone marrow suppression, VPA-induced hepatotoxicity and encephalopathy, but there is still a lack of knowledge about the incidence and occurrence of these special side effects. VPA has been approved for stabilization of manic episodes in patients with bipolar disorder. It is also used to treat migraine headaches and schizophrenia. As the use of VPA increases, the number of both accidental and intentional exposures increases. This is paralleled by more reports of VPA-induced toxicity. VPA is relatively contraindicated in pregnancy due to its teratogenicity. It is a known folate antagonist, which can cause neural tube defects. Thus, folic acid supplements may alleviate teratogenic problems. Women who become pregnant whilst taking valproate should be counselled as to its risks. VPA is an inhibitor of the enzyme histone deacetylase 1 (HDAC1). HDAC1 is needed for HIV to remain in infected cells. Patients treated with valproic acid in addition to highly active antiretroviral therapy (HAART) showed a median 75\\% reduction in latent HIV infection. VPA is believed to affect the function of the neurotransmitter GABA (as a GABA transaminase inhibitor) in the human brain. Valproic Acid dissociates to the valproate ion in the gastrointestinal tract. (PMID: 18201150, 17496767) [HMDB] Valproic acid (VPA) is considered to be a drug of first choice and one of the most frequently-prescribed antiepileptic drugs worldwide for the therapy of generalized and focal epilepsies, including special epileptic. It is a broad-spectrum antiepileptic drug and is usually well tolerated. Rarely, serious complications may occur in some patients, including hemorrhagic pancreatitis, coagulopathies, bone marrow suppression, VPA-induced hepatotoxicity and encephalopathy, but there is still a lack of knowledge about the incidence and occurrence of these special side effects. VPA has been approved for stabilization of manic episodes in patients with bipolar disorder. It is also used to treat migraine headaches and schizophrenia. As the use of VPA increases, the number of both accidental and intentional exposures increases. This is paralleled by more reports of VPA-induced toxicity. VPA is relatively contraindicated in pregnancy due to its teratogenicity. It is a known folate antagonist, which can cause neural tube defects. Thus, folic acid supplements may alleviate teratogenic problems. Women who become pregnant whilst taking valproate should be counselled as to its risks. VPA is an inhibitor of the enzyme histone deacetylase 1 (HDAC1). HDAC1 is needed for HIV to remain in infected cells. Patients treated with valproic acid in addition to highly active antiretroviral therapy (HAART) showed a median 75\\% reduction in latent HIV infection. VPA is believed to affect the function of the neurotransmitter GABA (as a GABA transaminase inhibitor) in the human brain. Valproic Acid dissociates to the valproate ion in the gastrointestinal tract. (PMID: 18201150, 17496767). D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D004791 - Enzyme Inhibitors
Isopropylmaleic acid
2-Isopropylmaleic acid belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually they are saturated and contain one or more methyl groups. However, branches other than methyl groups may be present. 2-Isopropylmaleic acid is a moderately acidic compound (based on its pKa). Isopropylmaleic acid is found in the leucine biosynthesis pathway. It is synthesized from oxoisovalerate by 2-isopropylmalate synthase and converted into isopropyl-3-oxosuccinate by 3-isopropylmalate dehydrogenase. The 2- and 3-isopropyl derivatives of isopropylmaleic acid are interconverted by the enzyme isopropylmalate dehydratase.
Maleic acid homopolymer
Limescale prevention additive for boiler water. Maleic acid homopolymer is a permitted additive in food Limescale prevention additive for boiler water. Permitted additive in foods
4-ene-Valproic acid
4-ene-Valproic acid is only found in individuals that have used or taken Valproic Acid. 4-ene-Valproic acid is a metabolite of Valproic Acid. 4-ene-valproic acid belongs to the family of Branched Fatty Acids. These are fatty acids containing a branched chain. D009676 - Noxae > D013723 - Teratogens
2-ene-Valproic acid
2-ene-Valproic acid is only found in individuals that have used or taken Valproic Acid.2-ene-Valproic acid is a metabolite of Valproic Acid. 2-ene-valproic acid belongs to the family of Branched Fatty Acids. These are fatty acids containing a branched chain. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D009676 - Noxae > D013723 - Teratogens
(3Z)-2-Propylpent-3-enoic acid
(3Z)-2-Propylpent-3-enoic acid is only found in individuals that have used or taken Valproic Acid. (3Z)-2-Propylpent-3-enoic acid is a metabolite of Valproic Acid. (3z)-2-propylpent-3-enoic acid belongs to the family of Branched Fatty Acids. These are fatty acids containing a branched chain.
2-Propyl-2,4-pentadienoic acid
2-Propyl-2,4-pentadienoic acid is a metabolite of valproic acid. Valproic acid (VPA) is a chemical compound and an acid that has found clinical use as an anticonvulsant and mood-stabilizing drug, primarily in the treatment of epilepsy, bipolar disorder, and, less commonly, major depression. It is also used to treat migraine headaches and schizophrenia. VPA is a liquid at room temperature, but it can be reacted with a base such as sodium hydroxide to form the salt sodium valproate, which is a solid. (Wikipedia)
Ethylmethylacetic acid
Ethylmethylacetic acid, also known as alpha-methyl butyric acid or a-methyl butyrate, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Ethylmethylacetic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Ethylmethylacetic acid is a carboxylic acid found in low amounts in normal humans (PMID 3372640)
Citraconic acid
Citraconic acid, also known as 2-methylmaleate or methylmaleic acid, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Citraconic acid is a dicarboxylic acid consisting of maleic acid having a methyl substituent at the 2-position. Citraconic acid exists as a white solid. It is the cis-isomer of mesaconic acid and is one of the pyrocitric acids formed upon the heating of citric acid. Citraconic acid has been detected in the urine of both normal and fasting individuals (PMID: 6778884). Citraconic acid is also elevated in the urine of individuals with methylmalonic acidaemia who have suffered ketotic attacks (PMID: 116077). Altered serum levels of citraconic acid have been detected in patients with primary biliary cholangitis (PMID: 28400566). Mesaconic acid is one of several isomeric carboxylic acids obtained from citric acid. Is used as a fire retardant, recent studies revealed this acid is a competitive inhibitor of fumarate reduction. [HMDB] Citraconic acid belongs to the class of organic compounds known as methyl-branched fatty acids.
Angelic acid
Angelic acid is found in fats and oils. Angelic acid is a constituent of Angelica archangelica (angelica) Angelic acid has a double bond between the second and third carbons of the chain. Together with tiglic acid form a pair of cis-trans isomers. Angelic acid is a volatile body, of biting acid taste and pungent sour odour. It crystallizes in colorless monoclinic prisms. Angelic acid was formerly used therapeutically as a sedative. Angelic acid is a monocarboxylic unsaturated organic acid. It is found in garden angelica (Angelica archangelica), Umbelliferae, and many other plants. It was also isolated from the defensive secretion of certain carabid beetles Angelic acid is the (Z)-isomer of 2-methylbut-2-enoic acid. It is found in plant species of the family Apiaceae. It has a role as a plant metabolite. It is functionally related to an isocrotonic acid. Angelic acid is a natural product found in Tussilago farfara, Angelica sinensis, and other organisms with data available. See also: Petasites hybridus root (part of). Flavouring ingredient Angelic Acid is a substance found in Angelica sinensis, and it exists in an ester form. Angelic acid aids in wound healing and exhibits psychotropic properties[1]. Angelic Acid is a substance found in Angelica sinensis, and it exists in an ester form. Angelic acid aids in wound healing and exhibits psychotropic properties[1].
(±)-2-Methylpentanoic acid
2-Methylpentanoic acid is a member of the class of compounds known as methyl-branched fatty acids. Methyl-branched fatty acids are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Thus, 2-methyl valeric acid is considered to be a fatty acid lipid molecule. 2-methyl valeric acid is soluble (in water) and a very weakly acidic compound (based on its pKa). 2-Methylpentanoic acid is a cheese and sour tasting compound found in pepper (spice), which makes 2-methylpentanoic acid a potential biomarker for the consumption of this food product. Methyl pentanoate, commonly known as methyl valerate, is the methyl ester of pentanoic acid (valeric acid) with a fruity odor . 2-methylvaleric acid is a methyl-branched fatty acid that is pentanoic acid which carries a methyl group at position 2. It has a role as a flavouring agent, a plant metabolite and a fragrance. It is a branched-chain saturated fatty acid, a methyl-branched fatty acid, a monocarboxylic acid and a short-chain fatty acid. It is a conjugate acid of a 2-methylvalerate. 2-Methylvaleric acid is a natural product found in Pelargonium graveolens with data available. A methyl-branched fatty acid that is pentanoic acid which carries a methyl group at position 2. (±)-2-Methylpentanoic acid is a flavouring ingredien 2-Methylvaleric acid (2-Methylpentanoic acid) is a short-chain fatty acid isolated from Campomanesia adamantium and dairy products. 2-Methylvaleric acid is also found in animal feces. 2-Methylvaleric acid is a flavor compound used for food-flavor ingredient, fragrances[1][2][3].
2-Methyl-4-pentenoic acid
2-Methyl-4-pentenoic acid is a branched-chain fatty acid. (±)-2-Methyl-4-pentenoic acid is a flavouring ingredien It is used as a food additive . 2-Methyl-4-pentenoic Acid is an organic acid. 2-Methyl-4-pentenoic Acid is an organic acid.
2,2-Dimethylglutaric acid
2,2-Dimethylglutaric acid belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present.
2,2-Dimethylsuccinic acid
2,2-dimethylsuccinic acid is an alpha,omega-dicarboxylic acid that is succinic acid substituted by two methyl groups at positions 2 and 2 respectively. It derives from a succinic acid. 2,2-Dimethylsuccinic acid, also known as 2,2-dimethylbutanedioate, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. 2,2-Dimethylsuccinic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2,2-Dimethylsuccinic acid has been identified in urine samples from children investigated for a possible inherited metabolic disease (PMID 2134344), and in children fed elemental or protein-hydrolysate formulas that use Octanylsuccinic acid-modified cornstarch as an emulsifying agent (PMID 1805153) [HMDB] 2,2-Dimethylsuccinic acid belongs to the class of organic compounds known as methyl-branched fatty acids.
2-Methylglutaric acid
2-Methylglutaric acid, also known as alpha-methylglutarate or 2-methylpentanedioate, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. 2-Methylglutaric acid is also classified as an alpha,omega-dicarboxylic acid. It is glutaric acid substituted at position 2 by a methyl group. 2-Methylglutaric acid arises from the microbial metabolism of the isoprenoid alkaloid pristane (PMID: 4327007; PMID: 20143352). 2-Methylglutaric acid is an organic acid normally found in human urine, in healthy adults and children. 2-Methylglutaric acid is a metabolite of succinic acid, a citric acid cycle intermediate. (PMID: 2925825, 8087979, 16379391, 1688138) [HMDB] 2-Methylpentanedioic acid is a metabolite of succinic acid, a citric acid cycle intermediate.
3,3-Dimethylglutaric acid
3,3-Dimethylglutaric acid is a compound that has occasionally found in human urine. (PMID: 699273) [HMDB] 3,3-Dimethylglutaric acid is a compound that has occasionally found in human urine. (PMID: 699273). 3,3-Dimethylglutaric acid, a member of methyl-branched fatty acids, is a endogenous metabolite occasionally found in human urine[1].
Methylglutaric acid
Methylglutaric acid is a leucine metabolite. A large amount of methylglutaric acid is identified in urine of patients with deficiency of 3-methylglutaconyl coenzyme A hydratase (PMID 6181239). Methylglutaric acid is also found to be associated with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, another inborn error of metabolism. Methylglutaric acid is a leucine metabolite. A large amount of methylglutaric acid is identified in urine of patients with deficiency of 3-methylglutaconyl coenzyme A hydratase (PMID 6181239). [HMDB] 3-Methylglutaric acid, a leucine metabolite, is a conspicuous C6 dicarboxylic organic acid classically associated with two distinct leucine pathway enzyme deficiencies, 3-hydroxy-3-methylglutaryl CoA lyase (HMGCL) and 3-methylglutaconyl CoA hydratase (AUH)[1][2].
Methylsuccinate
Methylsuccinic acid (CAS: 498-21-5) is a normal metabolite found in human fluids. Increased urinary levels of methylsuccinic acid (together with ethylmalonic acid) are the main biochemical measurable features in ethylmalonic encephalopathy (OMIM: 602473), a rare metabolic disorder with an autosomal recessive mode of inheritance that is clinically characterized by neuromotor delay, hyperlactic acidemia, recurrent petechiae, orthostatic acrocyanosis, and chronic diarrhea (PMID:12382164). The underlying biochemical defect involves isoleucine catabolism (PMID:9667231). Methylsuccinic acid levels were found to have decreased in the urine of animals under D-serine-induced nephrotoxicity (D-serine causes selective necrosis of the proximal straight tubules in the rat kidney) (PMID:15596249). Moreover, methylsuccinic acid is found to be associated with ethylmalonic encephalopathy, isovaleric acidemia, and medium-chain acyl-CoA dehydrogenase deficiency, which are also inborn errors of metabolism. Methylsuccinic acid is a normal metabolite found in human fluids. Increased urinary levels of Methylsuccinic acid (together with ethylmalonic acid) are the main biochemical measurable features in ethylmalonic encephalopathy (OMIM 602473 ), a rare metabolic disorder with an autosomal recessive mode of inheritance that is clinically characterized by neuromotor delay, hyperlactic acidemia, recurrent petechiae, orthostatic acrocyanosis, and chronic diarrhea. (PMID 12382164) T he underlying biochemical defect involves isoleucine catabolism. (PMID 9667231) 2-Methylsuccinic acid is a normal metabolite in human fluids and the main biochemical measurable features in ethylmalonic encephalopathy.
4-Methyl-2-pentenoic acid
4-Methyl-2-pentenoic acid is found in alcoholic beverages. 4-Methyl-2-pentenoic acid is isolated from hop Isolated from hops. 4-Methyl-2-pentenoic acid is found in alcoholic beverages.
2-Methyl-2-pentenoic acid
2-Methyl-2-pentenoic acid is a flavouring ingredien Flavouring ingredient
Patuletin 3-(2'-apiosyl-[2'-feruloylgentiobioside])
Patuletin 3-(2-apiosyl-[2-feruloylgentiobioside]) is found in green vegetables. Patuletin 3-(2-apiosyl-[2-feruloylgentiobioside]) is a constituent of spinach (Spinacea oleracea) leaves Constituent of spinach (Spinacea oleracea) leaves. Patuletin 3-(2-apiosyl-[2-feruloylgentiobioside]) is found in green vegetables and spinach.
3-Methylglutaconate
3-Methylglutaconic acid is an intermediate (as the CoA thioester) in the leucine degradative pathway as well as the mevalonate shunt, a pathway that links isoprenoid metabolism with mitochondrial acetyl-CoA metabolism (PMID: 7603789). 3-methylglutaconyl-CoA hydratase is involved in the metabolism process of 3-methylglutaconic acid. When present in sufficiently high levels, 3-methylglutaconic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of 3-methylglutaconic acid are associated with at least five inborn errors of metabolism including 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, 3-methylglutaconic aciduria type I, 3-methylglutaconic aciduria type III, 3-methylglutaconic aciduria type IV, and guanidinoacetate methyltransferase deficiency (GAMT deficiency). 3-Methylglutaconic acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. 3-Methylglutaconic acid is an intermediate (as the CoA thioester) in the leucine degradative pathway as well as the mevalonate shunt, a pathway that links isoprenoid metabolism with mitochondrial acetyl-CoA metabolism. (PMID: 7603789) 3-Methylglutaconic acid is the major metabolites accumulating in 3-Methylglutaconic aciduria (MGTA). 3-Methylglutaconic acid can induce lipid oxidative damage and protein oxidative. 3-Methylglutaconic acid decreases the non-enzymatic antioxidant defenses in cerebral cortex supernatants to elicit oxidative stress in the cerebral cortex. 3-Methylglutaconic acid can be used for brain damage disease research[1].
3-Methylpentanoic acid
(±)-3-Methylpentanoic acid is a flavouring ingredien Flavouring ingredient 3-Methylvaleric Acid is a flavouring ingredient.
Senecioic acid
Senecioic acid, also known as 3-methylcrotonate, 3-methylcrotonic acid or 3,3-dimethylacrylic acid, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated (however senecioic acid is unsaturated) and contain only one or more methyl group. However, branches other than methyl may be present. Senecioic acid is a methyl-branched fatty acid that has a but-2-enoic acid skeleton bearing a methyl substituent at position 3. Senecioic acid is an unsaturated fatty acid found in the pheromones of mealybug species, the Madeira cockroach and the Southern long-nosed bat. It also appears in the urine of patients with 3-Methylcrotonic aciduria caused by 3-hydroxy-3-methylglutaryl-CoA lyase deficiency (PMID: 6157502) and those with 3-Hydroxy-3-methylglutaric aciduria (PMID: 947633). The appearance of 3-methylcrotonic acid in urine indicates a blockage in the sixth step of leucine catabolism, which is the cleavage of 3-hydroxy-3-methylglutaryl-CoA to acetoacetic acid and acetyl-CoA. Flavouring ingredient 3-Methylbut-2-enoic acid is an endogenous metabolite. 3-Methylbut-2-enoic acid is an endogenous metabolite.
(E)-2-Methylglutaconic acid
2-Methylglutaconic acid is found in the urine of patients with organic aciduria from 2-methylacetoacetyl-CoA thiolase (EC 2.3.1.9, acetyl-CoA C-acetyltransferase) deficiency (ACAT, OMIM 607809). Main clinical features of ACAT include important staturo-ponderal delay, frequent infectious rhinopharyngitis episodes and an acute metabolic acidosis (this metabolic decompensation being adequately halted by bicarbonate supplementation). (PMID: 8930414, 2925825) [HMDB] 2-Methylglutaconic acid is found in the urine of patients with organic aciduria from 2-methylacetoacetyl-CoA thiolase (EC 2.3.1.9, acetyl-CoA C-acetyltransferase) deficiency (ACAT, OMIM 607809). Main clinical features of ACAT include important staturo-ponderal delay, frequent infectious rhinopharyngitis episodes and an acute metabolic acidosis (this metabolic decompensation being adequately halted by bicarbonate supplementation). (PMID: 8930414, 2925825).
(3E)-2-Propylpent-3-enoic acid
(3E)-2-Propylpent-3-enoic acid is only found in individuals that have used or taken Valproic Acid. (3E)-2-Propylpent-3-enoic acid is a metabolite of Valproic Acid. (3e)-2-propylpent-3-enoic acid belongs to the family of Branched Fatty Acids. These are fatty acids containing a branched chain.
2-Methyl-3-pentenoic acid
2-Methyl-3-pentenoic acid is a flavouring ingredien Flavouring ingredient
3-Isopropenylpentanedioic acid
3-Isopropenylpentanedioic acid is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive .
(S)-2-Methylbutanoic acid
(S)-2-Methylbutanoic acid is found in fats and oils. (S)-2-Methylbutanoic acid is isolated from many essential oils and other biol. sources. Isolated from many essential oils and other biol. sources. (S)-2-Methylbutanoic acid is found in fats and oils.
2,4-Dimethyl-2-pentenoic acid
2,4-Dimethyl-2-pentenoic acid is a flavouring ingredient. Flavouring ingredient
3-Methylbut-3-enoic acid
3-methyl-3-butenoic acid is an isomer of senecioic acid (3-methylcrotonic acid) and has been found in the urine of patients with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency (an uncommon inherited disorder characterized by an inability to properly metabolize leucine) (PMID: 6157502).
Methylglutamic acid
Methylglutamic acid, also known as methylglutamate, is a member of the class of compounds known as methyl-branched fatty acids. Methyl-branched fatty acids are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Methylglutamic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Methylglutamic acid can be found in tamarind, which makes methylglutamic acid a potential biomarker for the consumption of this food product. N-Methyl-L-glutamic acid (methylglutamate) is a chemical derivative of glutamic acid in which a methyl group has been added to the amino group. It is an intermediate in methane metabolism. Biosynthetically, it is produced from methylamine and glutamic acid by the enzyme methylamine‚Äîglutamate N-methyltransferase. It can also be demethylated by methylglutamate dehydrogenase to regenerate glutamic acid . Methylglutamic acid, also known as methylglutamate, is a member of the class of compounds known as methyl-branched fatty acids. Methyl-branched fatty acids are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Methylglutamic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Methylglutamic acid can be found in tamarind, which makes methylglutamic acid a potential biomarker for the consumption of this food product. N-Methyl-L-glutamic acid (methylglutamate) is a chemical derivative of glutamic acid in which a methyl group has been added to the amino group. It is an intermediate in methane metabolism. Biosynthetically, it is produced from methylamine and glutamic acid by the enzyme methylamine—glutamate N-methyltransferase. It can also be demethylated by methylglutamate dehydrogenase to regenerate glutamic acid .